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Abstract

Let q be a positive integer, and G be a q-partite simple graph on qn vertices, with n
vertices in each vertex class. Let δ = k

k+1 , where k = q + O(log q). If each vertex of G
is adjacent to at least δn vertices in each of the other vertex classes, q is bounded and
n is large enough, then G has a Kq-factor.

1 Introduction

In this paper we will consider simple graphs. We mostly use standard notation: we denote
by V (F ) and E(F ) the vertex and the edge set of the graph F , degF (x) is the degree of the
vertex x ∈ V (F ) and δ(F ) is the minimum degree of F . The number of vertices of F will
be denoted by v(F ).

Let J be a fixed graph on q vertices. If q divides |V (F )| and F has a subgraph which
consists of |V (F )|/q vertex-disjoint copies of J , then we say that F has a J-factor.

A fundamental result in extremal graph theory is the following theorem of Hajnal and
Szemerédi [5]:

Theorem 1 (Hajnal and Szemerédi) Let G be a graph on n vertices such that δ(G) ≥
q−1
q n. If q divides n, then G contains n/q vertex-disjoint cliques of size q.

The theorem is obvious for q = 2; the first non-trivial case q = 3 was proved by K.
Corrádi and A. Hajnal [2]. A. Hajnal and E. Szemerédi proved the theorem for arbitrary q
in 1970 [5]. The proof was very complicated, and did not yield an effective algorithm.

We remark that they investigated an equivalent formulation. Let us call a proper q-
coloring an equitable q-coloring if any two color classes differ in size by at most one. Hajnal
and Szemerédi showed that G, the complementer of G has an equitable coloring with n/q
colors. Clearly, if G has an equitable n/q-coloring, then every color class is a clique in
G. Almost four decades later Mydlarz and Szemerédi [15], and independently, Kierstead
and Kostochka [8] found polynomial time algorithms for finding an equitable n/q-coloring.
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Recently, a O(n3/q) time algorithm was published by Kierstead, Kostochka, Mydlarz and
Szemerédi in [9].

We say that F is q-partite, if its vertex set can be divided into q classes which are
independent sets. F is a balanced q-partite graph, if these vertex classes are of the same size.
Let F be a q-partite graph with vertex classes A1, A2, . . . , Aq. We define the proportional
minimum degree of F by

δ̃(F ) = min
1≤i≤q

min
v∈Ai

{
deg(v,Aj)
|Aj |

: j 6= i

}
.

E. Fischer [4] considered several variants of the Hajnal-Szemerédi theorem and proposed
to investigate a q-partite version of Theorem 1. He showed that if δ̃(G) ≥ 1− 1/2(q − 1)
then G has a Kq-factor, and conjectured that the true bound is δ̃(G) ≥ 1− 1/q. However,
this fails as the following construction by Cs. Magyar and R. Martin [14] shows. Let Γq
be a balanced q-partite graph with vertex set {hi,j : i = 1, 2, . . . , q; j = 1, 2, . . . , q}. The
adjacency rules are as follows: hi,jhi′,j′ ∈ E(Γq) if i 6= i′, j 6= j′ and either j or j′ is in
{1, . . . , q − 2}. Also, hi,qhi′,q ∈ E(Γq) for i 6= i′. No other edges exist. It is easy to see that
the proportional minimum degree of Γq is 1 − 1/q. If q is even then Γq can be covered by
disjoint copies of Kqs, but it cannot if q is odd.

The conjecture below contains a small correction, an additive term that is necessary for
odd values of q.

Conjecture 2 Let G be a balanced q-partite graph on qn vertices. There exists a constant
K ≥ 0 such that if δ̃(G) ·n ≥ q−1

q n+K, then G contains n vertex-disjoint cliques of size q.

The conjecture is easily seen to hold for q = 2. It was shown for q = 3 by Cs. Magyar
and R. Martin [14], and for q = 4 by R. Martin and E. Szemerédi [15]. The proofs of these
latter cases are very involved. We remark that R. Johansson [7] proved the q = 3 case
approximately. Also, A. Johansson, R. Johansson and K. Markström [6] considered finding
a Kq-factor in balanced q-partite graphs conditioning on the usual minimum degree.

In this paper we show a relaxed version of Conjecture 2. For q being a natural number
let hq denote the qth harmonic number, that is, hq = 1 + 1

2 + 1
3 + . . .+ 1

q .

Theorem 3 Let q ≥ 2 be an integer and kq = q − 3/2 + hq−1/2. Then there exists an n0

such that if n > n0, G is a balanced q-partite graph on qn vertices, and δ̃(G) ≥ kq

kq+1 , then
G has a Kq-factor.

Notice, that kq

kq+1−
q−1
q = O(log q/q2), that is, the bound in the above theorem is a close

estimation for the conjectured bound. In particular, for every ε > 0 there exists a q0 such
that if q ≥ q0 then (1 + ε) q−1

q >
kq

kq+1 . We also have the following corollary of Theorem 3:

Corollary 4 Let G be as above. Assume that H is a fixed graph such that χ(H) ≤ q. If
v(H) divides n, then G has an H-factor.

For proving Theorem 3 and Corollary 4 our main tools will be the Regularity Lemma of
E. Szemerédi [17], and the Blow-up Lemma by J. Komlós, G. Sárközy and E. Szemerédi [11,
12]. We will give a brief survey on the necessary notions in the second section.
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2 Main tools for the proof

We introduce some more notation first. For any vertex v of the graph G, degG(v,X) is
the number of neighbors of v in the set X, and e(X,Y ) is the number of edges between
the disjoint sets X and Y . NG(v) is the set of neighbors of v and NG(v,X) is the set of
neighbors of v in X. For a set S ⊂ V (G), N(S) = ∪v∈SN(v). We let G|S denote the
subgraph of G induced by the set S.

If k is a natural number, and every vertex in the graph G has degree k, then we call the
graph k-regular. For a real ε ∈ (0, 1) we also will consider ε-regular pairs. Regular pairs
play a crucial role in the Regularity Lemma of Szemerédi (more details follow later).

Let F be a multipartite graph. Given certain vertex classes Ai1 , . . . , Ais we will denote
the s-partite subgraph of F spanned by these classes by F (Ai1 , . . . , Ais). Throughout the
paper we will apply the relation “�”: a� b, if a is sufficiently smaller than b.

2.1 Factors of bipartite graphs

Let F be a bipartite graph with color classes A and B. By the well-known König–Hall
theorem there is a perfect matching in F if and only if |N(S)| ≥ |S| for every S ⊂ A. The
following, while simple, is a very useful consequence of this result, we record it here for
future reference.

Lemma 5 If F is a balanced bipartite graph on 2n vertices, and deg(x) ≥ n/2 for every
x ∈ V (F ), then there is a perfect matching in F .

Notice, that Lemma 5 is precisely Conjecture 2 (and Theorem 3) in the case when q = 2.
If f : V (F ) → N is a function, then an f -factor is a subgraph F ′ of F such that

degF ′(v) = f(v) for every v ∈ V . We will need special f -factors, namely when f ≡ r for
some r ∈ N. Then F ′ is an r-regular subgraph of F . For x ∈ (0, 1) we let ρ(x) = x+

√
2x−1
2 .

If the minimum degree of F is large enough, then one can find a sufficiently dense spanning
regular subgraph (see [3] by Csaba):

Theorem 6 Let F (A,B) be a balanced bipartite graph on 2n vertices, and assume that
δ = δ(F )/n ≥ 1/2. Then F has an s–regular spanning subgraph for all 0 ≤ s ≤ bρ(δ)nc.

2.2 Regularity Lemma

The density between disjoint sets X and Y is defined as:

d(X,Y ) =
e(X,Y )
|X||Y |

.

In the proof of Theorem 3, Szemerédi’s Regularity Lemma [17, 13] plays a pivotal role. We
will need the following definition to state the Regularity Lemma.

Definition 1 (Regularity condition) Let ε > 0. A pair (A,B) of disjoint vertex-sets in
G is ε-regular if for every X ⊂ A and Y ⊂ B, satisfying

|X| > ε|A|, |Y | > ε|B|
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we have
|d(X,Y )− d(A,B)| < ε.

This definition implies that ε-regular pairs are highly uniform bipartite graphs; namely, the
density of any reasonably large subgraph is almost the same as the density of the regular
pair.

We will use the following form of the Regularity Lemma:

Lemma 7 (Degree Form) For every ε > 0 there is an M = M(ε) such that if G = (V,E)
is any graph and d ∈ [0, 1] is any real number, then there is a partition of the vertex set
V into ` + 1 clusters W0,W1, . . . ,W`, and there is a subgraph G′ of G with the following
properties:

• ` ≤M ,

• |W0| ≤ ε|V |,

• all clusters Wi, i ≥ 1, are of the same size m
(
≤ b |V |` c < ε|V |

)
,

• degG′(v) > degG(v)− (d+ ε)|V | for all v ∈ V ,

• G′|Wi = ∅ (Wi is an independent set in G′) for all i ≥ 1,

• all pairs (Wi,Wj), 1 ≤ i < j ≤ `, are ε-regular, each with density either 0 or greater
than d in G′.

Often we call W0 the exceptional cluster. In the rest of the paper we will assume that
0 < ε� d� 1.

Definition 2 (Reduced graph) Apply Lemma 7 to the graph G = (V,E) with parameters
ε and d, and denote the clusters of the resulting partition by W0,W1, . . . ,W`, W0 being the
exceptional cluster. We construct a new graph Gr, the reduced graph of G′ in the following
way: The non-exceptional clusters of G′ are the vertices of the reduced graph Gr (hence
|V (Gr)| = `). We connect two vertices of Gr by an edge if the corresponding two clusters
form an ε-regular pair with density at least d.

The following corollary is immediate:

Corollary 8 Apply Lemma 7 with parameters ε and d to the graph G = (V,E) satisfying
δ(G) ≥ γn (|V | = n) for some γ > 0. Let Gr denote the reduced graph of G′. Then
δ(Gr) ≥ (γ − θ)`, where θ = 2ε+ d.

Next we show that the property of being balanced can be inherited by the reduced graph.
Besides, one can avoid to have mixed clusters, that is, no cluster will contain vertices from
more than one of the vertex classes of G.

Lemma 9 Let G be a balanced q-partite graph with δ(G) ≥ γn for some γ > 0. Then
applying the Regularity Lemma we obtain a reduced graph Gr of G which can be modified
so that Gr is a balanced q-partite graph. Moreover, the modified Gr has no mixed clusters.
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Proof: First we show how to avoid having mixed clusters. Let Wi and Wj be any two
clusters. If Wi has more than εm vertices from at least two different vertex classes then
(Wi,Wj) cannot be an ε-regular pair by the definition. Since every cluster in Gr has some
neighbors by the minimum degree condition of G, we get that in every cluster at least
(1− ε)m vertices belong to the same vertex class. This in turn implies that by deleting εn
vertices from the clusters we arrive at a reduced graph in which every cluster is a subset of
some vertex class of G, and all have the same size. We denote the common cluster size by
m. Hence, the vertex classes of G naturally determine the classes of Gr.

It is still possible that Gr has two classes with different number of clusters. However,
initially the exceptional cluster W0 had at most εn vertices. Since the clusters have the
same size m, we conclude that the difference between any two cluster classes can be at most
ε` clusters. Hence, after discarding a total of at most qε` clusters we get a balanced reduced
graph Gr. 2

During this procedure we may decrease the minimum degree of Gr, however, no cluster
loses more than qε` neighbors. Therefore, we get the following lemma, the proof is implied
by Lemma 8 and Lemma 9.

Lemma 10 Applying the Regularity Lemma and Lemma 9 for a balanced q-partite graph
G with δ̃(G) ≥ kq/(kq + 1) we get a balanced q-partite reduced graph Gr with δ̃(Gr) ≥
kq/(kq + 1)− (2 + q)ε− d.

Given an ε-regular pair (A,B), we may increase A and B by adding some new vertices
to both. We expect that after this procedure the new pair will be η-regular for some small
η, although η > ε.

Lemma 11 Assume that 0 < 2ε1/6 < 1/K. Let (A,B) be an ε-regular pair with m = |A| =
|B|, and add Kεm vertices to A and Kεm vertices to B, thereby obtaining the sets Ã and
B̃, respectively. Then the resulting new pair (Ã, B̃) is 2ε1/3-regular with density at least
d− 2ε1/3.

Proof: Let A′ ⊂ Ã and B′ ⊂ B̃ such that |A′|, |B′| =
√
εm. By Convexity of Density it

is sufficient to verify the regularity condition for subsets of this size (for details see [13]).
Then

(d− ε)|A′| · |B′| − 2Kε3/2m2 ≤ e(A′, B′) ≤ (d+ ε)|A′| · |B′|+ 2Kε3/2m2

by the ε-regularity of the original pair. Hence,

d− ε− 2K
√
ε ≤ d(A′, B′) ≤ d+ ε+ 2K

√
ε.

Since K < ε−1/6/2, this implies that

d− ε− ε1/3 ≤ d(A′, B′) ≤ d+ ε+ ε1/3.

It is easy to see that d− ε5/6 ≤ d(Ã, B̃) ≤ d+ ε5/6, since K is not very large. Therefore

|d(Ã, B̃)− d(A′, B′)| ≤ 2ε1/3,

which proves the lemma. 2

We will need the following Slicing Lemma from [13]:
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Lemma 12 (Slicing Lemma) Let (A,B) be an ε-regular–pair with density d for some
ε > 0. We arbitrarily halve A and B, getting the sets A′, A′′ and B′, B′′, respectively. Then
the following holds: (A′, B′) and (A′′, B′′) are 2ε–regular pairs with density at least d− ε.

A stronger one-sided property of regular pairs is super-regularity:

Definition 3 (Super-Regularity condition) Given a graph G and two disjoint subsets
A,B ⊂ V (G), the pair (A,B) is (ε, δ)-super-regular, if it is ε-regular and furthermore,

deg(a) > δ|B|, for all a ∈ A,

and
deg(b) > δ|A|, for all b ∈ B.

Let ε > 0 and assume that the pair (A,B) is ε-regular with density d. Mark those
vertices of A which have less than (d − ε)|B| neighbors and those which have more than
(d+ ε)|B|. By the definition of ε-regularity, there can be at most 2ε|A| marked vertices in
A. Repeat the same procedure for B so as to mark those vertices which have too many or
too few neighbors in A. If we get rid of the marked vertices of A and B then we will have a
(3ε, d− 3ε)-super-regular pair (A′, B′). That is, we proved that every regular pair contains
a large super-regular pair:

Lemma 13 Let (A,B) be an ε-regular pair with density d. Then it has a (3ε, d−3ε)-super-
regular subpair (A′, B′) where A′ ⊂ A, |A′| = |A|−d2ε|A|e and B′ ⊂ B, |B′| = |B|−d2ε|B|e.

We will repeatedly make use of the following result, which states that random sub-
pairs of (ε, δ)-super-regular pairs are likely to be super-regular, with somewhat weaker
parameters.

Lemma 14 Let (A,B) be an (ε, δ)-super-regular pair with density d and k be a positive
integer. Assume that |A| = |B| = m, and k|m. Divide A and B into k random subsets:
A = A1∪A2∪. . .∪Ak and B = B1∪B2∪. . .∪Bk, each having size m/k. Then with probability
tending to one as m tends to infinity we have that (Ai, Bj) is an (ε′, δ′)-super-regular pair
with density d′ for every 1 ≤ i, j ≤ k, where ε′ = 2ε1/5, δ − ε′ ≤ δ′ and d− ε′ ≤ d′.

Proof: The proof follows from a theorem of Y. Kohayakawa and V. Rödl [10]. They showed
that two local conditions imply η-regularity. Namely, if most of the degrees and co-degrees
are close to the average in a pair, then the pair is η-regular with a small η. More precisely,
let the density of the (X,Y ) pair be d. Let D be the collection of all pairs {v, w} of X such
that deg(v), deg(w) ≥ (d − η)|Y | and deg(v,N(w)) ≤ (d + η)2|Y |. If |D| > (1 − 5η)|X|2/2
then (X,Y ) is (16η)1/5-regular. It is easy to see that if (A,B) is an ε-regular pair, then
it satisfies these local conditions with η = ε. Moreover, if we split the pair randomly into
sub-pairs then with probability at least 1−1/n we get that the local conditions are satisfied
with η = 2ε for all sub-pairs. This can be shown using Azuma’s inequality (see Alon and
Spencer’s book [1]). Hence, with high probability all the sub-pairs will be (32ε)1/5-regular.
Since the individual degrees do not decrease much with high probability, we also have that
δ′ ≥ δ − ε′ and d′ ≥ d− ε′. 2
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Remark 1 When we apply Lemma 14 we may have to discard at most k− 1 vertices from
a cluster in order to satisfy the divisibility condition of the lemma. Since we use Lemma 14
at most q − 2 times during the embedding algorithm, putting the discarded vertices into W0

will not increase the size of the exceptional cluster substantially. Hence, we will assume
that the divisibility condition is satisfied whenever we apply Lemma 14.

Let Gr be the reduced graph of the graph G such that edges in Gr represent ε-regular
pairs with density at least d. Assume that Ĝr is a cluster graph which we get by randomly
splitting the clusters of Gr into sub-clusters of equal size. The new sub-clusters will be
called split copies of the original cluster, and we will use “̂” to indicate that we refer to a
split copy.

Two split copies will be connected if they form an ε′-regular pair with density d′ where
ε′ ≤ 2ε1/5 and d′ ≥ d− ε′. By the previous lemma if WiWj ∈ E(Gr) and Ŵi, Ŵj arose from
Wi and Wj by the random splitting, then ŴiŴj ∈ E(Ĝr). We will call Ĝr the refinement
of Gr. Notice that δ̃(Ĝr) ≥ δ̃(Gr).

2.3 Blow-up Lemma

Let H and G be two graphs on n vertices. Assume that we want to find an isomorphic copy
of H in G. In order to achieve this one can apply a very powerful tool, the Blow-up Lemma
of Komlós, Sárközy and Szemerédi [11, 12].

Theorem 15 (Blow-up Lemma) Given a graph R of order r and positive integers δ,∆,
there exists a positive ε = ε(δ,∆, r) such that the following holds: Let n1, n2, . . . , nr be
arbitrary positive parameters and let us replace the vertices v1, v2, . . . , vr of R with pairwise
disjoint sets W1,W2, . . . ,Wr of sizes n1, n2, . . . , nr (blowing up R). We construct two graphs
on the same vertex set V = ∪iWi. The first graph F is obtained by replacing each edge
vivj ∈ E(R) with the complete bipartite graph between Wi and Wj . A sparser graph G is
constructed by replacing each edge vivj arbitrarily with an (ε, δ)-super-regular pair between
Wi and Wj . If a graph H with ∆(H) ≤ ∆ is embeddable into F then it is already embeddable
into G.

3 Outline of the embedding algorithm

Since a Kq-factor is a subgraph, finding such a factor will be considered an embedding
problem. Let us denote the union of n vertex-disjoint copies of Kqs by H. We will show
Theorem 3 by exhibiting a randomized algorithm which will embed H into G with high
probability.

The algorithm will proceed in two stages. The main goal of Stage 1 is to find a Kq-
factor in a reduced graph of G such that the vast majority of the vertices of G will be in
some clique and the cluster sizes in the cliques are approximately equal. In Stage 2 we will
achieve that all vertices of G will be in some non-exceptional cluster (that is, W0 will be
emptied) and the edges of the cliques in the factor will be super-regular. Furthermore, if C
is a clique in the factor, then the clusters of C will have the same size. Then we will finish
the embedding with the help of the Blow-up Lemma. We remark that the second stage is
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a technically somewhat challenging part, however, this stage has become routine in proofs
of these types of embedding theorems.

Stage 1

– Apply the Regularity Lemma to G with appropriately chosen parameters 0 <
ε � d � 1. We obtain the balanced q-partite reduced graph Gr. The cluster
classes of Gr are denoted by A1, A2, . . . , Aq, here |A1| = |A2| = . . . = |Aq| = `.

– Apply the Factor Finder Algorithm in order to construct a Kq-factor in a re-
finement of Gr. The cliques in the factor will contain most of the vertices of
G.

Stage 2

– Put some vertices into the exceptional cluster W0 in order to achieve that all
edges in the cliques represent super-regular pairs.

– Distribute the vertices of W0 among the non-exceptional clusters while maintain-
ing super-regularity in the cliques.

– Move vertices between clusters in order to achieve that the clusters in cliques
have equal sizes while maintaining super-regularity in the cliques.

– Apply the Blow-up Lemma in order to finish the embedding.

4 The first stage of the embedding algorithm

Given the graph G, we apply the Degree Form of the Regularity Lemma with parameters
ε and d such that 0 < ε � d � 1. Then we find the reduced graph Gr. By Lemma 9 and
Lemma 10 we may assume that Gr is a balanced q-partite reduced graph on q` vertices
with δ̃(Gr) ≥ kq/(kq + 1)− (2 + q)ε− d ≥ kq/(kq + 1)− qd where kq = q− 3/2 + hq−1/2. It
turns out that with a proportional minimum degree this large we will have room to spare
if q ≥ 3.

In what follows we will denote kq/(kq + 1) by δ̃, and the cluster classes of Gr will be
denoted by A1, A2, . . . , Aq. Recall that our goal is to show that H ⊂ G, where H is the
disjoint union of n copies of Kqs.

4.1 Outline of the Factor Finder Algorithm

The Factor Finder algorithm is a recursive algorithm with base case q = 2. The algorithm
works on Gr, and finds a Kq-factor in a refinement of Gr. Below we give a brief outline of
the method, without elaborating the technical details.

If q = 2 it is an easy exercise to find the K2-factor (a perfect matching) in G. Thus, we
will focus on the cases when q ≥ 3. For an easier understanding we begin with the outline
of the method for the case q = 3. Let U be an arbitrary cluster of Gr. Observe that every
edge in the neighborhood of U gives a triangle with U. This simple observation helps us
finding several triangles in the reduced graph if the proportional minimum degree is larger
than 1/2. We will show that if the proportional minimum degree of Gr is at least 0.68, then
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it is possible to assign exactly 0.64` edges to every cluster of A1. This gives 0.64`2 triangles
in Gr. Moreover, every cluster of Gr will appear in exactly 0.64` triangles. Then we split
every cluster randomly into 0.64` sub-clusters, and these sub-clusters will be grouped into
0.64`2 disjoint triangles. Hence, we can find a triangle factor in a refinement of Gr. Notice
that by Lemma 14 we may assume that the edges of the triangles will represent regular
pairs with somewhat weaker parameters than the edges of Gr.

The algorithm works recursively for larger values of q. Given a cluster U ∈ A1 we will
look for a Kq−1-factor in the neighborhood of U. These (q − 1)-cliques can be found using
the Factor Finder Algorithm. Say, that we assign s cliques to U this way. These cliques are
made of sub-clusters in A2 ∪ . . . ∪ Aq. In fact, these sub-clusters will have size m/s where
m is the size of a cluster in Gr. The algorithm will randomly split U into s sub-clusters,
and find a one-to-one mapping between the sub-clusters of U and the (q − 1)-cliques in its
neighborhood. The technical details will follow in the next subsection.

4.2 The Factor Finder Algorithm

The first case: q = 2
First, notice that in this case kq = 1, therefore, δ̃ = 1/2. It is easy to find a K2-factor (a

perfect matching) in a balanced bipartite graph Gr with a proportional minimum degree this
large. This case is settled by Lemma 5. We further look at this case in order to show how
to include some ‘randomly chosen’ edges into the perfect matching when the proportional
minimum degree is larger than 1/2.

Assume that the proportional minimum degree is 1/2 +ψ for some 0 < ψ < 1. One can
introduce some randomness in finding the perfect matching as follows. Pick ψ`/2 clusters
randomly from the first vertex class, and find neighbors for them randomly. Then pick
ψ`/2 clusters randomly from the other vertex class, and find neighbors for them randomly.
This way we have found random neighbors for ψ` clusters. In the remaining clusters the
minimum degree is sufficiently large for having a perfect matching. Therefore, we can find
a perfect matching in such a way that ψ` clusters have randomly chosen neighbors.

As it turns out later on, this small extra randomness will be very helpful. When finishing
the embedding of H we will need the proportional minimum degree to be a bit larger than
1/2 in order to perform the above procedure. But that will be provided for q ≥ 3 (recall
that we use recursion).

Finding a triangle factor

As a warm-up we discuss this case in detail. First, apply Theorem 6 for the graphs
Gr(A1, A2) and Gr(A1, A3). We get two µ-regular bipartite graphs R(A1, A2) and R(A1, A3),
with µ = ρ(δ̃(Gr))`. We define R to be the 3-partite graph on A1∪A2∪A3 such that E(R) =
E(R(A1, A2)) ∪ E(R(A1, A3)). It is easy to see that degR(W ) = µ for every W ∈ A2 ∪A3.

We are going to cut the clusters of A2 ∪ A3 randomly into µ sub-clusters of equal size.
The new cluster classes are denoted by Â2 and Â3. Roughly speaking, we will assign the
split copies of Â2 ∪ Â3 to the clusters of A1 such that every cluster of A1 will receive 2µ
split copies, and every split copy will be assigned to exactly one cluster in A1.

More formally, let us define a surjective function σ: its domain is the set of split copies,
and its range is A1. It satisfies the following requirements: whenever U ∈ A2 ∪ A3, and Û
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is a split copy of U , then σ(Û) ∈ NR(U), moreover, if Û and Û ′ are different split copies of
U , then σ(Û) 6= σ(Û ′). For every W ∈ A1 we introduce two sets associated with it:

N2(W ) = {Û : Û ∈ Â2, σ(Û) = W},

and
N3(W ) = {Û : Û ∈ Â3, σ(Û) = W}.

It is easy to see that every cluster of Â2 ∪ Â3 will participate in one of the Ni(W ) sets, and
|Ni(W )| = µ for i = 2, 3 and every W ∈ A1.

Our next goal is to show that Ĝr(N2(W ), N3(W )), the induced subgraph of the refine-
ment of Gr on N2(W ) and N3(W ), has a perfect matching M(W ) for every W ∈ A1. Having
this perfect matching in hand we can construct µ triangles for every W ∈ A1: cut the clus-
ters of A1 randomly into µ sub-clusters, and assign the split copies of W to the edges of
M(W ) bijectively. This way we construct triangles each having cluster size m/µ.

Hence, what is left: for every W ∈ A1 find the perfect matchings in the bipartite
subgraphs Ĝr(N2(W ), N3(W )). We claim that the minimum degree in these bipartite graphs
is in fact sufficiently large to guarantee the existence of a perfect matching. For that we
will show that every cluster is adjacent to at least half of the clusters in the other class. We
use a simple claim which we record here for future purposes, the proof is left for the reader.

Claim 16 Let F = (V,E) be a graph and let S ⊂ V . Then every u ∈ V is adjacent to at
least a δ(F )−(|V |−|S|)

|S| proportion of the vertices of S.

We use Claim 16 in order to guarantee that every cluster of N2(W ) is adjacent to at
least half of the clusters of N3(W ). We will also have that every cluster N3(W ) is adjacent
to at least half of the clusters of N2(W ).

Let Û ∈ N2(W ) be an arbitrary cluster. By Claim 16, Û is adjacent to at least a
(δ̃(Gr)− (1− µ/`))`/µ proportion of the vertices of N3(W ). Similarly, every Û ∈ N3(W ) is
adjacent to at least a (δ̃(Gr)− (1− µ/`))`/µ proportion of N2(W ). Easy calculation shows
that if δ̃(Gr) = 0.68, then µ/` = ρ(δ̃(Gr)) = 0.64, and

δ̃(Ĝr(N2(W ), N3(W ))) ≥ (δ̃(Gr)− (1− µ/`))`
µ

= 0.5.

This implies the existence of a perfect matching in Ĝr(N2(W ), N3(W )) if δ̃(Gr) ≥ 0.68.
Notice that 0.68 < 0.69 < 3−3/2+h2/2

3−3/2+h2/2+1 − qd if d and ε are sufficiently small. That is,

there exists a real number γ3 > 0 such that if δ̃(Ĝr) ≥ k3
k3+1 − γ3 then Ĝr has a triangle

factor. Hence, we can find a triangle factor in Ĝr with a smaller bound that is required by
Theorem 3.

This latter fact will be important for us later on. Recall the discussion of case q = 2 for
finding the perfect matching with some randomly chosen edges. Clearly, for k3 = 3/2+h2/2
the proportional minimum degree will be larger than 1/2 when it comes to finding the
perfect matchings in the Ĝr(N2(W ), N3(W )) graphs. Hence, we can perform the randomized
procedure for finding the perfect matchings.
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We remark, that the cluster size in Ĝr is m
µ , and the number of clusters in each vertex

class is µ` = ρ(δ̃(Gr))`2.

The general case
Assume now that q > 3. Assume further that there exists a constant γq−1 > 0 such

that if the proportional minimum degree in a balanced (q − 1)-partite cluster graph F
is at least kq−1/(kq−1 + 1) − γq−1, then some refinement F̂ has a Kq−1-factor. We are
given Gr, a balanced q-partite graph with vertex classes A1, A2, . . . , Aq such that δ̃(Gr) ≥
kq/(kq + 1)− qd. This time our goal will be to find a Kq-factor in a refinement Ĝr.

Set µ = ρ(δ̃(Gr))`. We consider the bipartite subgraphsGr(A1, Ai) and apply Theorem 6
to get the µ-regular bipartite graphs R(A1, Ai) for every 2 ≤ i ≤ q. Let R be a q-partite
graph such that V (R) = ∪i≥1Ai and E(R) = ∪i≥2E(R(A1, Ai)). As before, degR(U) = µ
where U ∈ A2 ∪ . . . ∪Aq.

Similarly to the case q = 3 we randomly split every cluster in A2 ∪A3 ∪ . . . ∪Aq into µ
sub-clusters of equal size thereby getting Âi from Ai for 2 ≤ i ≤ q.

We define a surjective function σ: its domain is the set of split copies, and its range is
A1. It satisfies the following requirements: whenever U ∈ A2 ∪ . . . ∪ Aq, and Û is a split
copy of U , then σ(Û) ∈ NR(U), moreover, if Û and Û ′ are different split copies of U , then
σ(Û) 6= σ(Û ′). For every W ∈ A1 we introduce q − 1 sets associated with it:

Ni(W ) = {Û : Û ∈ Âi, σ(Û) = W}

for 2 ≤ i ≤ q. It is easy to see, that every cluster of Â2 ∪ . . . ∪ Âq will participate in one of
the Ni(W ) sets, and |Ni(W )| = µ for every 2 ≤ i ≤ q and every W ∈ A1.

Let us consider the balanced (q − 1)-partite graphs Ĝr(N2(W ), . . . , Nq(W )) for every
W ∈ A1. As before, we can give a lower bound on the proportional minimum degree in
these graphs with the help of Claim 16:

δ̃(Ĝr(N2(W ), . . . , Nq(W ))) ≥ (δ̃(Gr)− (1− µq/`))`
µq

.

In case q = 3 we had to check whether this quantity was at least 1/2, this time we have to
check that this number is sufficiently large so as to guarantee the existence of a Kq−1-factor
in these graphs.

Say, that we can find a Kq−1-factor M(W ) for every W ∈ A1. Then we construct the
desired Kq-factor the following way: cut the clusters of A1 randomly into |M(W )| sub-
clusters, and assign the split copies of W to the (q − 1)-cliques of M(W ) bijectively. This
way we get |M(W )| cliques of size q. In Lemma 19 we show that every cluster of Ĝr will
have size m/|M(W )|.

It is useful to introduce a new function in order to show that δ̃(Ĝr(N2(W ), . . . , Nq(W )))
is sufficiently large for finding a Kq−1-factor. Let

Φ(x) =
x− (1− ρ(x))

ρ(x)

for x ∈ (0.5, 1). It is easy to see that Φ(x) is continuous in its domain.
In Lemma 17 below we take a step towards proving that δ̃(Gr) ≥ kq

kq+1−qd is sufficiently
large for finding the clique factor using the Φ(x) function.
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Lemma 17 If q ≥ 3 then

Φ

(
kq

kq + 1

)
≥ kq−1

kq−1 + 1
+

1

100k2
q (kq +

√
k2
q − 1)

.

Proof: Using the definition of Φ(x) we get that

Φ

(
kq

kq + 1

)
=

kq

kq+1 − (1− ρ( kq

kq+1))

ρ( kq

kq+1)
.

Since

ρ

(
kq

kq + 1

)
=

kq

kq+1 +
√

kq−1
kq+1

2
,

we get that

Φ

(
kq

kq + 1

)
= 2

kq−2
2(kq+1) + 1

2

√
kq−1
kq+1

kq

kq+1 +
√

kq−1
kq+1

= 1−
2

kq+1

kq

kq+1 +
√

kq−1
kq+1

= 1− 2

kq +
√
k2
q − 1

.

We will show that

1− 2

kq +
√
k2
q − 1

>
kq−1

kq−1 + 1
+

1

100k2
q (kq +

√
k2
q − 1)

is a valid inequality. Equivalently, we claim that

1
kq−1 + 1

>
2

kq +
√
k2
q − 1

+
1

100k2
q (kq +

√
k2
q − 1)

.

Multiplying by 100k2
q (kq +

√
k2
q − 1)(kq−1 + 1) we get

100k2
q

(
kq +

√
k2
q − 1

)
> (200k2

q + 1)(kq−1 + 1).

Using that kq = kq−1 + 1 + 1/(2q − 2), reordering and canceling terms, we get that

100k2
q

√
k2
q − 1 +

100k2
q

q − 1
> 100k3

q + kq −
1

2(q − 1)
.

We make the inequality even stronger by discarding the term ‘−1/(2q − 2)’ from the
right hand side. Then dividing by kq and taking the square of both sides gives

(
100kq
q − 1

)2

+ 2(100kq)2

√
k2
q − 1

q − 1
+ (100kq)2(k2

q − 1) > (100k2
q )

2 + 200k2
q + 1.

It is easy to see that
√
k2
q − 1 > q− 1 for q ≥ 3, and that (100kq/(q− 1))2 > 0. These imply

the inequality above, which in turns proves the lemma. 2
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Using the continuity of Φ(x) and Lemma 17, we get that for every q ≥ 3 there is a
γq > 0 real number such that

Φ

(
kq

kq + 1
− γq

)
≥ kq−1

kq−1 + 1
.

Choose ε and d such that 0 < ε� d and qd ≤ γq. By Lemma 10 the proportional minimum
degree in Gr will be at least kq/(kq + 1) − γq. Therefore, the Factor Finder algorithm will
succeed and find a Kq-factor in a refinement of Ĝr.

We remark that the bound of kq = q − 3/2 + hq−1/2 could be improved somewhat. We
didn’t want to optimize this bound. It already gives the correct order of magnitude for our
embedding method: kq = q + O(log q), without having tedious computations in the proof
of Lemma 17.

More on the Factor Finder algorithm

Let us explore more properties of the Factor Finder algorithm, which will be useful later
on. Set s1(q) = ` for every q ≥ 3. Given a cluster W ∈ A1 we denote its degree in R(A1, Ai)
by s2(q), that is, s2(q) = ρ(δ̃(Gr))`. The recursive process guarantees that we can construct
a Kq−1-factor in the q − 1 neighborhoods of W , each having size s2(q). Now for finding
the Kq−1-factor we again apply recursion, and want to find a Kq−2 factor in s2(q) different
balanced (q − 2)-partite graphs. The size of the vertex classes of these balanced graphs
will be denoted by s3(q). In general, when proceeding with the recursion, step-by-step we
construct balanced (q − i)-partite graphs, in which we look for a Kq−i-factor. The number
of these graphs is s1(q) · s2(q) · · · si(q). The number of clusters in a class of these balanced
graphs are denoted by si(q). We stop at i = q − 2, when we arrive at balanced bipartite
graphs, in which we are looking for perfect matchings.

We can compute the number of cliques in the Kq-factor which contain some split copy
of a given cluster.

Lemma 18 Let U be an arbitrary cluster in Gr. Each split copy of U appears in Πq−1
i=2 si(q)

cliques in the Kq-factor of Ĝr.

Proof: We want to apply induction, but to do that we have to be careful. The statement
we will prove by induction is as follows:
Claim: Let F be a balanced a-partite cluster graph with cluster classes of size `, and W
be a cluster of F. If δ̃(F ) ≥ kj/(kj + 1)− γa where j ≥ a, and we apply the Factor Finder
algorithm then the number of a-cliques containing a split copy of W is Πa−1

i=2 si(j).
It is easy to see that this statement is stronger than that of the lemma. Notice, that we

have to keep track of the size of the cluster classes, too.
We will show that in the case when a = 3 the above statement holds. Let j ≥ 3. First

assume that U ∈ A1. The algorithm finds the neighborhoods N2(U) ⊂ A2 and N3(U) ⊂ A3,
both having size s2(j). Next we look for a perfect matching between these two sets, every
edge of this matching with U will result in a triangle. Hence, the number of triangles having
a split copy of U is s2(j).

Suppose, that U ∈ A2, and let W ∈ NR(U,A1) be arbitrary. Then there will be a
triangle which contains a split copy of W and a split copy of U . Since this holds for every
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cluster of NR(U,A1), and this set has s2(j) clusters, there are s2(j) triangles which contain
a split copy of U.

Assume now that a > 3 and that the induction hypothesis holds up to a− 1. Let j ≥ a.
As above, we begin with the case U ∈ A1. The algorithm first finds an (a − 1)-partite
cluster graph in which every cluster class has size s2(j), and U is adjacent to every cluster
of this graph. We want to find a Ka−1-factor in some refinement of it by the Factor Finder
algorithm. Let W be an arbitrary cluster from the “first” cluster class of the a− 1 classes.
We have s2(j) possible choices for W. The following is easy to see from the definition of
the sf (g) numbers: for 1 ≤ i ≤ a − 2 the cluster classes of the (a − i)-partite graphs
constructed by the Factor Finder algorithm will be of size si+1(j). Hence, applying the
induction hypothesis, there are Πa−2

i=2 si+1(j) cliques on a− 1 clusters which contain a split
copy of W. We have s2(j) choices for W, therefore, the number of a-cliques containing a
split copy of U is s2(j)Πa−2

i=2 si+1(j) = Πa−1
i=2 si(j).

Finally, we consider the case a > 3 when U ∈ At for t > 1. In the first step there are s2(j)
clusters of A1 such that these are adjacent to U in R(A1, At). Let W be any of these clusters.
Consider the (a−1)-partite cluster graph which is constructed for W by the algorithm. This
cluster graph has classes of size s2(j). As above, we can apply induction, and get that the
algorithm finds Πa−2

i=2 si+1(j) cliques on a − 1 clusters which contain a split copy of U. We
repeat this for every cluster in NR(U,A1), that results in s2(j) different (a − 1)-partite
graphs. In each of these we find Πa−2

i=2 si+1(j) cliques on a − 1 clusters containing a split
copy of U. Overall, split copies of U appear in s2(j)Πa−2

i=2 si+1(j) = Πa−1
i=2 si(j) cliques on a

clusters. 2

Obviously, s1(q) > s2(q) > s3(q) > . . . > sq−1(q) > 2`
kq+1 for q ≥ 3. The last inequality

follows from Claim 16 and the fact that the proportional minimum degree in the last graph
is ≥ 1/2 + ψq for some positive constant ψq depending only on q. (Recall that k3/(k3 +
1) − 0.68 > 0.01, hence, ψ3 > 0.01, and because of Lemma 17 the property of ψq being
positive is inherited for larger values of q.) Observe, that the overall number of cliques in
the Kq-factor is Πq−1

i=1 si(q) = νq`
q−1, where νq is a constant. We have proved the following.

Lemma 19 Every cluster in the refinement Ĝr has size m̂ = m/(νq`q−2), and the number
of clusters in each vertex class of Ĝr is ̂̀= Πq−1

i=1 si(q) = νq`
q−1.

5 The second stage – Finishing the proof of Theorem 3

In this section we discuss how to finish the embedding of H into G. Observe, that by
applying Lemma 13, Proposition 14 and the Blow-up Lemma we are able to embed most
of H into G: The edges in the cliques of the Kq-factor of Ĝr represent ε′-regular pairs,
which by Lemma 13 can be made super regular. Applying the Blow-up Lemma we get that
most of H can be embedded into G, at most 3ε′n + |W0| ≤ 4ε′n vertices are left out, here
ε′ ≤ 2q−2ε1/5

q−2
. This follows from the repeated applications of Lemma 14.

Our main goal in this section is to embed the whole of H with the help of the Blow-up
Lemma. For that we will try to find a Kq-factor in such a way that every edge in the cliques
will represent (ε′, d−ε′)-super-regular pairs. Moreover, every vertex of G will sit in a cluster
of some clique, every cluster of a clique will have the same size, and the size of any two
clusters will differ by at most 1. We will achieve this goal in three steps.
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• First, we discard those vertices from the cliques which do not have many neighbors
in other clusters of the cliques, and put them into W0, the exceptional cluster. At
the end of this step every edge in a clique will represent a super-regular pair with a
sufficiently large density.

• Second, we will distribute the vertices of W0 among the non-exceptional clusters while
maintaining the super-regularity of the pairs in the cliques. This step may create
cliques with clusters having unequal size.

• Third, we move vertices between clusters so as to get equal size clusters in the cliques,
but keep super-regularity, we call this the balancing step.

These steps prepare us to apply the Blow-up Lemma, that will finish the embedding.
We need an important lemma, which will be crucial for making the cluster sizes equal

in every clique. In order to state it, let us define q directed graphs: L1, L2, . . . , Lq. Here
V (Li) = Âi, the class containing the split copies of the clusters of the ith class. Let
Û1, Û2 ∈ Âi, we will have the directed edge (Û1, Û2) ∈ E(Li), if Û1 is adjacent to all the
clusters of the q-clique which contains Û2 except Û2 itself. That is, if Ŵ is a cluster of this
clique, then the (Û1, Ŵ ) pair is ε′-regular. We will also say that Û1 is adjacent to the clique
of Û2. We will show the following:

Lemma 20 Let U1, U2 ∈ Ai for some 1 ≤ i ≤ q, and let Û1 be any split copy of U1 in Ĝr.
Then with probability at least 1 − 1/(2q ̂̀)2 there are more than 1

8ψ
2
qsq−1(q)Πq−1

i=3 si(q) split
copies of U2 such that Û1 is adjacent to its clique.

The main message of Lemma 20 is that out of the Πq−1
i=2 si(q) cliques in the factor which

contain some split copy of U2 a constant proportion is adjacent to some split copy of U1,
independently of the choice of U1 and U2.

Proof: We begin with the case q = 3. First assume that U1, U2 ∈ A1. Every triangle that
contains split copy of U2 has a split copy of one cluster from NR(U2, A2) and a split copy
of one cluster from NR(U2, A3). Set s = degR(U2, A2). Recall that s is so large that by
Claim 16 every cluster in A1 is adjacent to at least (1/2 + ψ3)s clusters in NR(U2, A2) and
NR(U2, A3). Hence, the perfect matching between NR(U2, A2) and NR(U2, A3) has at least
2ψ3s edges which are adjacent to U1. This proves the lemma in this special case. Notice
that this part of the proof is not probabilistic.

Let us assume now that U1, U2 ∈ Ai for i = 2, 3. While above we didn’t need the
randomly chosen edges in the perfect matching, this time they play a crucial role. Say that
U1, U2 ∈ A2, and set s = degR(U2, A1). Let W ∈ A1 be any cluster that is adjacent to U1

and U2. There are at least (1/2 + ψ3)s such clusters in A1. In the R graph W has exactly
s neighbors in A2. Out of those neighbors at least (1/2 +ψ3)s are adjacent to U1. Since U2

has at least (1/2 + ψ3)s neighbors in NR(W,A2) as well, the common neighborhood of U1

and U2 in NR(W,A2) has at least 2ψ3s clusters. At this point we will use the randomly
chosen edges.

The probability of randomly choosing an edge that contains U2 such that the other
endpoint is adjacent to U1 is at least ψ2

3, since U2 will be chosen with probability ψ3/2,
and the chance that U2 will be matched to a neighbor of U1 is at least 2ψ3. Summing up
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for every W ∈ A1 we get that the expected number of split copies of U2 that are in such a
triangle that U1 is adjacent to the other two clusters in that triangle is at least ψ2

3s2(3)/2.
Using Azuma’s inequality we get that with probability at least 1− 1/(6̂̀)2 there are more
than ψ2

3s2(3)/8 split copies of U2 such that Û1 is adjacent to its clique.
It is useful to look at this question from a different point of view that is easier to

generalize for larger values of q. Let 1 ≤ i ≤ 3, and fix U1 ∈ Ai. Consider the 4-partite
graph that we obtain from Gr when ‘pulling out’ U1 from Ai: the new vertex classes are
U1, Ai − U1, the other two classes remain intact. We also add new edges apart from the
edges of Gr: every cluster of Ai will be adjacent to U1. Then one looks for 4-cliques in
this new graph using straightforward modification of the Factor Finder Algorithm. Every
4-clique we find will correspond to a triangle in the triangle factor of Gr that is adjacent to
U1.

Assume now that q ≥ 4. Fix U1 and construct the new (q + 1)-partite graph, similarly
to the previous case. We will follow the line of arguments of the proof of Lemma 18. When
computing the number of cliques having a split copy Û2, at every step we have to take into
account whether the clusters are in the neighborhood of U1, that is, we act like there were
q+ 1 vertex classes. This shrinks the sizes: if the cluster class size in question is si(q) for q
vertex classes, then out of this many clusters at least si+1(q) are adjacent to U1.

This estimation works smoothly until at the end we have to find a perfect matching
in a bipartite graph having cluster classes of size sq−1(q) each. Then U1 is adjacent to at
least (1/2 + ψq)sq−1(q) clusters in both classes. At this point we repeat the argument of
the case q = 3 and get that the expected number of cliques containing some split copy
Û2 that are adjacent to U1 is at least 1

2ψ
2
qsq−1(q)Πq−1

i=3 si(q). Here we applied the bound
of Lemma 18. Using Azuma’s inequality we obtain that U1 will be adjacent to at least
1
8ψ

2
qsq−1(q)Πq−1

i=3 si(q) split copies of U2 with probability at least 1− 1/(2q ̂̀)2. 2

Observe, that if Û , Û ′ are split copies of U, then Û is adjacent to the clique of Û ′.
Together with the so called union bound in probability theory this implies the following:

Corollary 21 With positive probability there are at least 1
8ψ

2
qsq−1(q)Πq−1

i=3 si(q) vertex dis-
joint directed paths of length at most two between any two clusters in Li, for every 1 ≤ i ≤ q.

5.1 The final steps of the embedding

We have acquired the knowledge to achieve our main goal, in the rest of the section we
discuss how to finish the embedding step by step.
Making super-regular pairs

In the first step we make every edge in the cliques of the factor super-regular by applying
Lemma 13, the discarded vertices will be put into W0. Then the extremal cluster W0 has
increased in size, but will still remain reasonably small: |W0| ≤ ε′n, where ε′ ≤ 2ε5

2−q
.

Observe that ε′ � d′ = d− ε′ if ε is sufficiently small.
Distributing the vertices of W0

In the second step we will distribute the vertices of W0 among the ̂̀ clusters of Ĝr. Let
v ∈ W0 and Û be a cluster. We say that v is adjacent to the clique of Û if v has at least
(d− ε′)m̂ neighbors in every cluster in the clique of Û , except in Û itself. Notice, that the
proof of Lemma 20 shows that for every v ∈ W0 there are at least 1

8ψ
2
q`sq−1(q)Πq−1

i=3 si(q)
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clusters such that v is adjacent to their cliques. Since the number of cliques is ̂̀= Πq−1
i=1 si(q),

every vertex is adjacent to cq ̂̀ cliques, where cq = sq−1(q)ψ2
q/(8s2(q)).

When distributing the vertices of W0 we are allowed to put a vertex v into a cluster Û
if v is adjacent to the clique of Û . We pay attention to distribute the vertices evenly, that
is, at the end no cluster will get more than 2|W0|/(cq ̂̀) new vertices from W0. Since every
vertex is adjacent to many cliques, this can be achieved. After this step every edge of every
clique in the Kq-factor will represent super-regular pairs.
Balancing

It is possible that the clusters have different sizes in a clique, hence, we have to perform
the balancing algorithm. For that we assign a number νi to the ith clique for every i such
that

∑
i νi = n and |νi − νj | ≤ 1 for every i, j. Notice that since n/ˆ̀ is not necessarily an

integer, the νi numbers may differ by 1. We partition the clusters of Ĝr into three sets:
S<, S= and S>. A cluster from the ith clique will belong to S< if it has less than νi vertices.
We put a cluster of the ith clique into S> if the cluster has more than νi vertices. Finally,
S= will contain the rest with equality. We will apply Corollary 21 in order to find directed
paths in the Li graphs from clusters of S> to clusters in S<.

Say, that Û1 ∈ S>, Û2 ∈ S< and there is a path of length one between them, that is,
Û1Û2 ∈ E(Li) for some 1 ≤ i ≤ q. Then the vast majority of the vertices of Û1 are adjacent
to the clique of Û2. Pick as many as needed (and possible) among these and place them
to Û2. If the path is of length two, then choose a cluster Û3 such that Û1Û3 and Û3Û2

belong to E(Li). Again, the vast majority of the vertices in Û1 are adjacent to the clique of
Û3 and the vast majority of the vertices of Û3 are adjacent to the clique of Û2. Hence, by
placing vertices from Û1 to Û3 and the same number of vertices from Û3 to Û2 we decrease
the discrepancy of Û1 and Û2 such that we keep the edges super-regular in all the cliques
in question. Observe, that we perform the balancing algorithm such that we do not take
out more than 2|W0|/(cq ̂̀) vertices from any of the clusters, and do not put in more than
2|W0|/(cq ̂̀) vertices to any of the cluster.

We can apply Lemma 11, and get that the edges of the cliques represent (ε̂, d̂)-super-
regular pairs, where ε̂ ≤ C(ε′)1/3 and d̂ ≥ d′ − ε̂, and C is a constant.
Using the Blow-up Lemma

At this point we recognize that with positive probability all conditions of the Blow-up
Lemma are satisfied. That is, the cluster sizes in each clique of the Kq-factor in Ĝr are
equal, and the edges in these cliques represent super-regular pairs. Hence, given an arbitrary
clique in Ĝr having clusters with t vertices, we can find t vertex disjoint copies of Kq in it
using the Blow-up Lemma. Since every vertex of G sits in some clique of the Kq-factor of
Ĝr, we proved Theorem 3. 2

6 Finding an H-factor

Next we show how to find an H-factor, if H is a fixed q-colorable graph.
Proof of Corollary 4: We embed vertex disjoint copies of H as follows. First, we find
a Kq-factor in the reduced graph of G rather than G itself. Then we find an equitable
q-coloring of H̃, where H̃ is the vertex disjoint union of q copies of H. The coloring goes
as follows. Assume that the color classes of H have sizes c1, c2, . . . , cq for some proper
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q-coloration. Then the coloring of H̃ will follow a ‘rotation scheme:’ the jth color class of
the ith copy of H will be colored i+ j − 1 mod q. This way every color class of H̃ will have
size c1 + . . .+ cq = v(H).

After finding the Kq-factor in Gr we will make the pairs in the cliques super-regular.
Then the distribution of the vertices of W0 can be performed the same way as above. Only
balancing will be slightly different. This time for every i we assign a number νi to the ith
clique such that v(H) divides νi, |νi− νj | ≤ v(H) and

∑
i νi = n. Then we use Corollary 21

for the balancing step, and get that for all i the clusters in the ith clique will have νi vertices.
It is easy to see that G has an H̃-factor: we can embed the copies of H̃ in the cliques of

the Kq-factor with the help of the Blow-up Lemma. Since H̃ is the vertex disjoint union of
q copies of H, this way we have found an H-factor in G. 2
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[11] J. Komlós, G.N. Sárközy and E. Szemerédi, Blow-up Lemma, Combinatorica, 17 (1997)
109-123.
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[13] J. Komlós, M. Simonovits, Szemerédi’s Regularity Lemma and its Applications in
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