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Abstract

Let G be a simple balanced bipartite graph on 2n vertices, δ = δ(G)/n,

and ρ = δ+
√

2δ−1
2

. If δ > 1/2 then it has a ρn-regular spanning subgraph.
The statement is tight.

1 Introduction

In this paper we will consider simple graphs. We mostly use standard graph
theory notation: V (G) and E(G) will denote the vertex and the edge set of a
graph G, respectively. The degree of x ∈ V (G) is denoted by degG(x) (we may
omit the subscript), δ(G) is the minimum degree of G. We call a bipartite graph
G(A,B) with color classes A and B balanced if |A| = |B|. For X, Y ⊂ V (G)
we denote the number of edges of G having one endpoint in X and the other
endpoint in Y by e(X, Y ). NG(x) is the set of neighbors of x ∈ V (G) and
NG(x, X) is the set of neighbors of x in X. For a set S ⊂ V (G) let N(S) =
∪x∈SN(x). If T ⊂ V (G) then G|T denotes the subgraph we get after deleting
every vertex of V − T and the edges incident to them. Finally, Kr,s is the
complete bipartite graph on color classes of size r and s for two positive integers
r and s.

The purpose of this note is to prove the following theorem:
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1



Theorem 1 Let G(A,B) be a balanced bipartite graph on 2n vertices, and as-
sume that
δ = δ(G)/n > 1/2. Then
(I) G has a ρn–regular spanning subgraph, with ρ = δ+

√
2δ−1
2 ;

(II) moreover, for every δ > 1/2 and n large enough there exist a balanced bipar-
tite graph Fδ such that it does not admit a spanning regular subgraph of degree
larger than ρn.

The above result plays a crucial role in the proof of some results in extremal
graph theory, see [1, 2].

2 Factors of bipartite graphs

Let H be a bipartite graph with color classes A and B. By the well-known
König–Hall theorem there is a perfect matching in H if and only if |N(S)| ≥ |S|
for every S ⊂ A. We are going to need a generalization of the this result, this
appeared in a paper of Tutte [4].

If f : V (H) → Z+ is a function, then an f -factor is a subgraph H ′ of H
such that degH′(x) = f(x) for every x ∈ V (H). Notice, that when f ≡ r for
some r ∈ Z+, then H ′ is an r-regular subgraph of H. The result below gives a
necessary and sufficient condition for the existence of an f -factor:

Proposition 2 Let H be a bipartite graph with bipartition {A,B}, and f(x) ≥ 0
an integer valued function on A ∪B. H has an f–factor if and only if

(i)
∑
x∈A

f(x) =
∑
y∈B

f(y)

and

(ii)
∑
x∈X

f(x) ≤ e(X, Y ) +
∑

y∈B−Y

f(y)

for all X ⊂ A and Y ⊂ B.

One can find the proof in [3] as well.

3 Proof of Theorem 1

We will show the two parts of the theorem in separate subsections.
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3.1 Proof of part I

Observe, that since we are looking for a spanning regular subgraph, the f func-
tion of Proposition 2 will be identically ρn. We start with some notation. For
X ⊂ A let ξ = |X|/n, and for Y ⊂ B let σ = |Y |/n. We will normalize e(X, Y ):
η(X, Y ) = e(X, Y )/n2. Let

ηm(ξ, σ) = min{η(X, Y ) : X ⊂ A, Y ⊂ B, |X|/n = ξ, |Y |/n = σ}.

Since f is identically ρn, condition (i) of Proposition 2 is satisfied. If ρ(ξ +
σ − 1) ≤ ηm(ξ, σ) for some ρ and for every 0 ≤ ξ, σ ≤ 1, then (ii) is satisfied,
hence, G has a ρn–regular spanning subgraph.

Clearly, e(X, Y ) ≥ |X|(δn − |B − Y |) and e(X, Y ) ≥ |Y |(δn − |A − X|)
for arbitrary sets X ⊂ A and Y ⊂ B. Hence, we have that ηm(ξ, σ) ≥
max (ξ(δ + σ − 1), σ(δ + ξ − 1)).

First consider the case ξ = σ. We are looking for a ρ for which ρ(2ξ − 1) ≤
ξ(δ + ξ − 1). In another form, we need that

pρ(ξ) = ξ2 + (δ − 2ρ− 1)ξ + ρ ≥ 0.

The discriminant of the above polynomial is the polynomial dcr(ρ) = 4ρ2 −
4δρ + δ2 − 2δ + 1. One can directly find the roots of dcr(ρ): δ±

√
2δ−1
2 . Let

ρ = (δ +
√

2δ − 1)/2, then we have that pρ(ξ) ≥ 0.
Let g(ξ, σ) = σ(δ + ξ − 1)− ρ(ξ + σ − 1). We will show, that g(ξ, σ) ≥ 0 for

0 ≤ σ ≤ ξ ≤ 1. Notice, that g is bounded in the triangle above, −2 ≤ g(ξ, σ) ≤
ηm(ξ, σ)− ρ(ξ + σ − 1), and continously differentiable.

Let us check the sign of g on the border of the triangle. Since ρ = (δ +√
2δ − 1)/2, we have that g(ξ, ξ) ≥ 0. g(ξ, 0) = −ρ(ξ − 1) ≥ 0, and g(1, σ) =

σ(δ − ρ) ≥ 0, because δ ≥ (δ +
√

2δ − 1)/2. Let us check the partial derivatives
of g:

∂g

∂ξ
= σ − ρ,

and
∂g

∂σ
= δ + ξ − 1− ρ.

Assuming that g achieves its minimum inside the triangle at the point (ξ0, σ0)
the partial derivatives of g have to diminish at (ξ0, σ0). It would then follow
that σ0 = ρ and ξ0 = 1 + ρ− δ, therefore, g(ξ0, σ0) = ρ2 − ρ(2ρ− δ) = δρ− ρ2.
That is, g is non-negative in the whole closed triangle. The same reasoning
works for the triangle 0 ≤ ξ ≤ σ ≤ 1, this follows easily by symmetry.

3.2 Proof of part II

For proving part II of the theorem we construct a graph F for a given δ > 1/2:
F (A,B) is a balanced bipartite graph on 2n vertices such that A = Ae ∪ Al,
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B = Be ∪ Bl, and Be ∩ Bl = Ae ∩ Al = ∅. We have that |Al| = |Bl| = γn and
|Ae| = |Be| = (1 − γ)n, where γ = 1−

√
2δ−1
2 . We assume that e(Al, Bl) = 0,

and that the subgraphs F |Al∪Be and F |Bl∪Ae are isomorphic to Kγn,(1−γ)n,
therefore, every vertex in Al ∪Bl has degree (1− γ)n. Every vertex in Ae ∪Be

has degree δn, hence, F |Ae∪Be
is a (δ − γ)n-regular graph. Observe, that γ <

δ < 1− γ, thus, δ(F ) = δ.
First we investigate a simple method for edge removal from F : for 0 < p < 1

discard p(1− γ)n incident edges for every vertex in Al ∪ Bl, and no edge from
F |Ae∪Be . Then a vertex in Al ∪ Bl will have degree (1 − p)(1 − γ)n, and the
average degree of the vertices in Ae ∪ Be will be γ(1− p)n + (δ − γ)n. Choose
p0 to be the solution of the following equation:

(1− p)(1− γ)n = γ(1− p)n + (δ − γ)n. (1)

Notice, that if p < p0 then there is a vertex x ∈ Ae∪Be such that every vertex
of Al ∪ Bl will have degree larger than deg(x). That is, for finding a regular
subgraph more edges have to be discarded among those which are incident to
the vertices of Al ∪Bl. On the other hand, if p > p0 then there will be a vertex
y ∈ Ae ∪Be which has degree larger than that of the vertices in Al ∪Bl. Hence,
edges incident to the vertices of Ae ∪ Be have to be discarded, otherwise the
resulting subgraph is not regular.

It is clear that if we look for a spanning regular subgraph of F we have to
discard edges incident to the vertices of Al ∪ Bl. We have just learned that if
p 6= p0 then we cannot stop, more edges have to be removed.

For finishing the proof we prove that by choosing p = p0 and performing the
above edge removal process every vertex of Al ∪ Bl will have degree δ+

√
2δ−1
2 n

and the average degree of the vertices in Ae ∪ Be will be this number, too.
Since part I of the theorem shows that F has a spanning regular subgraph of
this degree, we are done - a carefully performed edge removal will result in a
spanning subgraph in which every vertex has degree δ+

√
2δ−1
2 n.

It is easy to see that p0 = δ+γ−1
2γ−1 is the solution of (1). Then the degree of

an arbitrary vertex in Al ∪Bl is

(1− p0)(1− γ)n =
(

1− δ + γ − 1
2γ − 1

)
(1− γ) =

γ − δ

2γ − 1
(1− γ).

Substituting γ = 1−
√

2δ−1
2 we get

δ − 1−
√

2δ−1
2√

2δ − 1
(1− 1−

√
2δ − 1
2

) =
2δ − 1 +

√
2δ − 1√

2δ − 1
1 +

√
2δ − 1
2

=

1 +
√

2δ − 1
2

1 +
√

2δ − 1
2

=
δ +

√
2δ − 1
2

,
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and this is what we promised to show.
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