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Abstract

Let G be a simple balanced bipartite graph on 2n vertices, § = §(G)/n,
and p = Stv26-1 V22571. If 6 > 1/2 then it has a pn-regular spanning subgraph.
The statement is tight.

1 Introduction

In this paper we will consider simple graphs. We mostly use standard graph
theory notation: V(G) and E(G) will denote the vertex and the edge set of a
graph G, respectively. The degree of x € V(G) is denoted by dega(x) (we may
omit the subscript), §(G) is the minimum degree of G. We call a bipartite graph
G(A, B) with color classes A and B balanced if |A| = |B|. For X,Y C V(G)
we denote the number of edges of G having one endpoint in X and the other
endpoint in Y by e(X,Y). Ng(z) is the set of neighbors of x € V(G) and
Ng(z, X) is the set of neighbors of x in X. For a set S C V(G) let N(S) =
UzesN(z). If T C V(G) then G|r denotes the subgraph we get after deleting
every vertex of V' — T and the edges incident to them. Finally, K, ; is the
complete bipartite graph on color classes of size r and s for two positive integers
r and s.
The purpose of this note is to prove the following theorem:
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Theorem 1 Let G(A, B) be a balanced bipartite graph on 2n vertices, and as-
sume that

0=0(G)/n>1/2. Then

(1) G has a pn—regular spanning subgraph, with p = @;

(IT) moreover, for every 6 > 1/2 and n large enough there exist a balanced bipar-
tite graph Fys such that it does not admit a spanning reqular subgraph of degree
larger than pn.

The above result plays a crucial role in the proof of some results in extremal
graph theory, see [1, 2].

2 Factors of bipartite graphs

Let H be a bipartite graph with color classes A and B. By the well-known
Koénig-Hall theorem there is a perfect matching in H if and only if [N(S)| > | 5]
for every S C A. We are going to need a generalization of the this result, this
appeared in a paper of Tutte [4].

If f:V(H) — Z% is a function, then an f-factor is a subgraph H' of H
such that degy:(x) = f(z) for every « € V(H). Notice, that when f = r for
some r € Z*, then H' is an r-regular subgraph of H. The result below gives a
necessary and sufficient condition for the existence of an f-factor:

Proposition 2 Let H be a bipartite graph with bipartition {A, B}, and f(x) > 0
an integer valued function on AU B. H has an f—factor if and only if

> fla)=> f)

z€A yeB

and

(i) > fl@) <e(X,Y)+ > fy)

reX yeEB-Y
forall X CAandY C B.

One can find the proof in [3] as well.

3 Proof of Theorem 1

We will show the two parts of the theorem in separate subsections.



3.1 Proof of part [

Observe, that since we are looking for a spanning regular subgraph, the f func-
tion of Proposition 2 will be identically pn. We start with some notation. For
X Cc Alet £ =|X|/n, and for Y C B let 0 = |Y|/n. We will normalize e(X,Y):
n(X,Y) =e(X,Y)/n? Let

Mm(&,0) =min{n(X,Y): X CA Y CB, | X|/n=]|Y|/n=0}.

Since f is identically pn, condition (¢) of Proposition 2 is satisfied. If p(& +
o —1) < np(§ 0) for some p and for every 0 < &,0 < 1, then (i) is satisfied,
hence, G has a pn—regular spanning subgraph.

Clearly, e(X,Y) > |X|(6n — |B = Y]) and e(X,Y) > |Y|(én — |4 — X|)
for arbitrary sets X C A and Y C B. Hence, we have that n,,({,0) >
max (£(d+o0—1),0(0 +&—1)).

First consider the case £ = 0. We are looking for a p for which p(2§ — 1) <
(0 4+ & —1). In another form, we need that

pp(§) =+ (6—2p—1)+p>0.

The discriminant of the above polynomial is the polynomial der(p) = 4p* —
46p + 0% — 25 + 1. One can directly find the roots of der(p): ‘;i‘/f%j Let
p= (8 ++v26—1)/2, then we have that p,(£) > 0.

Let g(§,0) =0(0 +& —1) — p(§ + 0 — 1). We will show, that g(§,0) > 0 for
0 <o < ¢ < 1. Notice, that g is bounded in the triangle above, —2 < g(&,0) <
Nm(&,0) — p(§ + 0 — 1), and continously differentiable.

Let us check the sign of g on the border of the triangle. Since p = (§ +
V20 — 1)/2, we have that g(£,&) > 0. ¢g(£,0) = —p(§ — 1) > 0, and ¢g(1,0) =
(0 —p) > 0, because § > (6 + /20 — 1)/2. Let us check the partial derivatives
of g:

—g—a—
aé-_ p’
and
897 1
=0+&—-1—p.

Assuming that g achieves its minimum inside the triangle at the point (&, 00)
the partial derivatives of g have to diminish at (&, 0p). It would then follow
that o9 = p and & = 1 + p — §, therefore, g(&g, 00) = p? — p(2p — 8) = dp — p°.
That is, g is non-negative in the whole closed triangle. The same reasoning
works for the triangle 0 < £ < ¢ <1, this follows easily by symmetry.

3.2 Proof of part /]

For proving part IT of the theorem we construct a graph F for a given § > 1/2:
F(A, B) is a balanced bipartite graph on 2n vertices such that A = A, U A4,



B =B.UByj, and B.N B, = A. N A; = (). We have that |4;| = |B;| = yn and
|Ae| = |Be| = (1 — 4)n, where v = 177\/225771. We assume that e(A4;, B;) = 0,
and that the subgraphs F|a,up, and F|p,ua, are isomorphic to K., (1—~)n,
therefore, every vertex in A; U B; has degree (1 — v)n. Every vertex in A, U B,
has degree dn, hence, F|4,up, is a (6 — y)n-regular graph. Observe, that v <
0 < 1—~, thus, §(F) = 4.

First we investigate a simple method for edge removal from F: for 0 < p < 1
discard p(1 — «v)n incident edges for every vertex in A; U By, and no edge from
F|a,uB.- Then a vertex in A; U B; will have degree (1 — p)(1 — y)n, and the
average degree of the vertices in A, U B, will be v(1 — p)n + (6 — v)n. Choose
po to be the solution of the following equation:

(1-=p)A=y)n=v1-p)n+ (0 —7)n. (1)

Notice, that if p < pg then there is a vertex € A.,UB, such that every vertex
of A; U B; will have degree larger than deg(x). That is, for finding a regular
subgraph more edges have to be discarded among those which are incident to
the vertices of A; U B;. On the other hand, if p > pg then there will be a vertex
y € A. U B, which has degree larger than that of the vertices in A; U B;. Hence,
edges incident to the vertices of A, U B, have to be discarded, otherwise the
resulting subgraph is not regular.

It is clear that if we look for a spanning regular subgraph of F' we have to
discard edges incident to the vertices of A; U B;. We have just learned that if
p # po then we cannot stop, more edges have to be removed.

For finishing the proof we prove that by choosing p = pg and performing the
above edge removal process every vertex of A; U B; will have degree @n
and the average degree of the vertices in A, U B, will be this number, too.
Since part I of the theorem shows that F' has a spanning regular subgraph of
this degree, we are done - a carefully performed edge removal will result in a

spanning subgraph in which every vertex has degree d+v20-1 V;‘S_ln,

It is easy to see that py = 6;7__11 is the solution of (1). Then the degree of

an arbitrary vertex in A; U B; is

=)t =mn=(1- 255 1) = T ==,

1—v26—1
2

Substituting v = we get

5_@(1_1,m)725f1+m1+m7
V20 —1 2 B V25 -1 2 B

1+vV20-114vV20-1 d+v25-1
2 2 B 2 ’




and this is what we promised to show.
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