Note on regular spanning subgraphs of bipartite graphs of high minimum degree

Béla Csaba^{*†} Bolyai Institute University of Szeged Szeged, Hungary 6720

Preliminary version

Abstract

Let G be a simple balanced bipartite graph on 2n vertices, $\delta = \delta(G)/n$, and $\rho = \frac{\delta + \sqrt{2\delta - 1}}{2}$. If $\delta > 1/2$ then it has a ρn -regular spanning subgraph. The statement is tight.

1 Introduction

In this paper we will consider simple graphs. We mostly use standard graph theory notation: V(G) and E(G) will denote the vertex and the edge set of a graph G, respectively. The degree of $x \in V(G)$ is denoted by $deg_G(x)$ (we may omit the subscript), $\delta(G)$ is the minimum degree of G. We call a bipartite graph G(A, B) with color classes A and B balanced if |A| = |B|. For $X, Y \subset V(G)$ we denote the number of edges of G having one endpoint in X and the other endpoint in Y by e(X,Y). $N_G(x)$ is the set of neighbors of $x \in V(G)$ and $N_G(x,X)$ is the set of neighbors of x in X. For a set $S \subset V(G)$ let N(S) = $\cup_{x \in S} N(x)$. If $T \subset V(G)$ then $G|_T$ denotes the subgraph we get after deleting every vertex of V - T and the edges incident to them. Finally, $K_{r,s}$ is the complete bipartite graph on color classes of size r and s for two positive integers r and s.

The purpose of this note is to prove the following theorem:

^{*}Part of this research was done while the author was visiting the Department of Computer Science, Rutgers University

[†]Partially supported by OTKA T049398 and by Hungarian State Eötvös Fellowship.

Theorem 1 Let G(A, B) be a balanced bipartite graph on 2n vertices, and assume that

 $\delta = \delta(G)/n > 1/2$. Then

(I) G has a ρ n-regular spanning subgraph, with $\rho = \frac{\delta + \sqrt{2\delta - 1}}{2}$;

(II) moreover, for every $\delta > 1/2$ and n large enough there exist a balanced bipartite graph F_{δ} such that it does not admit a spanning regular subgraph of degree larger than ρn .

The above result plays a crucial role in the proof of some results in extremal graph theory, see [1, 2].

2 Factors of bipartite graphs

Let H be a bipartite graph with color classes A and B. By the well-known König–Hall theorem there is a perfect matching in H if and only if $|N(S)| \ge |S|$ for every $S \subset A$. We are going to need a generalization of the this result, this appeared in a paper of Tutte [4].

If $f: V(H) \to Z^+$ is a function, then an *f*-factor is a subgraph H' of H such that $deg_{H'}(x) = f(x)$ for every $x \in V(H)$. Notice, that when $f \equiv r$ for some $r \in Z^+$, then H' is an *r*-regular subgraph of H. The result below gives a necessary and sufficient condition for the existence of an *f*-factor:

Proposition 2 Let H be a bipartite graph with bipartition $\{A, B\}$, and $f(x) \ge 0$ an integer valued function on $A \cup B$. H has an f-factor if and only if

$$(i)\sum_{x\in A}f(x) = \sum_{y\in B}f(y)$$

and

$$(ii)\sum_{x\in X}f(x)\leq e(X,Y)+\sum_{y\in B-Y}f(y)$$

for all $X \subset A$ and $Y \subset B$.

One can find the proof in [3] as well.

3 Proof of Theorem 1

We will show the two parts of the theorem in separate subsections.

3.1 Proof of part I

Observe, that since we are looking for a spanning regular subgraph, the f function of Proposition 2 will be identically ρn . We start with some notation. For $X \subset A$ let $\xi = |X|/n$, and for $Y \subset B$ let $\sigma = |Y|/n$. We will normalize e(X, Y): $\eta(X, Y) = e(X, Y)/n^2$. Let

$$\eta_m(\xi,\sigma) = \min\{\eta(X,Y) : X \subset A, \ Y \subset B, \ |X|/n = \xi, |Y|/n = \sigma\}.$$

Since f is identically ρn , condition (i) of Proposition 2 is satisfied. If $\rho(\xi + \sigma - 1) \leq \eta_m(\xi, \sigma)$ for some ρ and for every $0 \leq \xi, \sigma \leq 1$, then (ii) is satisfied, hence, G has a ρn -regular spanning subgraph.

Clearly, $e(X,Y) \geq |X|(\delta n - |B - Y|)$ and $e(X,Y) \geq |Y|(\delta n - |A - X|)$ for arbitrary sets $X \subset A$ and $Y \subset B$. Hence, we have that $\eta_m(\xi,\sigma) \geq \max(\xi(\delta + \sigma - 1), \sigma(\delta + \xi - 1))$.

First consider the case $\xi = \sigma$. We are looking for a ρ for which $\rho(2\xi - 1) \leq \xi(\delta + \xi - 1)$. In another form, we need that

$$p_{\rho}(\xi) = \xi^2 + (\delta - 2\rho - 1)\xi + \rho \ge 0.$$

The discriminant of the above polynomial is the polynomial $dcr(\rho) = 4\rho^2 - 4\delta\rho + \delta^2 - 2\delta + 1$. One can directly find the roots of $dcr(\rho)$: $\frac{\delta \pm \sqrt{2\delta-1}}{2}$. Let $\rho = (\delta + \sqrt{2\delta-1})/2$, then we have that $p_{\rho}(\xi) \ge 0$.

Let $g(\xi, \sigma) = \sigma(\delta + \xi - 1) - \rho(\xi + \sigma - 1)$. We will show, that $g(\xi, \sigma) \ge 0$ for $0 \le \sigma \le \xi \le 1$. Notice, that g is bounded in the triangle above, $-2 \le g(\xi, \sigma) \le \eta_m(\xi, \sigma) - \rho(\xi + \sigma - 1)$, and continuously differentiable.

Let us check the sign of g on the border of the triangle. Since $\rho = (\delta + \sqrt{2\delta - 1})/2$, we have that $g(\xi, \xi) \ge 0$. $g(\xi, 0) = -\rho(\xi - 1) \ge 0$, and $g(1, \sigma) = \sigma(\delta - \rho) \ge 0$, because $\delta \ge (\delta + \sqrt{2\delta - 1})/2$. Let us check the partial derivatives of g:

$$\frac{\partial g}{\partial \xi} = \sigma - \rho$$

and

$$\frac{\partial g}{\partial \sigma} = \delta + \xi - 1 - \rho$$

Assuming that g achieves its minimum inside the triangle at the point (ξ_0, σ_0) the partial derivatives of g have to diminish at (ξ_0, σ_0) . It would then follow that $\sigma_0 = \rho$ and $\xi_0 = 1 + \rho - \delta$, therefore, $g(\xi_0, \sigma_0) = \rho^2 - \rho(2\rho - \delta) = \delta\rho - \rho^2$. That is, g is non-negative in the whole closed triangle. The same reasoning works for the triangle $0 \le \xi \le \sigma \le 1$, this follows easily by symmetry.

3.2 Proof of part *II*

For proving part II of the theorem we construct a graph F for a given $\delta > 1/2$: F(A, B) is a balanced bipartite graph on 2n vertices such that $A = A_e \cup A_l$, $B = B_e \cup B_l$, and $B_e \cap B_l = A_e \cap A_l = \emptyset$. We have that $|A_l| = |B_l| = \gamma n$ and $|A_e| = |B_e| = (1 - \gamma)n$, where $\gamma = \frac{1 - \sqrt{2\delta - 1}}{2}$. We assume that $e(A_l, B_l) = 0$, and that the subgraphs $F|_{A_l \cup B_e}$ and $F|_{B_l \cup A_e}$ are isomorphic to $K_{\gamma n, (1 - \gamma)n}$, therefore, every vertex in $A_l \cup B_l$ has degree $(1 - \gamma)n$. Every vertex in $A_e \cup B_e$ has degree δn , hence, $F|_{A_e \cup B_e}$ is a $(\delta - \gamma)n$ -regular graph. Observe, that $\gamma < \delta < 1 - \gamma$, thus, $\delta(F) = \delta$.

First we investigate a simple method for edge removal from F: for 0 $discard <math>p(1-\gamma)n$ incident edges for every vertex in $A_l \cup B_l$, and no edge from $F|_{A_e \cup B_e}$. Then a vertex in $A_l \cup B_l$ will have degree $(1-p)(1-\gamma)n$, and the average degree of the vertices in $A_e \cup B_e$ will be $\gamma(1-p)n + (\delta - \gamma)n$. Choose p_0 to be the solution of the following equation:

$$(1-p)(1-\gamma)n = \gamma(1-p)n + (\delta - \gamma)n.$$
(1)

Notice, that if $p < p_0$ then there is a vertex $x \in A_e \cup B_e$ such that every vertex of $A_l \cup B_l$ will have degree larger than deg(x). That is, for finding a regular subgraph more edges have to be discarded among those which are incident to the vertices of $A_l \cup B_l$. On the other hand, if $p > p_0$ then there will be a vertex $y \in A_e \cup B_e$ which has degree larger than that of the vertices in $A_l \cup B_l$. Hence, edges incident to the vertices of $A_e \cup B_e$ have to be discarded, otherwise the resulting subgraph is not regular.

It is clear that if we look for a spanning regular subgraph of F we have to discard edges incident to the vertices of $A_l \cup B_l$. We have just learned that if $p \neq p_0$ then we cannot stop, more edges have to be removed.

For finishing the proof we prove that by choosing $p = p_0$ and performing the above edge removal process every vertex of $A_l \cup B_l$ will have degree $\frac{\delta + \sqrt{2\delta - 1}}{2}n$ and the average degree of the vertices in $A_e \cup B_e$ will be this number, too. Since part I of the theorem shows that F has a spanning regular subgraph of this degree, we are done - a carefully performed edge removal will result in a spanning subgraph in which every vertex has degree $\frac{\delta + \sqrt{2\delta - 1}}{2}n$.

spanning subgraph in which every vertex has degree $\frac{\delta + \sqrt{2\delta - 1}}{2}n$. It is easy to see that $p_0 = \frac{\delta + \gamma - 1}{2\gamma - 1}$ is the solution of (1). Then the degree of an arbitrary vertex in $A_l \cup B_l$ is

$$(1-p_0)(1-\gamma)n = \left(1 - \frac{\delta + \gamma - 1}{2\gamma - 1}\right)(1-\gamma) = \frac{\gamma - \delta}{2\gamma - 1}(1-\gamma).$$

Substituting $\gamma = \frac{1 - \sqrt{2\delta - 1}}{2}$ we get

$$\frac{\delta - \frac{1 - \sqrt{2\delta - 1}}{2}}{\sqrt{2\delta - 1}} \left(1 - \frac{1 - \sqrt{2\delta - 1}}{2}\right) = \frac{2\delta - 1 + \sqrt{2\delta - 1}}{\sqrt{2\delta - 1}} \frac{1 + \sqrt{2\delta - 1}}{2} = \frac{1 + \sqrt{2\delta - 1}}{2} = \frac{\delta + \sqrt{2\delta - 1}}{2},$$

and this is what we promised to show.

Acknowledgment The author would like to thank Péter Hajnal for the helpful conversations.

References

- [1] B. Csaba, M. Mydlarz, Approximate multipartite version of the Hajnal-Szemerédi theorem, submitted.
- [2] B. Csaba, Approximating the Bollobás–Eldridge conjecture for bounded degree graphs, manuscript.
- [3] L. Lovász, Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest, 1993.
- [4] W. T. Tutte, Graph factors, Combinatorica (1981) no. 1., 79–97.