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Abstract

Let G be a simple graph on n vertices. A conjecture of Bollobás and Eldridge [5] asserts
that if δ(G) ≥ kn−1

k+1
then G contains any n vertex graph H with ∆(H) = k. We prove a

strengthened version of this conjecture for bipartite, bounded degree H, for sufficiently large n.
This is the first result on this conjecture for expander graphs of arbitrary (but bounded) degree.
An important tool for the proof is a new version of the Blow-up Lemma.

1 Introduction

In this paper we will consider only simple graphs. We mostly use standard notation: we denote by
V (F ) and E(F ) the vertex and the edge set of the graph F , degF (x) is the degree of the vertex
x ∈ V (F ), δ(F ) is the minimum degree and ∆(F ) is the maximum degree. If F = F (A,B) is a
bipartite graph with color classes A and B, then let ∆A = maxx∈A deg(x), ∆B = maxx∈B deg(x)
and ∆ = min{∆A,∆B}.

Let G1 and G2 be two graphs on n vertices. If there is a bijection φ : V (G1) → V (G2) such
that (i, j) ∈ E(G1) implies (φ(i), φ(j)) 6∈ E(G2), then G1 and G2 can be packed. Equivalently (and
we will consider this formulation in the paper), G1 and G2 can be packed, if G2 ⊂ G1, i.e., G2 is a
spanning subgraph of G1.

Packing of graphs is a heavily studied subject in graph theory. The reader can find a good survey
on packing of graphs in [4] and [15]. Packing of graphs has applications in computer science as well,
see eg. [5, 10].

In 1978 the following deep conjecture was formulated by Bollobás and Eldridge in [5]:

Conjecture 1 (Bollobás-Eldridge) If G is a simple graph on n vertices with

δ(G) ≥ kn− 1
k + 1

then G contains any spanning subgraph H with ∆(H) = k.

Perhaps the simplest special case of Conjecture 1 is the case of ∆(H) = 1, which can be solved
easily. The case when H is the union of disjoint (k+1)-cliques was proved by Hajnal and Corrádi [6]
(k = 2), and Hajnal and Szemerédi [9] (for arbitrary k). Aigner and Brandt [1] and Alon and
Fischer [2] proved the conjecture for the case H is the disjoint union of cycles (this special case
was first considered in [16]). Csaba, Shokoufandeh and Szemerédi [8] gave the proof for ∆(H) = 3

∗Partially supported by OTKA T034475, by OTKA T049398 and by the IST Programme of the EU under contract
number IST-1999-14186 (ALCOM-FT).

†Current address: Bolyai Institute, University of Szeged, Szeged, Hungary 6720, e-mail: bcsaba@math.u-szeged.hu

1



and Csaba [7] proved it for ∆(H) = 4 (if the number of vertices is large enough). However, the
conjecture is wide open for most cases.

In this paper we investigate the case when ∆(H) is bounded andH is bipartite. Let us emphasize,
that this problem is different from the problem of bipartite packing, when the two graphs to be packed
are bipartite (see eg., [11]).

It is easy to see that Conjecture 1 is tight in general: Let H be the disjoint union of n
k+1 cliques

of size k+1 and G be a complete (k+1)-partite graph with k− 1 color classes of size n
k+1 , one color

class of size n
k+1 + 1 and the last of size n

k+1 − 1. Then δ(G) = kn
k+1 − 1, but H 6⊂ G.

Still, in the special case of embedding bipartite graphs we can strengthen the conjecture: we
show that the minimum degree requirement of Conjecture 1 is unnecessarily strong for bipartite
graphs.

Theorem 2 Given two integers ∆1 and ∆2 (∆1,∆2 ≥ 2), there exists a threshold n0 and β > 0
real such that for all n ≥ n0 the following statement holds: Let H = H(A,B) be a bipartite graph
on n vertices, with ∆A = ∆1, ∆B = ∆2 and ∆ = min{∆A,∆B}. Then if G is any graph of order n
having minimum degree

δ(G) ≥ ∆
∆ + 1

(1− β)n,

then H is a spanning subgraph of G.

Sometimes we will call G the host graph.
Note that in the above theorem δ(G) depends on ∆ = min{∆A,∆B}, not on ∆(H). Besides, even in
case ∆A = ∆B a smaller minimum degree is sufficient than what is required in the Bollobás–Eldridge
conjecture. Note that in contrast to the Bollobás–Eldridge conjecture, some bound on the maximum
degree of H is clearly needed in Theorem 2 (to see this consider the graph H = K2,n−2 and let G
be a complete 3-partite graph on n vertices with equal color class sizes.)

In understanding the proof of the result some familiarity with the Regularity Lemma of Sze-
merédi [17] will be helpful, although we will give a brief survey on the necessary notions in the
second section. As it happens frequently in combinatorics, for proving the main theorem we need a
lemma, which is similar to another one which was published several years ago: the Blow-up Lemma
of Komlós, Sárközy and Szemerédi, see [13, 14]. For our application we had to make changes in
the statement. However, the proof is similar to the proof of [14]. We note, that a special case of
this version (for embedding graphs of maximum degree three) appeared in [8]. We will prove this
modified Blow-up Lemma in the third section, and then show Theorem 2 in the fourth section. We
finish the paper with a section on concluding remarks.

2 Review of Tools for the Proof

Firstly, we will discuss the graph theoretic tools what we will need: Szemerédi’s Regularity Lemma [17],
and some related results. Secondly, we will consider an inequality from probability theory, which is
a generalization of Hoeffding’s inequality.

2.1 Graph Theory

Let us introduce some more notation first. For any vertex v of the graph G, degG(v,X) is the
number of neighbors of v in the set X, and e(X,Y ) is the number of edges between the disjoint sets
X and Y . NG(v) is the set of neighbors of v and NG(v,X) is the set of neighbors of v in X. For
a set U ⊂ V (G), N : G(U) = ∪v∈UNG(v). Throughout the paper we will apply the relation “�”:
a� b, if a is sufficiently smaller, than b.
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The density between disjoint sets X and Y is defined as:

d(X,Y ) =
e(X,Y )
|X||Y |

.

In the proof of Theorem 2, Szemerédi’s Regularity Lemma [17, 15] plays a pivotal role. We will need
the following definition to state the Regularity Lemma.

Definition 1 (Regularity condition) Let ε > 0. A pair (A,B) of disjoint vertex-sets in G is
ε-regular if for every X ⊂ A and Y ⊂ B, satisfying

|X| > ε|A|, |Y | > ε|B|

we have
|d(X,Y )− d(A,B)| < ε.

This definition implies that regular pairs are highly uniform bipartite graphs; namely, the density
of any reasonably large subgraph is almost the same as the density of the regular pair.

We will use the following form of the Regularity Lemma:

Lemma 3 (Degree Form) For every ε > 0 there is an M = M(ε) such that if G = (V,E) is any
graph and d ∈ [0, 1] is any real number, then there is a partition of the vertex set V into `+1 clusters
V0, V1, . . . , V`, and there is a subgraph G′ of G with the following properties:

• ` ≤M ,

• |V0| ≤ ε|V |,

• all clusters Vi, i ≥ 1, are of the same size m (≤ ε|V |),

• degG′(v) ≥ degG(v)− (d+ ε)|V | for all v ∈ V ,

• G′|Vi = ∅ (Vi is an independent set in G′) for all i ≥ 1,

• all pairs (Vi, Vj), 1 ≤ i < j ≤ `, are ε-regular, each with density either 0 or at least d in G′.

Often we call V0 the exceptional cluster. In the rest of the paper we assume that 0 < ε� d� 1.

Remark 1 It is clear, that n(1−ε)
` ≤ m ≤ n

` . Recall, that m ≤ εn. Therefore, if ε→ 0, then `→∞.

Definition 2 (Reduced graph) Apply Lemma 3 to the graph G = (V,E) with parameters ε and
d, and denote the clusters of the resulting partition by V0, V1, . . . , V`, V0 being the exceptional cluster.
We construct a new graph Gr, the reduced graph of G′ in the following way: The non-exceptional
clusters of G′ are the vertices of the reduced graph Gr (hence |V (Gr)| = `). We connect two vertices
of Gr by an edge if the corresponding two clusters form an ε-regular pair with density at least d.
Sometimes we will refer to the vertices of Gr as clusters, too.

The following corollary is immediate:

Corollary 4 Apply Lemma 3 with parameters ε and d to the graph G = (V,E) satisfying δ(G) ≥ γn
(|V | = n) for some γ > 0. Denote Gr the reduced graph of G′. Then δ(Gr) ≥ (γ − θ)`, where
θ = 2ε+ d.

In our application of Lemma 3 we will assume that all densities “almost equal” to d. We take each
regular pair with density exceeding this number, and randomly discard edges with the appropriate
probability. As a result we will have ε′-regular pairs having the desired densities, all being very close
to d. By applying Chernoff’s bound one can see that these densities will get arbitrarily close to d
as the number of vertices tends to infinity. ε′ will only be slightly bigger than ε, and for simplicity
we will call it ε. We will refer to the densities of the regular pairs as if they were actually equal to
d, and, as it will be clear later in Section 3, this approximation is good enough for our purposes.
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2.2 Probability Theory

There is a standard inequality in probability theory due to Hoeffding [12], we will use a version
of it. Let us assume, that we are given an urn with r red and b blue balls. Let n = r + b. We
conduct the following experiment: we randomly, uniformly draw m balls (1 ≤ m ≤ n) without
replacement. Denote the number of chosen red balls by ρ, this is a random variable. It is easy to
see, that E[ρ] = m r

n . Hoeffding’s inequality states, that for every 0 ≤ t ≤ n

Pr[|ρ− E[ρ]| ≥ t] ≤ 2e−
t2
2m .

Alternatively, one can prove the above inequality by the help of Azuma’s inequality [3], applying
martingales. For that let us define the random variables ρ0, ρ1, . . . , ρm: ρ0 = E[ρ], and for every
1 ≤ i ≤ m let ρi = E[ρ|the first i balls are known]. Then the sequence ρ0, ρ1, . . . , ρm = ρ defines a
martingale. Moreover, |ρi − ρi−1| ≤ 1 for every 1 ≤ i ≤ m. Hence, we get Hoeffding’s inequality by
applying Azuma’s inequality:

Pr[ρ ≥ E[ρ] + t] ≤ e− t2
2m and Pr[ρ ≤ E[ρ]− t] ≤ e− t2

2m .

As we promised, we will need a somewhat different version. Let us assume that we are given a
ground set X and the non-empty sets R,B1, . . . , Bm, where R ⊂ X and Bi ⊂ X for 1 ≤ i ≤ m. We
assume, that |R| = r and |Bi| ≥ b for every 1 ≤ i ≤ m.

We will conduct another experiment now. At time i we randomly choose an element of Ri∪Bi−
Pi−1, where Ri ⊂ R and Pi−1 is the set of previously chosen elements.

Analogously to ρ, we can define the random variable µ, and the sequence µ0, µ1, . . . , µm. As
before, we will have a martingale process with |µi − µi−1| ≤ 1 for every 1 ≤ i ≤ m, and therefore
a strong concentration result by applying Azuma’s inequality. However, we cannot give a simple
formula for E[µ] now. Still, it is obvious, that E[µ] ≤ mr/(r + b). Applying Azuma’s inequality, we
will have:

Pr[µ ≥ m r

r + b
+ t] ≤ Pr[µ ≥ E[µ] + t] ≤ e− t2

2m .

Therefore,
Pr[µ ≥ m r

r + b
+ t] ≤ e− t2

2m .

We will refer to the above inequality as the modified Hoeffding’s bound.

2.3 A rough outline of the proof

Our goal is to embed H into the host graph G. For achieving this goal first we apply the Regularity
Lemma to G. Then we distribute the vertices of H among the non-exceptional clusters of G′ – at this
point vertices of H are assigned to clusters of Gr, but not mapped to vertices of G. It is important
to do this distribution evenly and consistently. That is, we assign m+ |V0|/`± o(n) vertices of H to
each non-exceptional cluster (“evenness”), and if (x, y) ∈ E(H) and x is assigned to the cluster Vx

and y is assigned to Vy, then (Vx, Vy) ∈ E(Gr) (“consistency”). Then we map appropriately chosen
vertices of H to V0. After this step we will have m vertices of H assigned to each non-exceptional
cluster. For mapping these vertices we will apply the modified Blow-up Lemma.

3 Modified Blow-up Lemma

As it was mentioned above, most of H will be embedded by a similar procedure to that of the Blow-
up Lemma. Readers familiar with the lemma may observe that unlike in our setup, the Blow-up
Lemma applies for a fixed reduced graph which does not depend on the parameters ε and d, and
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all the edges of that (fixed) reduced graph are super-regular pairs (this is a stronger notion than
ε-regularity). Besides, as we will see, we will have restrictions for the embedding of certain vertices
of H. Hence, we need a stronger statement than that of the Blow-up Lemma. It will require several
new conditions, and this version below will be more technical. However, the main message has not
changed: if certain conditions are satisfied, one can embed bounded degree spanning subgraphs into
pseudo-random graphs. In this section we discuss this embedding algorithm, and then prove its
correctness. This embedding algorithm and its analysis is not much different from the algorithm of
[14] or [8]. In particular, Lemma 5 is a generalization of the embedding lemma of [8] for embedding
spanning subgraphs of arbitrary, but bounded degree.

Given H and G our goal is to find a subgraph of G which is isomorphic to H. We assume, that
D = ∆(H) is at least 1, otherwise there is nothing to prove. Let us denote by I ′ ⊂ V (H) a set the
elements of which are of distance at least 4 from each other, and |I ′| ≥ n

2D3 - the existence of I ′ can
be shown easily by the help of a greedy algorithm.

Assume that V (G) = V0 ∪ V1 ∪ . . . ∪ V`, and V (H) = L0 ∪ L1 ∪ . . . ∪ L` are partitions such that
there is a bijective mapping ϕ : L0 → V0; hence, |V0| = |L0|. We also assume that for every 1 ≤ i ≤ `
|Vi| = |Li| = m. Set I ′i = Li ∩ I ′.

Let x ∈ Li; a vertex v ∈ Vi is called (d, ε)–good for x if y ∈ N(x) ∩ Lj implies degG(v, Vj) ≥
(d− ε)m for every 1 ≤ j ≤ `.

Lemma 5 (Modified Blow-up lemma) For every integer D ≥ 1 there exists n0 and ε, d > 0
such that if n > n0, H and G are graphs of order n, ∆(H) = D, and

0 < ε� ε′′ � δ′ � d� 1,

for every 1 ≤ i < j ≤ ` the pair (Vi, Vj) is ε-regular, with density 0 or d, and the conditions listed
below hold, then H could be embedded in G by a randomized algorithm.

There exist positive constants K1,K2,K3, c1 and c2 which may depend on D but not on any other
parameter such that:

C1: |L0| = |V0| ≤ K1dn;

C2: L0 ⊂ I ′;

C3: for every 1 ≤ i ≤ `, Li is independent;

C4: for every 1 ≤ i ≤ `, |NH(L0) ∩ Li| ≤ K2dm;

C5: for every 1 ≤ i ≤ ` there is Bi ⊂ I ′i with |Bi| = δ′m, such that for B = ∪iBi and every
1 ≤ i, j ≤ `,

||NH(B) ∩ Li| − |NH(B) ∩ Lj || < εm;

C6: for every 1 ≤ i, j ≤ ` if (x, y) ∈ E(H) and x ∈ Li, y ∈ Lj, then (Vi, Vj) is an ε-regular pair
with density d;

C7: if (x, y) ∈ E(H) and x ∈ L0, then y ∈ Lj implies deg(ϕ(x), Vj) ≥ c1|Vj | = c1m;

C8: for every 1 ≤ i ≤ `, given any Ei ⊂ Vi such that |Ei| ≤ ε′′m there exists a bijection

ψi : Ei → Fi ⊂ (Li ∩ (I ′ −B))

such that for every v ∈ Ei, v is (d, ε)–good for ψi(v);

C9: for F = ∪Fi,
|NH(F ) ∩ Li| ≤ K3ε

′′m.
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The elements of B will be called buffer vertices. The reader may notice that we have not defined
which vertices would belong to Ei – this will be determined during the execution of the algorithm.

Let us briefly explaine the role of conditions C1 - C9. We want to map the vertices of Li to
vertices of Vi (0 ≤ i ≤ `). First, x ∈ L0 will be mapped to ϕ(x) ∈ V0, that is why we need C1 and
C2. We have C3 since Li will be mapped to Vi (1 ≤ i ≤ `). C6 and C7 are so called consistency
conditions. The meaning of C4 and C5 will be clear later, these are measures for the ”evenness” of
the distribution of the vertices of H among the clusters of G. We need C8 and C9 since we have to
take special care of Ei.

3.1 The embedding algorithm

From now on we suppose that the requirements of Lemma 5 are satisfied. For discussing the em-
bedding algorithm and proving its correctness we will need more constants: ε′, ε′′′, δ′′, δ′′′ are such,
that

0 < ε� ε′ � ε′′ � ε′′′ � δ′′′ � δ′′ � δ′ � d� 1.

Having ϕ at hand, we map x ∈ L0 to ϕ(x) ∈ V0 (recall, that L0 is independent). Let n′ =
|V (H − L0)|, we order the vertices of H − L0 into a sequence S = (x1, x2, . . . , xn′) which is almost
the order in which V (H−L0) will be mapped. The structure of S and how it is reordered occasionally
plays an important role, we give the details below.

For every 1 ≤ i ≤ `, we have a subset Bi of Li of size δ′m, the set of buffer vertices in Li.
Recall, that B = ∪iBi. Let M = |B|, and denote by b1, b2, . . . , bM the buffer vertices, these
will form the last part of S. The sequence S begins with the vertices of NH(L0), followed by
{NH(b1), NH(b2), . . . , NH(bM )}, the neighbors of the buffer vertices. We let T0 = |NH(L0)| and
T1 =

∑M
i=1 |NH(bi)|. Then we add all the other vertices to the sequence, in such a way that the

buffer vertices form the tail of S.
For technical reasons we assume that S is ordered evenly. This means that if we divide S starting

from the (T0 + T1 + 1)th element into 1
δ′′ consecutive segments of length δ′′n′, then these segments

will have about the same number of vertices from every Li set, no such segment will contain more
than 2δ′′m vertices of Li for every 1 ≤ i ≤ `. Observe, that this is possible by using conditions C4
and C5: they imply that the first T0 +T1 elements of S contain roughly the same number of vertices
from each Li. Later, during the execution of the embedding algorithm we may place some vertices
forward – only a very small proportion, as we will show. If we have to do so, we immediately reorder
the remaining unmapped vertices of S to maintain this property.

Reordering will mean renaming as well, so as to have that the jth vertex in S is called xj . We
do the reordering with special care to have only buffer vertices in the tail of S. In fact, it is possible
to have at least δ′

2 m buffer vertices in the tail of S from Li for every 1 ≤ i ≤ ` during the execution
of the embedding algorithm.

The mapping of the vertices of H − L0 is done in three separate phases. In the first phase we
are going to map the vertices of NH(L0). In the second phase will come the mapping of the next
vertices of S after each other according to their position in the sequence (some reordering is possible
in this phase), until only buffer vertices are left in S. In the third phase, by a matching procedure
we map the remaining buffer vertices. The embedding algorithm is a randomized procedure; we will
prove, that with probability 1− o(1) H can embedded by the help of it.

If we map x ∈ V (H) to v ∈ V (G), then we say v is covered by x or that v is the host vertex for
x. Since no v ∈ V (G) will be covered by more than one vertex of H, we always map a vertex to an
uncovered one of G.

We say that the embedding algorithm succeeds for t, if it can find a host vertex for mapping the
tth vertex in S. If the algorithm cannot find a host vertex for some x ∈ H, then it halts with failure.
Hence, if the algorithm succeeds for t, then it has been succesful for finding host vertices for the first
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t vertices in S. We say we are at time t if we have succesfully mapped the first t vertices of S, and
mapping of the (t+ 1)th vertex is next.

In the following subsection we outline our method for the embedding, with the exception of
selecting a vertex to be covered. That will be done in a separate subsection.

3.1.1 Outline of the algorithm

For an unmapped vertex x ∈ Li we will denote by Ht,x its monotonically shrinking host set in Vi at
time t, i.e., Ht,x is a subset of the uncovered vertices at time t which are the candidates for being
covered by x. Also, for technical reasons we keep track of another set, Ct,x. By Zt we denote the set
of covered vertices at time t (note that Z0 = V0). Similarly, Yt denotes the set of mapped vertices of
H. Obviously, Y0 = L0. We also maintain a set Badt of exceptional pairs (or bad pairs) in H − L0

(the definition of an exceptional pair will follow later).
At time 0, we set Bad0 = ∅, and C0,x = H0,x = Vi, where x ∈ Li, and x does not have

any neighbor in L0. For those vertices having a neighbor in L0 the setup is different. Let x in
L0 have neighbors y1 ∈ Li1 , y2 ∈ Li2 , . . . , yD ∈ LiD

, and v = φ(x). By virtue of condition C7
we have ensured that v has at least c1m neighbors in Vi1 , Vi2 , . . . , ViD

. These neighborhoods give
C0,y1 = H0,y1 , C0,y2 = H0,y2 , . . . , C0,yD

= H0,yD
, respectively. Note that this makes sense as every

vertex of H has at most one neighboring vertex in L0.
Recall, that T0 = |NH(L0)| and T1 =

∑M
i=1 |NH(bi)|. We let T2 = δ′′n′. Given the initial host

sets, the embedding algorithm will go as follows:

Phase 1. For 1 ≤ t ≤ T0 repeat the following steps

Step 1.1.

Pick an appropriate vertex vt for xt ∈ NH(L0) from Ht−1,xt
using the Selection

Algorithm of Section 3.1.2, then map xt to vt.
Update

Zt = Zt−1 ∪ {vt}, Yt = Yt−1 ∪ {xt},

and for all unmapped vertices xi, with t < i ≤ n′

Ct,xi
=
{
Ct−1,xi

∩NG(vt) if (xi, xt) ∈ E(H),
Ct−1,xi

otherwise,

and
Ht,xi

= Ct,xi
− Zt

Step 1.2. If there is an x ∈ H − L0 − Yt such that |Ht,x| ≤ δ′′m, then halt with failure.

Step 1.3. Set t← t+ 1. If t ≤ T0, then go back to Step 1.1.

Phase 2. For t ≥ T0 + 1 repeat the following steps

Step 2.1. Map the vertex xt from the sequence S: using the Selection Algorithm choose
an appropriate vertex vt from the set Ht−1,xt

as xt’s image.

Step 2.2. Update
Zt = Zt−1 ∪ {vt}, Yt = Yt−1 ∪ {xt},

and for all unmapped vertices xi, with t < i ≤ n′

Ct,xi =
{
Ct−1,xi

∩NG(vt) if (xi, xt) ∈ E(H),
Ct−1,xi otherwise,

and
Ht,xi = Ct,xi − Zt.
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Step 2.3. Taking care of exceptional vertices in G

1. If t 6= T0 + T1 go to Step 2.4.
2. If t = T0 + T1 then for every cluster Vi (1 ≤ i ≤ `) form a set Ei – the exceptional
vertices of Vi – containing those uncovered vertices satisfying

|{b : b ∈ Bi, v ∈ Ct,b}| < δ′′|Bi|.

We will cover them right after mapping the neighbors of the buffer vertices. (Later we
will see, that this way we eliminate a possible obstruction to map the buffer vertices
in Phase 3.) We slightly change the ordering of S: From every list Li we take |Ei|
vertices belonging to I ′ to form the set ψ(Ei) = Fi. Let F = ∪Fi. We place the
vertices of F forward, x = ψ(v) ∈ Fi will be mapped to v ∈ Ei. The requirements for
choosing ψ and F have been formulated in C8 and C9. We will maintain the even
ordering of S, i.e., if necessary, we reorder the remaining unmapped vertices of S.

Step 2.4. Taking care of exceptional vertices in H − L0

1. If T2 does not divide t or t ≤ T0 + T1, then go to Step 2.5.
2. Otherwise, we will find all exceptional unmapped vertices y: here y ∈ H − L0 is
defined to be exceptional, if |Ht,y| ≤ (δ′)2m. We again slightly change the order of the
remaining vertices in S by bringing these exceptional vertices forward in S, including
exceptional buffer vertices. If necessary, we reorder the remaining unmapped vertices
of S so as to maintain the even ordering.

Step 2.5. If the unmapped vertices are all buffer vertices, go to Phase 3., otherwise set
t← t+ 1 and go back to Step 2.1.

Phase 3. We are at time T now, when there are only buffer vertices left in S. Find a system of
distinct representatives of the sets HT,y for all unmapped vertices. If there is no such system,
then halt with failure.

3.1.2 Selection Algorithm

There can be two possible cases.

Case 1. xt 6∈ F .
As the image of xt, we will choose some vt ∈ Ht−1,xt

such that the following conditions are
satisfied for every unmapped vertex y with (xt, y) ∈ E(H):

(d− ε)|Ht−1,y| ≤ degG(vt,Ht−1,y) ≤ (d+ ε)|Ht−1,y|, (3)

(d− ε)|Ct−1,y| ≤ degG(vt, Ct−1,y) ≤ (d+ ε)|Ct−1,y|, (4)

and

(d− ε)|Ct−1,y ∩ Ct−1,y′ | ≤ degG(vt, Ct−1,y ∩ Ct−1,y′) ≤ (d+ ε)|Ct−1,y ∩ Ct−1,y′ |, (5)

for at least (1− ε′) portion of the unmapped vertices y′ such that y and y′ are assigned to the
same cluster Vi, and {y, y′} 6∈ Badt−1. The set Badt will be formed as the union of Badt−1

and those pairs {y, y′} which does not satisfy (5) for vt (recall that Bad0 = ∅). Clearly, at
most Dε′m new pairs will be added to Badt. If there are more than one v ∈ Ht−1,xt

, which
satisfies the above conditions, then choose among them randomly. If we cannot find vt for xt

which satisfies the above conditions, then halt with failure.
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Case 2. xt ∈ F .
We will assign xt ∈ Li (i 6= 0) to an exceptional vt ∈ Ei so that for all unmapped y ∈ NH(xt)
(y ∈ Lj , j 6= 0) the following is satisfied:

degG(vt, Ct−1,y) ≥ (d− ε)m ≥ (d− ε)|Ct−1,y|, (6)

and
degG(vt,Ht−1,y) ≥ d

2
m. (7)

We will use C8 to try to find such vertices. If we cannot find xt to cover the exceptional vt, then
halt with failure.

3.2 Proof of Lemma 5

Our goal is to show that with positive probability the embedding algorithm will not halt with failure.
We start by proving that Phase 1 of the algorithm succeeds with high probability. First we show

that the Selection Algorithm is likely to succeed for 1 ≤ t ≤ T0 in finding vt.

Lemma 6 Assuming that Phase 1 succeeds for t− 1, with 1 ≤ t ≤ T0 and |Ht−1,xt
| > δ′′m, then it

succeeds for t.

Proof We only need to consider Case 1 of the Selection Algorithm. The selected vertex vt ∈ Ht−1,xt

should satisfy conditions (3), (4), and (5). By ε-regularity we will have at most 2εm vertices in
Ht−1,xt

which do not satisfy (3), and the same holds for (4). For condition (5) we will define a
bipartite graph BG = (W1,W2, E(BG)). Here W1 = Ht−1,xt , and the elements of W2 are the sets
Ct−1,y ∩ Ct−1,y′ for all pairs {y, y′} where (xt, y) ∈ E(H), y and y′ are both assigned to the same
cluster, and {y, y′} 6∈ Badt−1. For v ∈W1 and u ∈W2, we have (v, u) ∈ E(BG) if (5) does not hold
for v and the pairs corresponding to u. If we assume that there are more than ε′m vertices v ∈W1

with degBG(v) > ε′|W2|, then there should be a vertex u ∈W2 such that

degBG(u) > ε′2m� εm.

Denote {yu, y
′
u} the pair which corresponds to u. Let

gt = |NH(yu) ∩ Yt−1|+ |NH(y′u) ∩ Yt−1|.

We will show that
|Ct−1,yu ∩ Ct−1,y′u | ≥ (d− ε)gtc1m � εm.

This and the assumption will contradict with ε-regularity.
We proceed by induction on gt. First assume that gt = 0. We have that y 6∈ NH(L0), since S

begins with the vertices of NH(L0) and NH(L0) is an independent subset in H. Clearly, |Ct−1,y′u | ≥
c1m even if y′u ∈ NH(L0). Hence, we have that

|Ct−1,yu ∩ Ct−1,y′u | ≥ (d− ε)gtc1m = c1m.

Let us assume now, that gt ≥ 1, and that the induction hypotheses is true up to gt−1. Consider
the largest t̃ for which gt̃ = gt − 1. Then

|Ct̃−1,yu
∩ Ct̃−1,y′u

| ≥ (d− ε)gt̃c1m

by the induction hypotheses. Observe, that {yu, y
′
u} 6∈ Badt̃, since {yu, y

′
u} 6∈ Badt−1, and t̃ ≤ t+1.

Therefore, by Step 2.2 of the embedding algorithm we get that at time t̃, after mapping one more
neighbor of yu or y′u,
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|Ct̃,yu
∩ Ct̃,y′u

| ≥ (d− ε)|Ct̃−1,yu
∩ Ct̃−1,y′u

| ≥ (d− ε)gt̃+1c1m = (d− ε)gtc1m.

This in turn implies that Ht−1,xt
can contain at most 4εm+ ε′m� δ′′m vertices which cannot

be used to map xt, proving the succession of Phase 1. 2

Remark 2 Observe, that we have actually proved a somewhat stronger statement: if |Ht,x| = δ′′m+
s for some s > 0, then we have at least s possibilities for mapping x at time t.

What is left to show is that for all t, 1 ≤ t ≤ T0, the host sets do not become too small. Actually,
we prove this not just for the host sets for the unmapped vertices of NH(L0), but for all unmapped
vertices of H.

Lemma 7 If Phase 1 succeeds for t with t ≤ T0, then Ht,xt′ ≥ δ
′m for all t′ > t with high probability.

Proof Recall, that for x ∈ Li −NH(L0) (for 1 ≤ i ≤ `) we have that H0,x = Vi, while |H0,x| ≥ c1m
for every x ∈ NH(L0). The host set Ht,x of x ∈ Li decreases, when either z ∈ NH(x) is mapped, or
another vertex, y ∈ Li is mapped to some vertex of Ht,x.

First let us consider the host sets of the vertices of NH(L0). Since t ≤ T0, and no two vertices
in NH(L0) are adjacent, the only way the host set of x ∈ NH(L0) decreases is that we cover some
vertices of the host set by other vertices of NH(L0).

By virtue of condition C4, there are at most K2dm vertices in NH(L0) which will be mapped to
certain vertices of Vi for every 1 ≤ i ≤ `. Even if all of them are mapped to the same host set Ht,x

(which is of size at least c1m), there is plenty of room left: unmapped vertices of NH(L0) will have
a host set of size at least (c1 −K2d)m � δ′m at time t ≤ T0. Notice that here we don’t need the
randomness in the Selection Algorithm.

Let us consider now any vertex y ∈ Li−NH(L0) for some i. In the beginning |H0,y| = |C0,y| = m.
Whenever a neighbor of y is mapped at time t̃, the size of its host set will change. Assume that
y has s neighbors in NH(L0) mapped by time t. Phase 1 succeeded for t, hence, by the Selection
Algorithm we have that (d− ε)sm ≤ |Ct,y| ≤ (d+ ε)sm (this follows from inequality (4)).

Let us first assume, that |Ct,y| ≥ 2K2dm. Then |Ht,y| = |Ct,y − Zt| ≥ K2dm � δ′m, since, by
virtue of condition C4, |Zt ∩ Li| ≤ K2dm for every 1 ≤ i ≤ `.

Now let us assume that |Ct,y| < 2K2dm. At this point the randomness in selecting a vertex by
the Selection Algorithm will help us. We will apply the modified Hoeffding’s bound. For that let
X = Li, R = Ct,y, and Bj = Hj,xj

− R − Sj for j ∈ J where J = {j : xj ∈ Li, 1 ≤ j ≤ t} and Sj

is the set of vertices of Hj,xj
which cannot be used to map xj (see the remark after Lemma 6). We

have that |Sj | ≤ δ′′m and |J | ≤ K2dm (condition C4). Since |Hj,xj | ≥ c1m for j ∈ J , we get that
|Bj | ≥ (c1 − 2K2d− δ′′)m.

For every x ∈ NH(L0)∩Li let ξx be a 0-1 random variable: set ξx = 1 iff x is mapped to a vertex
in Ct,y and let Ξ =

∑
ξx.

Clearly,

E[Ξ] ≤ |J | |R|
(c1 − δ′′)m

≤ 2K2d|R|/c1 � |R|/4.

Notice, that |R| ≥ (d − ε)Dm > dD+1m, hence |R|2/(2|J |) ≥ d2D+1m/(2K2). By the modified
Hoeffding’s bound

Pr(Ξ ≥ |R|/2) ≤ e−|R|2/(2|J|) ≤ e−d2D+1m/(2K2).

That is, with very high probability Ξ ≤ |Ct,y|/2. Consequently, |Ht,y| ≥ |Ct,y|/2 ≥ (d−ε)Dm/2 ≥
dD+1/2m � δ′m with very high probability. Observing that we have linear number of host sets in
a cluster, we get that with high probability, |Ht,x| ≥ dD+1/2m� δ′m for every unmapped vertex x
at time t, for 1 ≤ t ≤ T0.

2

From the above one can conclude:
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Corollary 8 Phase 1 succeeds with probability 1− o(1).

For t > T0 we will need a more thorough analysis. Suppose, that want to map xt ∈ Li for
T0 + 1 ≤ t ≤ T0 + T1. Let Qi ⊆ Li − Yt−1 such that |Qi| ≥ (δ′′′)2m. We define a bipartite graph
Ut = (Vi, Qi, E(Ut)). Here if x ∈ Qi and v ∈ Vi, then (x, v) ∈ E(Ut) iff v ∈ Ct,x.

The following lemma is pivotal for the proof of the correctness of Phase 2.

Lemma 9 Let i, t and Qi as above. If the embedding algorithm succeeds for t− 1, then apart from
an exceptional set J of size at most ε′′m, the following will hold for every v ∈ Vi:

degUt
(v) ≥ (1− ε′′)d(Vi, Qi)|Qi| (≥ dD

2
|Qi|).

Proof We use the so called “defect form” of the Cauchy-Schwarz inequality, which states: if for
some p ≤ q

p∑
i=1

αi =
p

q

q∑
i=1

αi + β

then
q∑

i=1

α2
i ≥

1
q

(
q∑

i=1

αi

)2

+
β2q

p(q − p)
.

Assume to the contrary that the lemma is not true, that is, |J | > ε′′m. Choose J0 ⊂ J with
|J0| = ε′′m. Define ν(t, x) as the number of mapped neighbors of x by time t. Observe that, if x has
a neighbor in L0, then ν(0, x) ≥ 1, otherwise it is 0. Since x 6∈ NH(L0), we have that |C0,x| = m.
Then

|E(Ut)| =
∑

x∈Qi

|Ct,x| ≥
∑

x∈Qi

(d− ε)ν(t,x)m, (8)

here we used inequality (4).
We also have∑

x∈Qi

∑
x′∈Qi

|Ct,x ∩ Ct,x′ |

≤
∑

x∈Qi

∑
x′∈Qi

(d+ ε)ν(t,x)+ν(t,x′)m+ |Qi|m+D2|Qi|m+ 2Dε′m3

≤
∑

x∈Qi

∑
x′∈Qi

(d+ ε)ν(t,x)+ν(t,x′)m+ 4Dε′m3 (9)

Indeed, for each pair {x, x′}, we can upper-bound |Ct,x∩Ct,x′ | by m. So, the diagonal terms (x = x′)
result in error |Qi|m. For the non-diagonal terms for which NH(x) ∩NH(x′) 6= ∅ we have the term
D2|Qi|m. If {x, x′} ∈ Badt, by Case 1 of the Selection Algorithm either x or x′ can appear in
at most Dε′m bad pairs. Hence there will be at most Dε′m2 bad pairs (as at each time step the
number of bad pairs increases by at most Dε′m, which was observed in Section 3.1.2) associated
with the cluster Vi. In the remaining cases we use (5). Using the Cauchy-Schwarz inequality with
p = ε′′m, q = m and the variables αk = degUt

(vk), 1 ≤ k ≤ m with vk ∈ Vi and the first ε′′m values
set to degrees in J0, we have:

|β| = ε′′
∑
v∈Vi

degUt(v)−
∑
v∈J0

degUt(v)

≥ ε′′
∑
v∈Vi

degUt
(v)− ε′′(1− ε′′)d(Vi, Qi)|Qi|m

= (ε′′)2
∑
v∈Vi

degUt
(v). (10)
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Then using (8), (10) and the Cauchy-Schwarz inequality we get∑
x∈Qi

∑
x′∈Qi

|Ct,x ∩ Ct,x′ |

=
∑
v∈Vi

(degUt
(v))2

≥ 1
m

(∑
v∈Vi

degUt
(v)

)2

+ (ε′′)3d(Vi, Qi)2m|Qi|2

≥ 1
m

∑
x∈Qi

(d− ε)ν(t,x)m

2

+ (ε′′)3(d− ε)2Dm|Qi|2

≥
∑

x∈Qi

∑
x′∈Qi

(d− ε)ν(t,x)+ν(t,x′)m+ (ε′′)3(d− ε)2Dm|Qi|2

which is a contradiction to (9), since |Qi| ≥ (δ′′′)2m,

(ε′′)3(d− ε)2D(δ′′′)2 � 4ε′ � 4ε

and
(d+ ε)ν(t,x)+ν(t,x′) − (d− ε)ν(t,x)+ν(t,x′) � 4ε.

2

As a consequence we will have the following bound on the size of the exceptional sets Ei:

Lemma 10 In Step 2.3, for every 1 ≤ i ≤ ` we have |Ei| ≤ ε′′m.

Proof Recall Step 2.3 of the embedding algorithm: we put a vertex of Vi into Ei, if it has only a few
buffer neighbors in the graph Ut = (Vi, Bi, E(Ut)) with t = T0 + T1. Applying the previous lemma
with t = T0 + T1 and Qi = Bi, (therefore, |Qi| ≥ (δ′′′)2m) we will have the following lower bound
for the number of neighbours of the vertices of Qi apart from an exceptional set Ei ⊂ Vi of size at
most ε′′m:

(1− ε′′)d(Vi, Qi)|Qi| ≥
dD

2
|Qi| > δ′′|Qi|.

2

We are ready to prove that the algorithm will not halt with failure in Case 2 of the Selection
Algorithm with high probability.

Lemma 11 For every 1 ≤ i ≤ ` and vt ∈ Ei there is an xt ∈ Li such that inequalities (6) and (7)
are satisfied with high probability.

Proof Inequality (6) is easily seen to be satisfied by virtue of condition C8. Let y ∈ NH(xt)∩Lj . We
have to check that (7) is satisfied, that is, degG(vt,Ht−1,y) ≥ d

2m where T0 +T1 < t ≤ T0 +T1 +ε′′n.
As in the proof of Lemma 7 we can show that with very high probability at most d

4m vertices of
NG(vt,Ht−1,y) are covered by some vertex in NH(L0) up to time T0. From time T0 + 1 to T0 + T1

we map the vertices of NH(B). By condition C5 we have that this way we cover at most (Dδ′ + ε)m
vertices of NG(vt,Ht−1,y). There are at most ε′′m vertices in Ei, thus the following bound holds
with very high probability:

degG(vt,Ht−1,y) ≥ (d− ε)m− d

4
m− (Dδ′ + ε)m− ε′′m ≥ d

2
m.

2

Next we will prove a result similar to Lemma 9 for t > T0 + T1.
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Lemma 12 For every 1 ≤ i ≤ ` and T0 + T1 < t ≤ T and any set of unmapped vertices Qi ⊆
Li − Yt−1, with |Qi| ≥ (δ′′′)2m, if Phase 2 succeeds for t− 1, then apart from an exceptional set of
size at most ε′′′m the following will hold for every v ∈ Vi:

degUt(v) ≥ (1− ε′′′)d(Vi, Qi)|Qi|.

Proof The proof follows the same line of argument as Lemma 9 with parameter ε′′′, except those
vertices in the neighborhood of F (recall, that F = ∪ψ(Ei)). The inequality in (8) will hold with
the same parameters, since for all x ∈ NH(F ) we have

|Ct,x| ≥ (d− ε)ν(t,x)m.

Here we used condition C8 and the fact that ν(t, x) = 1 since x ∈ I ′.
In (9) we have to take the pairs involving exceptional vertices into account. More precisely, based

on Step 2.3 of the embedding algorithm, there will be an additional error term of 2DK3ε
′′m2|Qi|

by condition C9. Using the fact that

(ε′′′)3(d− ε)2D(δ′′′)2 � ε′′

we can see that the contradiction still holds. 2

The following lemma is an easy consequence of Lemmas 9 and 12.

Lemma 13 For every 1 ≤ i ≤ ` and T0 < t ≤ T and any set of unmapped vertices Qi ⊆ Li − Yt−1,
with |Qi| ≥ δ′′′m and a set A ⊂ Vi with |A| ≥ δ′′′m, if Phase 2 succeeds for t− 1 then apart from an
exceptional set J of size at most (δ′′′)2m, the following will hold for every x ∈ Qi:

|A ∩ Ct,x| ≥
|A|
2m
|Ct,x|.

Proof Let us suppose that the lemma is not true, there exists a set J ⊆ Qi such that |J | > (δ′′′)2m,
and for every x ∈ J the inequality of the statement does not hold. We again consider the bipartite
graph Ut = Ut(J, Vi). ∑

v∈A

degUt(v) =
∑
x∈J

|A ∩ Ct,x| <
|A|
2m

d(J, Vi)|J |m.

Applying Lemmas 9 or 12 with J , we get∑
v∈A

degUt
(v) ≥ (1− ε′′′)d(J, Vi)|J |(|A| − ε′′′m),

which is a contradiction. 2

In the following lemma we show that the host sets do not become too small.

Lemma 14 For every T0 + 1 ≤ t ≤ T and for every vertex y ∈ H − Yt−1, if Phase 2 succeeds for
t− 1 then the following holds:

|Ht,y| > δ′′m.

Proof Let Qi = Li − Yt−1, the set of all the unmapped vertices in Li at time t − 1, and let
At = Vi − Zt−1. Applying Lemma 13 we can see that for all x ∈ Qi (except at most (δ′′′)2m
vertices), if |At| ≥ δ′

2 m then

|Ht,x| = |At ∩ Ct,x| ≥
|At|
2m
|Ct,x| ≥

δ′

4
(d− ε)Dm� (δ′)2m. (10)
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Now we will prove that |At| ≥ δ′

2 m. Let us suppose indirectly that there is a T ′ such that T1 + 1 ≤
T ′ < T and

|AT ′ | ≥ δ′

2
m but |AT ′+1| <

δ′

2
m.

We know that at any time t′, where T2 divides t′, there are at most (δ′′′)2m exceptional unmapped
vertices. Thus, up to time T ′ we can find at most

1
δ′′

(δ′′′)2m� δ′′m

exceptional vertices. This implies that at time T ′ there are many more than (δ′ − δ′′)m unmapped
buffer vertices, thus, on the contrary, |AT ′+1| � (δ′ − δ′′)m. Note, that we also proved that T ≤
`m− `δ′m+ `δ′′m.

Let us consider now an arbitrary y ∈ Li unmapped at time t − 1 (1 ≤ t ≤ T ), and let kδ′′n′ =
kT2 ≤ t < (k + 1)T2 for some 0 ≤ k ≤ T/T2. There are two cases to discuss:

Case 1. If y was not among the at most (δ′′′)2 exceptional vertices of Step 2.4, then (using
(3) and (10))

|Ht,y| ≥
(
d

2

)D

(δ′)2m−K,

where K is the number of vertices covered in Vi during the period between kT2 and (k+ 1)T2.
Recall that the sequence S is balanced; hence, K ≤ 2δ′′m. Indeed, at time kT2 we had that
|HkT2,y| ≥ (δ′)2m. These facts imply that in this case the statement of the lemma holds.

Case 2. If y was among the at most (δ′′′)2 exceptional vertices of Step 2.4, then (similarly to
Case 1)

|Ht,y| ≥
(
d

2

)D

(δ′)2m−K ′,

where K ′ is the number of vertices covered in Vi during the period between (k − 1)T2 and
(k+ 1)T2. This time K ′ can be as large as (4δ′′ + (δ′′′)2)m, because at time (k− 1)T2 at most
(δ′′′)2m exceptional vertices were placed forward. Again, by observing that at time (k − 1)T2

we had that |H(k−1)T2,y| ≥ (δ′)2m, the proof of the lemma is finished.

2

Now it is easy to show that the Selection Algorithm will not halt with failure with high probability
during Phase 2. We have just proved that the host sets can never get too small. In Lemma 6 we
proved that Phase 1 succeeds for t, whenever it succeeds for all t′ with t′ < t ≤ T0 and the host set
is large enough. It is easy to see that exactly the same proof works for Phase 2 and up to time T :

Lemma 15 If Phase 2 succeeds for t− 1 with T0 < t ≤ T − 1 and |Ht−1,xt
| > δ′′m, then it succeeds

for t.

Proof The proof of Lemma 6 works without any change. 2

Putting these together, we have that Phase 2 of the algorithm succeeds with high probability.
To prove that Phase 3 of the algorithm succeeds, we will show that for all 1 ≤ i ≤ ` there is

a system of distinct representatives between the unmapped buffer vertices of Li and the remaining
vertices of Vi. Let Qi ⊂ Li denote the set of unmapped vertices assigned to the cluster Vi, and
Ri ⊂ Vi be the remaining vertices of the cluster Vi, with Mi = |Qi| = |Ri|. Then by Lemma 14 for
every x ∈ Qi we will have HT,x > δ′′′Mi. Furthermore, for all subsets S ⊂ Qi, if |S| ≥ δ′′′Mi then
by repeated applications of Lemma 12∣∣∣∣∣⋃

x∈S

HT,x

∣∣∣∣∣ ≥ (1− δ′′′)Mi.
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Finally, for any v ∈ Ri, since v cannot be exceptional in G, by Step 2.3 there are at least δ′′′Mi

host sets HT,x containing v. This implies that for the subsets S ⊂ Qi with |S| ≥ (1 − δ′′′Mi) we
have ∣∣∣∣∣⋃

x∈S

HT,x

∣∣∣∣∣ = Mi,

which in turn implies the existence of the system of distinct representatives. This finishes the proof
of Lemma 5.

Remark 3 From the proof it is clear, that we can decrease d: for a given D we can embed H in G
with a smaller density d if we decrease ε appropriately. Another observation is, that if the densities
of the regular pairs are not the same but ”close” to each other in terms of ε, then the embedding can
be finished as well.

4 Assigning H to clusters of Gr

The process of embedding will go as follows: First, we apply the degree form of the Regularity
Lemma for G with parameters ε and d. We assume, that the densities of the regular pairs are as
close to each other, as it is needed (recall the remark at the end of Section 3). As a result we
will have a partitioning of the vertex set into the clusters V0, V1, V2, . . . , V`. We will assume, that
|V0| ≥ εn

2 – if V0 is too small, than we discard εm
2 vertices from every non-exceptional cluster of G′,

and put them into V0.
Our goal is to find a partitioning of the vertices of H into ` + 1 clusters L0, L1, . . . L` so as to

satisfy conditions C1-C9 of the modified Blow-up Lemma. We will find this partitioning by applying
a randomized algorithm.

Let us denote the color classes ofH by A and B, and suppose that ∆A ≥ ∆B , hence, ∆ = ∆B ≥ 2.
It is intuitively clear, that if |E(H)| is small, then it is easier to find an embedding of H in G. Still,
it is easier to formulate the embedding algorithm, if the number of edges is not too small, say,
|E(H)| ≥ n

2∆ .
Notice, that if H has no isolated vertices, then E(H) is large enough. By adding extra edges if

necessary, we will achieve that H has no isolated vertices: if {x1, x2, . . . , xs} is the set of isolated
vertices of H, we do the following. If s is even, we will add s/2 new edges to H which are determined
by an arbitry matching between the xis. If s is odd, connect x1 to an arbitrarily chosen vertex in
A, and then find the matching on {x2, . . . , xs} as above. Observe that this new graph is bipartite,
and it has such a bicoloration that the maximum degree of one color class is at most ∆ – this class
is called B–, and the maximum degree of the other class, A increased by at most one.

We will perform another operation: If B has a vertex with degree less than ∆ we will add some
extra edges so as to achive that every vertex in B will have ∆ neighbors in A. Clearly, doing the
above carefully no vertex of A will have degree larger than ∆A + 2∆B |B|/|A|. We will call the
resulting new graph H. Obviously, embedding it proves the embeddability of the original graph as
well.

We randomly distribute the vertices of A among the non-exceptional clusters. Then we are going
to assign the vertices of B to non-exceptional clusters consistently and evenly. That is, if y ∈ B has
the neighbors {x1, x2, . . . , x∆}, and the xis are assigned to the clusters Vj1 , . . . , Vj∆ , then y will be
assigned to a cluster Vs which is connected to Vj1 , . . . , Vj∆ by edges of Gr. Besides, we require that
the number of assigned vertices of A and vertices of B to all non-exceptional clusters are |A|

` ± o(n)
and |B|

` ±o(n), respectively. The assignment of the vertices of B will be done by the help of matching.
Still, there is no vertex of H assigned to V0 (and hence all non-exceptional clusters are over-

saturated). For dealing with this problem we first discard some appropriately chosen vertices of B
(the surplus) from each non-exceptional cluster, these will form L0, and the vertices of H assigned
to Vs give the set Ls for 1 ≤ s ≤ `.
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This may not be the final partitioning of H – for satisfying C7 we may have to interchange
some vertices of L0 with vertices which are assigned to non-exceptional clusters of Gr. When all
the requirements of C1–C9 will be satisfied, the actual embedding can be done by the help of the
modified Blow-up lemma.

4.1 Assigning A

We start by assigning the vertices of A to the non-exceptional clusters of Gr. For every vertex x ∈ A
choose a non-exceptional cluster randomly and independently. It is easy to see that this procedure
will guarantee an almost even distribution of the vertices of A among the clusters of Gr. Let Ai,
1 ≤ i ≤ ` denote the set of vertices assigned to Vi after distributing the vertices of A using the above
procedure.

Lemma 16 With high probability |Ai| = |A|
` ± o(n).

Proof Applying Chebyshev’s inequality gives the proof of the lemma. 2

Let B′ ⊂ B be a maximal set in which any two vertices are of distance at least 4 from each other.
(Note that |B′|/|B| depends on ∆, but not on ε or d.) Let us cut B′ randomly into three parts of
equal size: B′ = B′

1∪B′
2∪B′

3. In Section 4.3.2., a subset of the vertices in B′
1 will be assigned to L0,

i.e., they will be mapped to the exceptional set V0 of G. We will choose the buffer vertices from B′
3

for satisfying condition C5 of the Blow-up Lemma in Section 4.3.3. The vertices of B′
2 will be used

in Section 4.3.4 to satisfy conditions C8 and C9 concerning the exceptional sets Ei in the Blow-up
lemma.

Now we will argue that an appropriate distribution of A among the clusters of Gr will facilitate
an even assignment of the vertices of B′

1, B
′
2, B

′
3 and B−B′ to the clusters of Gr. Let Vi be a cluster

in Gr, we define the associated list Q(Vi) as {y : y ∈ B, x ∈ Ai, (x, y) ∈ E(H)}, which is the subset of
vertices of B with a neighbor assigned to the cluster Vi. Let Vs1 , Vs2 , . . . , Vs∆ be any ∆ clusters of Gr.
We define the random variables R,R1, R2 and R3: Ri(Vs1 , Vs2 , . . . , Vs∆) = |B′

i ∩Q(Vs1) ∩Q(Vs2) ∩
. . . ∩Q(Vs∆)| for i = 1, 2, 3, and R(Vs1 , Vs2 , . . . , Vs∆) = |(B −B′) ∩Q(Vs1) ∩Q(Vs2) ∩ . . . ∩Q(Vs∆)|.

We are going to measure the evenness of the distribution of A in terms of these random variables.

Lemma 17 For any ∆ clusters Vs1 , Vs2 , . . . , Vs∆ of Gr the following inequalities hold:

Pr
[
|R(Vs1 , Vs2 , . . . , Vs∆)− E[R(Vs1 , Vs2 , . . . , Vs∆)]| = Ω(n

4
5 )
]

= o(1),

and for i = 1, 2, 3

Pr
[
|Ri(Vs1 , Vs2 , . . . , Vs∆)− E[Ri(Vs1 , Vs2 , . . . , Vs∆)]| = Ω(n

4
5 )
]

= o(1).

Proof Similar to the proof of Lemma 16, again we omit the details. 2

We need the following simple corollary of the above lemmas.

Corollary 18 For any two ∆-tuples of clusters Vs1 , Vs2 , . . . , Vs∆ and Vt1 , Vt2 , . . . , Vt∆ in Gr the
following inequalities hold:

Pr
[
|R(Vs1 , Vs2 , . . . , Vs∆)−R(Vt1 , Vt2 , . . . , Vt∆)| = Ω(n

4
5 )
]

= o(1),

and for i = 1, 2, 3

Pr
[
|Ri(Vs1 , Vs2 , . . . , Vs∆)−Ri(Vt1 , Vt2 , . . . , Vt∆)| = Ω(n

4
5 )
]

= o(1).
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Let N be a positive integer, depending only on ε. For all r (1 ≤ r ≤ `) we randomly divide
B′

1 ∩Q(Vr) into N subsets of equal size resulting Q1(Vr), Q2(Vr), . . . , QN (Vr). We define a new set
of random variables: Rp

1(Vs1 , Vs2 , . . . , Vs∆) = |Qp(Vs1)∩Qp(Vs2)∩ . . .∩Qp(Vs∆)|, for all 1 ≤ p ≤ N .
Then the following is also implied by Lemma 16 and 17:

Corollary 19 For any two ∆-tuples of clusters Vs1 , Vs2 , . . . , Vs∆ and Vt1 , Vt2 , . . . , Vt∆ in Gr and two
integers p and q (1 ≤ p, q ≤ N) the following inequalities hold:

Pr
[
|Rp

1(Vs1 , Vs2 , . . . , Vs∆)−Rq
1(Vt1 , Vt2 , . . . , Vt∆)| = Ω(n

4
5 )
]

= o(1).

4.2 Assigning the vertices of B

In this section we will present a consistent assignment of the vertices in B to the clusters of Gr. As
we will see, such assignments can be formulated as special matching problems. (In order to finish
the embedding of H in G, some vertices of H should be assigned to the exceptional cluster V0. This
will be carried out in another section.)

We repeat the definitions of [8]. For a bipartite graph J = (V, T,E(J)) where |T | = q|V | for
some positive integer q, M ⊂ E(J) is a proportional matching if every v ∈ V is adjacent to exactly
q vertices in T and every u ∈ T is adjacent to exactly one v ∈ V in M . In order to show that J
contains a proportional matching we will check the König–Hall conditions, that is, for every subset
U of V , its neighborhood in T should satisfy |NJ(U, T )| ≥ q|U |. One can easily see this from the
construction of an auxiliary graph: substitute every v ∈ V with q instances v1, . . . , vq, and if (v, u)
(u ∈ T ) was an edge, then connect the vis to u for all 1 ≤ i ≤ q. This auxiliary graph has a perfect
matching if and only if J has a proportional matching.

Besides this kind of matching we are going to need another kind of matching about which we
demand that the “loads of the vertices” are distributed more evenly. We say that J allows a strong
proportional matching with respect to µ (0 < µ � 1) if there is a proportional matching in the
following bipartite graph J ′: Its color classes are V and T ′. Set ` = |V | and for every vertex u ∈ T ,
add `

µ copies, u1, . . . , u `
µ
, to T ′. If NJ(u) = {v1, . . . , vs} then we will have the following edges:

(ui, vi) for 1 ≤ i ≤ s, and (uj , vi) where 1 ≤ i ≤ s and s < j ≤ `
µ . In other words, the first s copies

of u have degree 1, while the others have the same degree, s.
Now we have the following conditions: for U ⊂ V we need |U |/|V | ≤ |NJ′(U)|/|T ′|. For proving

the existence of a strong proportional matching we will use that |NJ(U)|(1−µ)/|T | ≤ |NJ′(U)|/|T ′|
for U ⊂ V with |U | ≤ (1−µ)|V |. So, for such a set U we require that |NJ(U)|(1−µ) ≥ q|U | – these
are the strong König-Hall conditions. These conditions and additional ideas will help us proving the
existence of a strong proportional matching.

We will assign the vertices of B to clusters of Gr by the help of the above two kind of matchings.
Recall from Corollary 4 that Gr is a graph on ` vertices with δ(Gr) ≥ (1− 1

∆+1 )(1− θ)(1− β)`,
where 0 < θ = 2ε+d� 1 and 0 < β < 1 are two constants, where β will be chosen to be sufficiently
small. We will denote δ(Gr)/` by δ, so

δ ≥ ∆
∆ + 1

(1− θ)(1− β).

Let us construct a bipartite graph P = (V (Gr), T, E(P )). One color class is V (Gr) (the non-
exceptional clusters), the other, T is the set of all possible ∆–tuples composed of different clusters
of Gr. It is easy to see, that |T | =

(
`
∆

)
and q =

(
`
∆

)
/`. There is an edge between Vj ∈ V (Gr) and a

∆–tuple t = (Vs1 , Vs2 , . . . , Vs∆) iff (Vj , Vsi) ∈ E(Gr) for every 1 ≤ i ≤ ∆.
Let d� µ� 1, and denote (1− θ)(1−β)(1−µ) by (1− ν) (here µ is the constant for the strong

proportional matching). Observe, that 0 < ν � 1. This time |T ′| = |T |`/µ and |T ′|/|V | =
(

`
∆

)
/µ.

Having defined µ, we can construct the graph P ′ analogous to J ′ as well.
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The existence of a strong proportional matching in P ′ will be crucial in the proof of Lemma 23.
It ensures that if Gr had an edge between x and y, then (some copy of) this edge will be involved
in the strong proportional matching.

Lemma 20 P has a proportional matching and if ν is small enough, then P ′ has a strong propor-
tional matching with respect to µ.

For proving Lemma 20 we will need the following statement.

Lemma 21 For 0 ≤ i ≤ ∆− 2 if ν is small enough, then δ∆−i(1− µ) > (i+ 1)(1− δ).

Proof [Proof of Lemma 21]

Notice, that

δj(1− µ) ≥
(

∆
∆ + 1

)j

(1− θ)j(1− β)j(1− µ) >
(

∆
∆ + 1

)j

(1− ν)j .

First we are going to show, that ( ∆
∆+1 )∆−i(1− ν)∆ > i+1

∆+1 (1 + ν∆). We proceed by a backward
induction on i. We start with the case i = ∆− 2:(

∆
∆ + 1

)2

(1− ν)∆ >
∆− 1
∆ + 1

(1 + ν∆),

since by multiplying both sides by ∆+1
∆ if ν is small enough we get the true inequality

∆
∆ + 1

(1− ν)∆ >
∆− 1

∆
(1 + ν∆).

So now we may assume that ( ∆
∆+1 )∆−i(1 − ν)∆ > i+1

∆+1 (1 + ν∆). Decreasing i by 1 we have to
check the inequality below: (

∆
∆ + 1

)∆−i+1

(1− ν)∆ >
i

∆ + 1
(1 + ν∆).

Multiplying both sides by ∆+1
∆ we get the inequality(

∆
∆ + 1

)∆−i

(1− ν)∆ >
i

∆
(1 + ν∆).

Now since ( ∆
∆+1 )∆−i(1− ν)∆ > i+1

∆+1 (1+ ν∆), and the latter is larger than i
∆ (1+ ν∆) for i < ∆,

for proving the lemma it is enough to show that i+1
∆+1 (1 + ν∆) > (i+ 1)(1− δ).

Dividing by i+ 1 and multiplying by ∆ + 1 (and recalling that δ ≥ ∆
∆+1 (1− θ)(1− β)), we get

1 + ν∆ > ∆ + 1−∆(1− θ)(1− β) = 1 + ν̂∆,

where 1 − ν̂ = (1 − θ)(1 − β) > (1 − θ)(1 − β)(1 − µ) = (1 − ν), hence, ν > ν̂. From this the
lemma follows. 2

Remark 4 Assume that we have a simple graph on n vertices with minimum degree at least s−1
s n,

where s ≥ 2 is an integer. It is easy to see that any t vertices (for 1 ≤ t ≤ s) have at least s−t
s n

common neighbors. While this is a trivial observation, it will be very useful in the proof of Lemma 20.
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Let 0 < c < 1, γ is a positive real number and k be a fixed positive integer, then γ
(
cn
k

)
→

γck
(
n
k

)
+ o(

(
n
k

)
) if n → ∞. We introduce the following notation: if n is large enough, then we will

write [γck
(
n
k

)
]− instead of γ

(
cn
k

)
. This will allow us a somewhat shorter exposition of the proof of

Lemma 20.
Now we can start proving the lemma.
Proof [Proof of Lemma 20] We will check the strong König–Hall conditions.

• Let Vi ∈ V (Gr) be an arbitrary cluster. Then |NP (Vi)| ≥
(
δ`
∆

)
, and |NP ′(Vi)| ≥ (1 −

µ)
(
δ`
∆

)
|T ′|/|T | = [δ∆(1− µ)|T ′|]−, therefore it is larger than (1− δ)|T ′| by Lemma 21.

• Let Ui ⊂ V (Gr) be a set of size greater than i(1 − δ)` for some 1 ≤ i ≤ ∆ − 2. From the
minimum degree condition of Gr every i vertices will have a common neighbor in Ui. Thus
|NP (Ui)| ≥ [δ∆−i|T |]− and |NP ′(Ui)| ≥ [δ∆−i(1− µ)|T ′|]−, and by Lemma 21 the latter is at
least (i+ 1)(1− δ)|T ′|, therefore |NP ′(Ui)| > (i+ 1)(1− δ)|T ′|. Note that the above argument
applied for each i ≤ ∆− 2 means that the (strong) König–Hall conditions are satisfied for all
sets U of size at most (∆− 1)(1− δ)`.

• Assume that U ⊂ V (Gr) with |U | = (∆ − 1)(1 − δ)`. Then every ∆ − 1 vertices will have a
common neighbor in U by the minimum degree condition of Gr. Thus, |NP (U)| ≥ δ|T | and
|NP ′(U)| ≥ δ(1− µ)|T |.

• Assume that U ⊂ V (Gr) with |U | = δ(1− µ)`. Now we want to show, that |NP (U)|(1− µ) >
δ|T |, implying that |NP ′(U)| ≥ δ|T ′|. We will estimate the number of (∆ − 1)–tuples having
strictly more than 1

∆+1` neighbors in U . If it is not a negligible proportion, then we will see
that we are done, since such a (∆ − 1)-tuple with any other vertex gives a ∆-tuple, which is
connected to U by the minimum degree condition.

Denote Z the set of all possible (∆− 1)–tuples composed of different clusters of Gr. It is easy
to see that there are at least δ(1 − µ)`[δ∆−1

(
`

∆−1

)
]− edges going in between U and Z. We

divide Z into two parts, Z1 and Z2: in Z1 all the tuples have at most (1− δ)` neighbors in U ,
while the tuples in Z2 have more than (1− δ)` neighbors in U .

Denote |Z1|
|Z| by x and consider the following inequality:

(x(1− δ) + (1− x)δ(1− µ))`
(

`

∆− 1

)
≥ δ(1− µ)`

[
δ∆−1

(
`

∆− 1

)]−
.

On the right hand side of this inequality we have a lower bound on the number of edges between
U and Z, while the left is clearly an upper bound for that. We want to get a good estimation
for x, for this reason first we consider a simplified version of the inequality (with ξ instead of
x, and assuming that ν = 0):

ξ

∆ + 1
+ (1− ξ) ∆

∆ + 1
≥
(

∆
∆ + 1

)∆

.

From this it follows that

ξ ≤
∆

∆+1 − ( ∆
∆+1 )∆

∆−1
∆+1

.

19



For ∆ = 2 simple calculation gives that ξ ≤ 2/3. It is easy to see that if we increase ∆ the
upper bound for ξ will decrease, therefore, ξ ≤ 2/3 for every ∆ ≥ 2. Since our assumption was
that ν is sufficiently small, we get that |Z1|/|Z| = x ≤ 0.7 for every ∆ ≥ 2.

Call a ∆-tuple τ bad, if τ ∈ NP (U). Let us consider the following 0-1 matrix Mtx: its rows
are indexed by the elements of Z, the columns are indexed by the elements of V (Gr). The
(i, j)th entry of Mtx is 1 iff the union of the ith (∆ − 1)-tuple and the jth vertex is a bad
∆-tuple. Clearly, no row of Mtx contains more than (1− δ)` 1’s, and if a (∆− 1)-tuple is in
Z2, then every entry of the corresponding row is 0.

Therefore, we can give an upper bound on the total number of 1’s in Mtx:

0.7(1− δ)`
(

`

∆− 1

)
.

Observe, that if τ = {Vj1 , Vj2 , . . . , Vj∆} is a bad ∆-tuple, then every entry of Mtx of the form
({Vj1 , . . . , Vji−1 , Vji+1 , . . . , Vj∆}, Vji

) should have value 1. Hence,

0.7(1− δ) `
∆

(
`

∆− 1

)
≥ 0.7(1− δ)

(
`

∆

)
is an upper bound for the number of bad ∆-tuples.

This implies that |NP (U)|(1− µ) > δ|T |.

• Assume that U ⊂ V (Gr) with |U | > δ`. Now every ∆-tuple will have a neighbor in U , except
those having only one neighbor out of U . Observe, that this is enough for the existence of a
proportional matching in P : every ∆-tuple of |T | have at least δ` neighbors in V , therefore,
the König –Hall conditions for the proportional matching are satisfied.

• For proving the existence of a strong proportional matching in P ′ assume that U ⊂ V (Gr)
with |U | = (1 − ω)` (0 < ω < µ). Clearly, there are at most `

(
`
∆

)
such ∆-tuples in T ′, which

have degree one. Denote the set of these tuples by To, and let Tm = T ′ − To. We have, that
|Tm| ≥ (`/µ− `)

(
`
∆

)
.

Previously we observed, that every ∆-tuple of T has a neighbor in U . This implies, that every
tuple of Tm has a neighbor in U . Besides, every v ∈ U has a neighbor in To. Hence,

|NP ′(U)|/|T ′| ≥
|Tm|+ |To| − ω`

(
`
∆

)
|T ′|

= 1−
ω`
(

`
∆

)
`
(

`
∆

)
/µ

= 1− ωµ > 1− ω.

We get that |NP ′(U)|/|T ′| ≥ |U |/|V | for every nonempty U ⊂ V , thus, P allows a strong
proportional matching with respect to µ. 2

We are ready to present the procedure for assigning the vertices of B to clusters of Gr. We start
with the vertices in B − B′

1 (recall that B′
1 was defined after Lemma 16). First let Li = Ai for

1 ≤ i ≤ ` (Li is the set of vertices to be mapped to Vi by the help of Lemma 5). Assume that M
denotes the (ordinary) proportional matching provided by Lemma 20 with respect to the graph P ,
andM′ is the strong proportional matching.

For a cluster Vt, let {Vi1 , . . . , Vi∆} be one of the ∆-tuples matched to it in M. We will assign
the vertices of (B −B′

1) ∩Q(Vi1) ∩ . . . ∩Q(Vi∆) to the cluster Vt by adding them to the set Lt. We
will repeat this for all the ∆–tuples which are matched to Vt, and carry this out for every 1 ≤ t ≤ `.

By the virtue of Lemma 18 and its corollaries, |(B − B′
1) ∩Q(Vi1) ∩ . . . ∩Q(Vi∆)| is almost the

same for all choices of ∆-tuples, which in turn implies that the set Lt for all Vt ∈ V (Gr) will have
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almost the same size after the distribution of B − B′
1. Also, note that the construction of P and

the structure of the proportional matchingM implies that if x ∈ B −B′
1 is assigned to Lt then the

vertices in NH(x) are assigned to neighboring clusters of Vt.
The vertices of B′

1 will be mapped by the help of the strong proportional matching M′, in the
same way as we did for B − B′

1. The only difference is that since every ∆-tuple Vi1 , . . . , Vi∆ has `
µ

copies, the elements of Q(Vi1)∩ . . .∩Q(Vi∆) will be distributed randomly among these copies. Now
assume that for some cluster Vs the rth copy of the ∆-tuple {Vi1 , Vi2 , . . . , Vi∆} is matched to it in
M′. We will assign the vertices of B′

1 ∩ Qr(Vi1) ∩ Qr(Vi1) ∩ . . . ∩ Qr(Vi∆) to Vs by adding them
to the set Ls. As above, adjacent vertices in H are assigned to adjacent clusters in Gr. It is also
easy to see that the strong proportional matching assigns the vertices of B′

1 evenly - we refer to
Corollary 19.

Observe that there are other cases to consider. Since the vertices of A were distributed randomly
among the clusters of Gr, some vertices in B can have all their neighbors assigned to ∆− 1 (or less)
clusters. In fact, as one can easily calculate we will have about(

1− `(`− 1) . . . (`−∆ + 1)
`∆

)
|B|

vertices of B with the above property. Hence, there are other cases of matchings to consider.
When the clusters in V (Gr) has to be matched to (∆ − i)-tuples for 1 ≤ i ≤ ∆ − 1, then we
construct the corresponding bipartite graph Pi, and then look for the proportional matching. Here
Pi = (V (Gr), Ti, E(Pi)). One color class is V (Gr), the other, Ti is the set of all possible (∆ − i)–
tuples composed of different clusters of Gr. It is easy to see, that |Ti| =

(
`

∆−i

)
. There is an edge

between Vj ∈ V (Gr) and a (∆ − i)–tuple τ = (Vs1 , Vs2 , . . . , Vs∆−i
) iff (Vj , Vsi

) ∈ E(Gr) for every
1 ≤ i ≤ ∆− i.

It is easy to see that if there is a proportional matching in P , then we can find the proportional
matching in Pi for 1 ≤ i ≤ ∆− 1: one can check that the proof of Lemma 20 works for these graphs
as well. Then mapping such vertices in B can be done in a similar way as we did for those which
have their neghbors assigned to ∆ different clusters.

4.3 Finishing the assignment

Now we have to make sure that all conditions of Lemma 5 are satisfied. Obviously, some of them are
violated at this moment. E.g. C1, since so far we have not mapped any vertex to V0 (L0 is empty).
We will take care of these problems in separate subsections.

4.3.1 Bad vertices in G

The edges in Gr are ε-regular pairs of G′, hence, in a cluster of such a pair some vertices may have
just a small number of neighbors in the other cluster (this number can be even zero). To avoid
problems which can be caused by this, we are going to discard some vertices from the clusters and
put them into V0. With this procedure below we prepare for satisfying C8 and C9.

Let M be the matching provided by Lemma 20. For a cluster Vi ∈ V (Gr) let Ti denote the set
of ∆-tuples matched to Vi inM for every 1 ≤ i ≤ ` . We say that v ∈ V (G)−V0 has η-small degree
to a ∆-tuple, if v has less than (d− η)m neighbors in one of the clusters composing that tuple. Let
us call a vertex v ∈ Vi η-bad, if v has η-small degree to at least half of the ∆-tuples in Ti.

Lemma 22 By removing 2∆εm vertices from every non-exceptional cluster of G′ we can achieve
that no (3∆ε)-bad vertices will remain in them.

Proof First we show, that no cluster can contain more than 2∆εm vertices which are ε-bad. For an
arbitrary cluster Vi ∈ V (Gr) which is matched to the ∆-tuples of Ti, let {v1, . . . , vs} denote the set
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of ε-bad vertices of Vi. If s > 2∆εm then there should be a tuple τ ∈ Ti to which more than ∆εm
vertices of Vi have ε-small degree. Thus for one of the clusters of this tuple there are more than εm
vertices with degree less than (d− ε)m, which contradicts the ε-regularity condition.

Applying the above, by removing 2∆εm vertices from every non-exceptional cluster (including
all the ε-bad vertices), we can guarantee that all remaining vertices of the non-exceptional clusters
have big degrees –at least (d − 3∆ε)m– to at least half of the matched tuples in M, and overall
2∆εn bad vertices are added to V0. 2

Remark 5 After finishing the above procedure the edges of Gr represent (3∆ε)-regular pairs with
density d− 4∆2ε2, and |V0| ≤ 3∆εn.

4.3.2 Selecting the vertices of L0

At this point every cluster has a surplus, that is, more vertices of H are assigned to them than the
clustersize m: m = n−|V0|

` < n
` ± o(n).

We will form L0 by removing a subset of vertices of B′
1 from the Li sets, achieving that |Li| = m

for 1 ≤ i ≤ `. This subset is chosen randomly for every 1 ≤ i ≤ `, this random choice guarantees,
that |NH(L0) ∩ Li| ≤ 2∆|V0|/` with very high probability (we refer to Chernoff’s bound), that is,
condition C4 is satisfied.

Let ϕ : L0 → V0 be any bijective mapping. We need to ensure that the assignment of L0 to V0 is
consistent with E(H); that is, for any x ∈ L0, with (x, y1), (x, y2), . . . , (x, y∆) ∈ E(H), if v = ϕ(x),
y1 ∈ Li1 , y2 ∈ Li2 , . . . , y∆ ∈ Li∆ then degG(v, Vi1), degG(v, Vi2), . . . , degG(v, Vi∆) are all at least c1m
(condition C7).

If this condition does not hold for a pair (x, v), a switching will be performed. In the switching
operation we first randomly and uniformly pick a cluster Vj among those, which are adjacent to
Vi1 , Vi2 , . . . , Vi∆ in Gr. Then locate a vertex x′ in Lj such that if (x′, y′1), (x

′, y′2), . . . , (x
′, y′∆) ∈ E(H)

with y′1 ∈ Li′1
, y′2 ∈ Li′2

, . . . , y′∆ ∈ Li′∆
then degG(v, Vi′1

), degG(v, Vi′2
), . . . , degG(v, Vi′∆

) are all at least
c1m. We will switch the roles of x and x′, that is, we let Lj = Lj + x − x′, L0 = L0 − x + x′ and
ϕ(x′) = v. We will call x′ the switched vertex.

We will see that such x′ can always be found among those vertices assigned by the strong
proportional matching. Moreover, even after performing all the necessary switching operations we
will still have condition C4 satisfied.

Lemma 23 For every x ∈ L0 there exists an x′ as required above.

Proof It is easy to see that any v ∈ V0 has degree less than c1m to at most 1−δ
1−c1

` clusters. Let Vj be
as above. We will estimate the number of clusters Sj,v ⊂ V (Gr) where Sj,v contains those clusters
of NGr

(Vj) in which v has at least c1m neighbors. Clearly, |Sj,v| ≥ (δ − 1−δ
1−c1

)`.
Recall, that δ ≥ (1− θ)(1− β)∆/(∆ + 1). Let c1 = 1/∆4 and assume that β ≤ 1/(2∆4). Simple

calculation shows that by this choice of c1 and β we will have the following bound for the size of
Sj,v:

|Sj,v| ≥
(

1− 1
∆

)
∆− 1
∆ + 1

`.

This inequality implies that the number of ∆-tuples spanned by the clusters of Sj,v is
(|Sj,v|

∆

)
≥(

`
∆

)
/40 for ∆ ≥ 2.
Recall, that P ′ is a bipartite graph with color classes V (Gr) and T ′. Since T ′ contains `

µ copies
of every ∆-tuple, |T ′| = `

µ

(
`
∆

)
. Denote by ω the number of vertices which are allocated by a copy of

a ∆-tuple τ ∈ T ′ in the strong proportional matching, i.e., ω = |B′
1|/( `

µ

(
`
∆

)
). If the clusters of some

τ ∈ T ′ are adjacent to Vj in Gr then (Vj , τ) ∈ M′ (M′ is the strong proportional matching with
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respect to µ). This implies that the number of vertices of H assigned to Vj (byM′) by ∆-tuples of
Sj,v is at least µ

40` |B
′
1| (even if we consider only ∆-tuples of degree one).

When looking for x′ we first randomly pick a ∆-tuple τ = (Vi′1
, Vi′2

, . . . , Vi′∆
) such that all clusters

of τ are in Sj,v and (τ, Vj) ∈ M′. Then randomly pick a vertex x′ ∈ B′
1 ∩ Lj among those which

were assigned to Lj by M′ such that the neighbors of x′ are assigned to the clusters of τ . Clearly,
x′ can be switched by x: by the above choice of x′ it is mapped to a vertex v which has at least c1m
neighbors in all the clusters of τ .

Since the common neighborhood of Vi1 , Vi2 , . . . , Vi∆ contains at least (1−δ)` clusters, the number
of vertices assigned to them by the strong proportional matching is at least (1 − δ)` µ

40` |B
′
1| even

with the restriction that we consider only those ∆-tuples for which the corresponding vertex of V0

has degree at least c1m. This is by far larger than |V0| (since |B| is large enough and ε� µ). Hence
we can find an appropriate x′ for any x easily. 2

For the satisfaction of condition C4 it should be pointed out that we perform this switching
procedure in such a way that the neighbors of the switched x′s are scattered almost evenly in a
constant proportion of the ∆-tuples, and so in a constant proportion of the clusters:

Lemma 24 For every 1 ≤ s ≤ ` we will have |Ls ∩ NH(L0)| ≤ 22∆3(∆ + 1)2dm with very high
probability after performing all the necessary switchings.

Proof Observe that for a given x ∈ L0 we randomly choose the cluster Vj out of a set of size at least
Λ, where Λ = (1− δ)∆` ≥ ( 1

∆+1 −
∆2

∆+1 (β + θ) + ∆
∆+1βθ)`. Therefore, with very high probability we

choose Vj at most 2|V0|/Λ times through the whole process of switching (Chernoff’s bound).
If Vs ∈ Sj,v then the probability that Vs will be among the clusters of the randomly chosen τ is

Pr(Vs ∈ τ) =

(|Sj,v|−1
∆−1

)(|Sj,v|
∆

) =
∆
|Sj,v|

≤ ∆2(∆ + 1)
(∆− 1)2`

.

Hence, for a given j the switched vertices from Lj will have at most 2|V0|
Λ

2∆2(∆+1)
(∆−1)2` neighbors in Ls

with very high probability (again, apply Chernoff’s bound). Summing this up for all j (j = 1, 2, . . . , `)
we get that

|Ls ∩NH(L0)| ≤
2|V0|
`

+
5|V0|∆2(∆ + 1)2

(∆− 1)2`
.

Here 2|V0|
` is the bound before starting the switching, and we substituted the lower bound for Λ.

This is at most 7|V0|
` ∆2(∆ + 1)2 ≤ 22∆3(∆ + 1)2εm, because |V0| ≤ 3∆εn. Since ε� d, we get the

required bound. 2

4.3.3 Selecting the buffer vertices: condition C5

In this section we will determine Bf ⊂ B′
3, the set of buffer vertices so as to satisfy condition C5 of

the Blow-up lemma. First we discard those vertices from B′
3 which do not have their neighbors in ∆

different Li-sets. Recall, that we estimated the number of such vertices after the proof of Lemma 20.
For a ∆-tuple (Vi1 , Vi2 , . . . , Vi∆) consider the set B′

3 ∩Q(Vi1) ∩Q(Vi2) ∩ . . . ∩Q(Vi∆). We pick

ξ = δ′m
`(
`
∆

)
vertices from this set and place them to Bf . We perform the above procedure for every ∆-tuple.
Recall, that the degree of a cluster of V (Gr) is

(
`
∆

)
/` in the proportional matching M. Hence,

Bfi = Bf ∩ Li will have size δ′m. Moreover,

|NH(Bf) ∩ Li| = ∆δ′m

for every 1 ≤ i ≤ `, since each cluster of V (Gr) appears in ∆
(

`
∆

)
/` different ∆-tuples. This shows

that by the above choice of the buffer vertices we can satisfy condition C5 of the Blow-up Lemma.
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4.3.4 Satisfying conditions C8 and C9

In the rest of the proof we are going to show that we will be able to find vertices from H according
to C8 and C9 so as to cover the exceptional vertices of G in Step 2.3 of the embedding algorithm.
First we need a simple lemma on special subgraphs of bipartite graphs.

Lemma 25 Let U = U(S, T,E(S, T )) be a bipartite graph with r = |T | = 2|S|. Furthermore,
assume, that deg(s) ≥ r

2 for every s ∈ S. Then we can find r
2 independent edges in U .

Proof Trivial. 2

In what follows ε̃ will denote 3∆ε. We find the Fi sets of conditions C8 and C9:

Lemma 26 Given arbitrary sets Ei ⊂ Vi such that |Ei| ≤ ε′′m we can find the sets Fi ⊂ Li ∩ B′
2

and bijective mappings ψi : Fi → Ei for every 1 ≤ i ≤ ` such that the following holds:
(1) if (x, y) ∈ E(H) with x = ψ−1

i (v) and y ∈ Lj then degG(v, Vj) ≥ (d− ε̃)m,
(2) for F = ∪Fi we will have |NH(F ) ∩ Li| ≤ 2∆ε′′m.

Proof As before, Ti denotes the set of ∆-tuples matched to Vi in M for every 1 ≤ i ≤ `. Recall
that we removed the 3∆ε-bad vertices from every cluster (Lemma 22) and put them into V0. Hence,
by the definition of ”bad” all the vertices of a non-exceptional cluster Vi have degree more than
(d− ε̃)m to at least half of the tuples in Ti.

Denoting the exceptional vertices of G in the ith cluster (1 ≤ i ≤ `) by Ei, we are looking for
the sets Fi ⊂ (Li ∩ B′

2) and a mapping ψi : Fi → Ei so as to satisfy the conditions of the lemma.
We will present a simple algorithm for finding F1, F2, . . . , F` and ψ1, ψ2, . . . , ψ`.

First we mark the vertices of B′
2. As before, let us denote ( `

∆)
` by q, for simplicity we assume

that q is an even integer. Observe, that |Ti| = q for every 1 ≤ i ≤ `. Since we can handle every Fi

and ψi in the same way for every 1 ≤ i ≤ `, we give the details only for the case of F1 and ψ1.
We begin with a partitioning of E1: E1 = E1,1 ∪ E1,2 ∪ . . . E1,t−1 ∪ E1,t, here t = d2|E1|/qe.

These sets are disjoint, and we require that |E1,1| = |E1,2| = . . . = |E1,t−1| = q/2, and for the last
set, |E1,t| ≤ q/2.

We define a set of auxiliary bipartite graphs {Uj}tj=1 as follows. Uj = Uj(E1,j , T1, E(E1,j , T1)),
and (v, τ) ∈ E(E1,j , T1), if v has degree at least (d − ε̃)m to every cluster of τ . By Lemma 25, we
can find q/2 independent edges in every Uj .

Now we discuss the algorithm for finding F1 and ψ1. Let E1,1 = {v1, v2, . . . , vq/2}, and assume,
that {(v1, τ1), (v2, τ2), . . . , (vq/2, τq/2)} is the set of the q/2 independent edges of U1. Consider
τ1 = (Vs1 , Vs2 , . . . , Vs∆). We will pick an arbitrary marked vertex x ∈ L1 ∩ B′

2 ∩Q(Vs1) ∩Q(Vs2) ∩
. . . ∩Q(Vs∆). Put x in F1, and let ψ1(x) = v1. Unmark x, and continue this process with the other
vertices of E1,1. By the time we have finished with the vertices of E1,1, we have found q/2 vertices
of F1, and the neighbors of these vertices of F1 can be found in q/2 different ∆-tuples of T1. Then
we go on this way with the vertices of the rest of E1, and finally achieve, that if τ is a ∆-tuple in
T1, then we use τ at most d2|E1|/qe times when determining F1.

We repeat this algorithm with the vertices of E2, . . . , E` as well. At the end we have found
F = ∪`

i=1Fi such that (1) and (2) of the lemma are satisfied.
We will prove, that by the help of this process F is such, that |NH(F ) ∩ Li| ≤ 2∆ε′′m for every

1 ≤ i ≤ `. Pick an arbitrary non-exceptional cluster Vj . Overall it is contained in q∆ (=
(

`−1
∆−1

)
)

different ∆-tuples. Set si = |{τ ∈ Ti and Vj ∈ τ}| for every 1 ≤ i ≤ `. Clearly,
∑
si =

(
`

∆−1

)
= q∆.

We calculate the number of neighbors of F which are assigned to Vj : this is at most

∑̀
i=1

si

⌈
2|Ei|
q

⌉
≤ q∆2ε′′m

q
= 2∆ε′′m.

Vj was arbitrary, therefore the above bound is valid for all non-exceptional clusters.
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Proof [Proof of Theorem 2] We start with an ε as small that even ε̃ � ε′ is true. Since by the
help of Lemmas 16, 17 and Corollaries 18, 19 we can distribute the vertices of A, and then by
Lemmas 20, 22, 23, 24 and 26 we can provide that all conditions of Lemma 5 are satisfied with high
probability, we can embed H in G, and thus Theorem 2 is proved. 2

5 Concluding remarks

The case ∆(H) = 1 of Conjecture 1 is easily seen to be tight. On the other hand, it is interesting
that there is a bipartite graph H with ∆ = 1 (recall, that ∆ is the minimum of the maximum
degrees of the two color classes) and ∆(H) > 1 which is harder to embed: A simple example shows
that for containing such a graph, δ(G) = n−1

2 is not sufficient. Let n = 2q be an even number,
and G = Kq,q. Let H be the collection of q − 2 independent edges, and a K1,3. Trivially, H 6⊂ G,
although, δ(G) = n

2 and ∆ = 1. Theorem 2 shows, that such examples exist only in case ∆ = 1.
Given an arbitrary fixed 0 < δ < 1 it is possible to come up with bipartite graphs which cannot

be embedded in a certain graph G with δ(G)
|V (G)| ≥ δ. We sketch a (standard probabilistic) proof of

this fact. Let H = H(A,B) be a random bipartite graph with |A| = |B| = m(= n/2), which is the
disjoint union of k randomly and independently chosen 1-factors, after leaving only one copy of the
parallel edges. Then ∆ = ∆(H) ≤ k. Let A′ ⊂ A and B′ ⊂ B with |A′| = am and |B′| = bm, then
the probability that H has no edge going in between A′ and B′ is at most (1− a)bmk.

Let r be an odd positive integer, such that r−1
r > δ, and G be the complete r-partite graph

on n vertices with equal color classes (for simplicity we assume, that n is divisible by r). Clearly,
δ(G) = r−1

r n. It is a routine exercise to show that whenever we want to embed H in G, there will
be at least one color class of G having at least m

r(r+1) vertices from both color classes of H, because
r is odd. Let a = b = 1

r(r+1) . Then if k is a large enough constant (it depends only on r), we will
have that (1 − a)bmk � 2−n. That is, with positive probability, there will be an edge between any
A′ ⊂ B and B′ ⊂ B, if |A′|, |B′| ≥ m

r(r+1) . Hence, H 6⊂ G.

We have made no attempt to determine the function β = β(∆). Simple but tedious calculation
shows that β = 1

∆5 is small enough to guarantee the existence of the matchings in Lemma 20, and
thus H can be embedded. We don’t think this is best possible, but it is clear, that β = β(∆)→ 0,
if ∆ → ∞: as we just proved above, δ(G) has to be a monotone increasing function of ∆ which
converges to 1, therefore, β cannot have a positive lower bound.

We presented a proof of the Bollobás–Eldridge conjecture for bipartite graphs of bounded degree.
We heavily used the fact that the graph to be embedded is bipartite. The conjecture for non-bipartite
graphs seems to be much harder, there are only partial results (see [1], [2], [7] and [8]).

Theorem 2 suggests that the chromatic number is an important parameter even if we embed
expander graphs. We propose the following conjecture: Let H and G be two simple graphs of order
n. If χ(H) ≤ ∆(H), then there exists β = β(χ(H),∆(H)) > 0 such that δ(G) ≥ ∆(H)

∆(H)+1 (1− β)n is
sufficiently large to guarantee H ⊂ G. We could prove this for χ(H), ∆(H) ≤ 4, but these proofs
are technically much more difficult than the present one for bipartite graphs.
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