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Abstract

We study the approximability of dense and sparse instances
of the following problems: the minimum 2-edge-connected
(2-EC) and 2-vertex-connected (2-VC) spanning subgraph,
metric TSP with distances 1 and 2 (TSP(1,2)), maximum
path packing, and the longest path (cycle) problems. The
approximability of dense instances of these problems was left
open in Arora et al. [3]. We characterize the approximability
of all these problems by proving tight upper (approximation
algorithms) and lower bounds (inapproximability). We
prove that 2-EC, 2-VC and TSP(1,2) are Max SNP-hard even
on 3-regular graphs, and provide explicit hardness constants,
under P # NP. We also improve the approximation ratio
for 2-EC and 2-VC on graphs with maximum degree 3.
These are the first explicit hardness results on sparse and
dense graphs for these problems. We apply our results to
prove bounds on the integrality gaps of LP relaxations for
dense and sparse 2-EC and TSP(1,2) problems, related to
the famous metric TSP conjecture, due to Goemans [17].

1 Introduction

Recently, considerable efforts of researchers were put
into approximating optimization problems on special
instances. It turned out that even when one restricts
the input, most of the known problems still remain
NP-hard. Of particular interest are the problems on
dense and sparse instances, see recent surveys [22, 23]
for references. We study the following fundamental
combinatorial optimization problems.

2-EC: 2-edge-connected (or 2-EC) spanning subgraph
problem, where given a 2-EC graph, the goal is to find
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a 2-EC spanning subgraph with minimum number of
edges. A graph is 2-EC if for any pair of its vertices,
there are at least two edge-disjoint paths between them.
2-VC: 2-vertex-connected (2-VC) spanning subgraph
problem, where the definition is analogous to 2-EC, but
the paths are assumed to be internally vertex-disjoint.

TSP(1,2): The traveling salesman problem on a com-
plete graph with weight 1 or 2 on each edge. For an
instance of TSP(1,2) problem, the graph induced by all
weight 1 edges is called the input graph.

Longest path problem: Given a graph, find a simple
path with maximum number of edges.

Path packing problem: Given a graph, find a set of
vertex disjoint paths such that the number of edges in
all the paths is maximized. Single vertices are treated
as paths with zero edges.

We study the approximability of these problems
on dense and sparse graphs. Dense instances of the
above problems constitute a list of problems that were
left open from the approximability point of view, in
the paper of Arora et al. [3] (see also [13]). In this
paper, Arora et al. show a general technique that
provides polynomial time approximation schemes for
dense instances of many optimization problems. It
seems that one cannot use their methods to give better
approximation ratios to the above problems, mostly due
to a non-local nature of these problems. We resolve
the problem of approximability of dense versions of all
these problems by proving tight upper (approximation
algorithms!) and lower bounds (inapproximability).

Dual instances to dense give sparse graphs. Many
graph optimization problems are Max SNP-hard? al-
ready on very restricted sparse instances — graphs with
maximum degree bounded by a constant. Examples are
the vertex cover, maximum independent set and max-

TFor a minimization (maximization, resp.) problem, a polyno-

mial time algorithm is called an a-approzimation algorithm, if it
finds a solution of cost at most (at least, resp.) o times the cost of
an optimal solution. « is called an approzimation ratio (factor),
and the problem is said to be approzimable within o.

2Max SNP-hardness implies that the problem cannot be ap-
proximated in polynomial time within constant ratios that are
arbitrarily close to 1, unless P = NP.



imum cut problems on maximum degree 3 graphs, see
[23]. We give the first known explicit hardness factors
for the 2-EC, 2-VC and TSP(1,2) problems on maxi-
mum degree 3 graphs, and on 3-regular graphs.
Suppose we are given a graph G with n vertices,
and the minimum degree at least cn, ¢ € [0,1] is a fixed
constant. We call such a graph c-dense. The classical
theorem of Dirac [19] says that if ¢ > 1, then G has
a Hamilton cycle which can be found in polynomial
time (even in the NC class [8]). Observe, that the
Hamilton cycle constitutes an optimal solution to all of
the considered problems. That is why we assume ¢ < %
Previous results.
2-EC & 2-VC: This is the simplest, non-trivial version
of the connectivity problem and has been studied for
a long time, but tight approximation guarantees and
inapproximability results are not fully understood yet
[6, 16, 24, 32, 28, 12, 7]. For 2-EC, Khuller and Vishkin
[24] gave a %—approximation, improved by Cheriyan et
al. [6] to 1Z, and to % by Vempala and Vetta [32]. The
best known result, due to Krysta and Kumar [28], is
a (3 — 3)-approximation. For 2-VC, Khuller and
Vishkin [24] gave a %—approximation, improved to % by
Garg et al. [16], and to 3 by Vempala and Vetta [32].
Both 2-VC and 2-EC problems are NP-hard, even
on 3-regular planar graphs. Fernandes [12] proved Max
SNP-hardness on arbitrary graphs; Czumaj & Lingas [7]
show Max SNP-hardness on bounded degree 6 graphs.
These results do not give explicit hardness constants.>
TSP(1,2): For this version of the TSP, Karp has shown
NP-completeness in his seminal paper [21]. Papadim-
itriou and Yannakakis [30] prove Max SNP-hardness of
this problem, when the input graph has maximum de-
gree 6. They also show a %—approximation algorithm
for TSP(1,2). The first explicit hardness factor for
TSP(1,2) was 5381/5380, due to Engebretsen [10]. This
was improved to 743/742 by Engebretsen & Karpinski
[11]. Let us fix any ¢ € (0,1/2). In [13], de la Vega &
Karpinski show, that TSP(1,2) is Max SNP-hard, when
the input graph is c-dense (implicit in their work is a
parametrization of the hardness factor by c).
Longest path problem: Given a graph, let n be
the number of its vertices. Karger et al. [20] have
given a polynomial algorithm that finds a path of
length Q(logn) in a 1-tough graph, i.e. an Q(l"%)—
approximation (Hamiltonian graphs are also 1-tough).
Alon et al. [2] give a polynomial algorithm that for
any constant p > 0, finds a path of length plogn,

3In this paper, saying that a minimization problem is hard to

approzimate or inapprozrimable within a factor of f means that
there is no (f — €)-approximation algorithm for any e > 0, unless
P = NP. f is called a hardness factor (or constant). Similarly for
a maximization problem.

if there is such a path. Vishwanathan [34] has im-
proved this bound for Hamiltonian graphs, by showing
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hard, as it has no constant approximation for any con-
stant, unless P = NP, even for graphs with maximum
degree 4 [20]. Bazgan et al. [4] have proved the same
hardness result on 3-regular Hamiltonian graphs. The
same holds for the longest cycle problem.

For dense graphs, Karger et al. [20] gave a polyno-
mial algorithm that finds a path of length at least m/n
in a graph with n vertices and m edges. This is a 3-
approximation algorithm for the longest path problem
on c-dense graphs. F. de la Vega & Karpinski [13] prove,
that the problem is Max SNP-hard on c-dense instances,
for any fixed ¢ € (0,1/2).

Path packing problem: This problem finds many ap-
plications, see [33]. Vishwanathan [33] shows that from
the approximation view point, the problem is equivalent
to TSP(1,2). This, and the algorithm of Papadimitriou
and Yannakakis [30] imply a %-approximation algorithm
for the path packing problem (see [33] for details). The
path packing problem is also Max SNP-hard [33].

Our contributions.

We give a new, general and uniform technique that
provides approximation algorithms for dense instances
of all the problems above. Our technique provides
the first approximation algorithms for the mentioned
problems that are parametrized with the density c,
where the parametrization is tight. This means that in
each case the approximation ratio approaches 1 when
the density ¢ approaches %, which by Dirac’s result
is the threshold above which the problems become
polynomially solvable. Our algorithms and analyses
rely on deep results from graph theory, for instance
the Regularity Lemma of Szemerédi [31], the Blow-up
Lemma of Komlés, Sarkozy and Szemerédi [25], or a
generalization of Dirac’s Theorem due to Bollobas and
Brightwell [19]. The algorithms are very efficient, as
they can be implemented in parallel in the NC class
(details omitted). For NC implementations of the Blow-
up and Regularity lemmas, see [1, 26].

We prove, that our parametrized approximation al-
gorithms are close to best possible, by showing explicit
lower bounds (also parametrized by c) on the approx-
imation ratios, under the usual P # NP conjecture.
These lower bounds show that there is an explosion of
difficulty in approximating our problems when ¢ < %

We also prove the first explicit hardness ratios and
improve the approximation ratios for some of these
problems on graphs with maximum degree 3. The
precise list of our results appears below. Let the input
graph G = (V, E) have minimum degree > ¢|V|, where
c € [0,1] is any fixed constant, and 8 > 0 be any fixed,

)-approximation. The problem is very



arbitrarily small constant, and g9 = 1/742.
2-EC & 2-VC: We give a (2 — 2¢ + 8)-approximation
algorithm for 2-EC and 2-VC problems on G. This

improves on the -approximations in [32], and on (3 —

1;W)—aupproxima,tion in [28], for almost any ¢ > % We
prove that the problems are Max SNP-hard for any fixed
density ¢ € (0,1/2), and an explicit hardness factor
is 1+ (3 — c)eo. If ¢ tends to %, the algorithms are
essentially 1-approximation, and the approximation and
hardness factors are arbitrarily close to each other. This
is also true for the other dense results. 2-EC and 2-VC
are proved NP-hard to approximate within: 1573/1572
on maximum degree 3 graphs, and 2581/2580 on 3-
regular graphs. We give a (3 + €)-approximation for 2-
EC and 2-VC on maximum degree 3 graphs. A (2 +¢)-
approximation for 2-EC and 2-VC on such graphs was
previously known [28]. To our knowledge, no results
were known for dense 2-EC and 2-VC problems, except
the ones on arbitrary graphs, cited above. Max SNP-
hardness on bounded degree 3 and on dense graphs was
not known before. Our results significantly improve on
Czumaj & Lingas [7], since they do not give explicit
hardness ratios, and their bound on degree is 6.
TSP(1,2): We give a (2 — 2¢ + [)-approximation,
improving on the %—approximation of Papadimitriou
and Yannakakis [30] when ¢ > 2. Our algorithm can
be viewed as a generalization of the mentioned Dirac’s
theorem. We give a hardness factor of 1 + (1 — 2¢)eo,
for any fixed ¢ € (0,1/2). If the input graph has
maximum degree 3, we show a hardness of 787/786, and
of 1291/1290 for 3-regular input graphs. This improves
on the results of Engebretsen and Karpinski [11], since
they need graphs of maximum degree 4.

Path packing problem: We show a (2¢ — (3)-
approximation, and a hardness factor of 1—(1—2c)eg on
c-dense graphs. This improves on the %—approximation,
due to Papadimitriou and Yannakakis [30] and Vish-
wanathan [33], when ¢ > 5.
Longest path problem: We show a (% — f8)-
approximation algorithm, and a hardness factor of
1 — (1 — 2¢)eg, for c-dense instances. This improves
significantly on $-approximation algorithm of Karger et
al. [20], for all values of c.

The Linear Programming (LP) relaxation for 2-
EC problem and the subtour LP relaxation for TSP
are closely related [6]. The integrality gap* of the LP
relaxation for 2-EC is not well understood. The best

known upper bound is 17 [6]. Tt has been conjectured
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TThe definitions of both LP relaxations for the 2-EC and TSP
appear in Section 5. The integrality gap of an LP relaxation
':f; ttil":((})), where opting(I) is the value of an
optimum integral solution on a problem instance I, and opti, (1)
is the value of an optimum LP solution on instance I.

is defined as sup;

that the integrality gaps of both LPs are %. We give

stronger bounds than % for some versions of these
conjectures for dense and sparse 2-EC and TSP(1,2).
Related work. The Regularity Lemma was used in a
context of approximating dense problems by Frieze and
Kannan [15] to speed-up some algorithms.
Organization of paper. Sec. 2: preliminaries; Sec. 3:
the technique and algorithms for dense problems; Sec. 4:
algorithms for bounded degree 2-EC & 2-VC; Sec. 5:
applications to integrality gaps; Sec. 6: hardness results.
Missing material is deferred to the full paper version.

2 Preliminaries

Given an (undirected) graph G = (V,E), we write
V(G) =V, E(G) = E, and v(G) = |V|, e(G) = |E|.
The elements of V are vertices, and elements of E are
edges. A closed path of length [ is a cycle, denoted Cj,
and a simple path means that the vertices are distinct.
A u—v path is a path with end vertices u,v. A vertex v
is a cut vertez if its removal disconnects the graph. If v
is a cut vertex of a graph G, and some two vertices z,y
are in distinct components of G \ v, then v separates z
and y. For a given non-empty set S C V, (5, .9) denotes
an edge cut, i.e. the set of the edges in E with exactly
one end vertex in S (S = V '\ S). An edge is a bridge
if its removal disconnects the graph. degg(v) denotes
the degree of vertex v in G. Let 6(G) be the minimum
degree of G. The density of graph G is 6(G)/|V(G)|. If
density > ¢, then G is c-dense.

An ear decomposition £ of a graph G is a parti-
tion of the edge set into open or closed paths, £ =
{Qo,Q1,--. ,Qr}, such that Qg is the trivial path with
one vertex, and each Q; (1 = 1,... ,k) is a path that has
both end vertices in V;_1 = V(Qo) U--- UV (Q;_1) but
has no internal vertex in V;_;. A (closed or open) ear
means one of the (closed or open) paths Qo, Q1, ... , @k
in £. In the ear decomposition £ = {Qo, Q1,-.. ,Q},
we say that ear Q; is earlier than ear Q;, and @Q; is
later than @;, when ¢ < j. Given a positive integer
£, L-ear is an ear with £ edges. An ear decomposition
{Qo0,Q1,-..,Qr}is openif all ears @2, ... , Qf are open.
If a graph is 2-vertex(edge)-connected, then we say it is
2-VC(ECQC). opt(Q) or opt denotes the value of an optimal
solution on G to the considered problem.

ProposITION 2.1. ([19]) A graph is 2-EC iff it has an
ear decomposition. Also, a graph is 2-VC iff it has an
open ear decomposition. An (open) ear decomposition
can be found in polynomial time.

3 Approximation Technique on Dense Graphs

We use tools from the Extremal Graph Theory to give
a technique for approximating dense problems. We



first give an overview based on [27] (see also Diestel [9]).

Regularity and Blow-up Lemmas. Let G = (V, E)
be a graph, and deg(z,Y) be the number of neighbors of
vertex € Vinset Y CV. Let X, Y CV,XNY =0,
then e(X,Y) denotes the number of edges between X
and Y. Let G = (4, B, E) denote a bipartite graph
with color classes A and B, and the set of edges E.
For disjoint X,Y we define a density d(X,Y) = %
The density of a bipartite graph G = (A4, B, E) is
d(G) = d(A,B) = %. Given two graphs G and
H, we say that G has a subgraph isomorphic to H, or
H is embeddable into G if and only if there is a one-to-
one map (injection) ¢ : V(H) — V(QG) s.t. for each
(z,9), (z,y) € E(H) implies (o(z), ¢(y)) € E(G).
Regularity Condition. Let € > 0. Given a graph
G = (V,E) and two disjoint sets A,B C V, we say
that the pair (A4, B) is e-regular if for every X C A and
Y C B such that |X| > €|A| and |Y| > €|B|, we have
|[d(X,Y) —d(A,B)| <e.

THEOREM 3.1. (REGULARITY LEMMA, [31, 27])

For every € > 0, there is an M = M(e) such that
if G = (V,E) is any graph and d € [0,1] is any real
number, then there is a partition of the vertex set V into
k + 1 clusters Vo, Vi,..., Vi, and there is a subgraph
G' of G with the following properties: (i) k < M,
[Vo| < e|V|; (ii) all clusters V;, 1 > 1, are of the same
size m < [e|V|]; (iii) degg'(v) > degg(v) — (d + €)|V]
for all v € V; (iv) e(G'(V;)) = 0 for all i > 1; (V)
all pairs G'(V;,V;) (1 <4 < j < k) are e-regular with
density either O or greater than d.

LEMMA 3.1. (FAacT 1.3 IN [27]) Let (A,B) be an e-
reqular pair with density d. Then for any Y C B, with
|Y| > ¢|B|, we have |[{z € A:deg(z,Y) < (d—¢)|Y [} <
e|A4|.

LeEMMA 3.2. (FacT 1.5 IN [27]) Let (A,B) be an &-
regular pair with density d, and, for some v > €, let
AT C A, |A| > 1A, B' C B, |B'| > 4|B|. Then
(A',B") is an &'-regular pair with €' = max(e/~,2¢),
and |d(A',B') — d| < e.

Super-Regularity Condition. Given a graph G = (V, E)
and A,B C V (AN B = (), we say that pair (4, B)
is (g, 6)-super-regular if for every X C A and Y C B
s.t. | X| > €|4|, |Y| > €|B|, we have d(X,Y) > 4, and
deg(a) > 6|B| for all a € A, deg(b) > §|A| for all b € B.

THEOREM 3.2. (BLOW-UP LEMMA, [25]) Given a
graph R with v(R) = r and positive parameters §, A,
there exists an € > 0 such that the following holds. Let
n1,N2,... ,Ny be arbitrary positive integers, and let

us replace the vertices of R with pairwise disjoint sets
Vi,Va,..., V. of sizes ni,n2,... ,n, (blowing-up). We
construct two graphs on the same vertez-set V.= U;V;.
The first graph R is obtained by replacing each edge
(vi,vj) of R with the complete bipartite graph between
the corresponding vertex-sets V; and V. The graph G is
constructed by replacing each edge (v;,v;) of R with an
(€, 0)-super-regular pair between V; and V;. If a graph
H with maximum degree bounded by A is embeddable
into R, then it is also embeddable into G.

The Generic Algorithm. Let G = (V, E) be a given
graph, |V| = n, with minimum degree at least cn, where
c=3+aanda€(0,3) (elsec>1). Letusfix3 >0
to be very small and much smaller than ¢, i.e. § < a.
Step 1. We apply the Regularity Lemma to G with
parameters € and d, s.t. € < %, € € dand 2ffj < B.
Note: when ¢ and d are arbitrarily small, then so is
B. Also, d + ¢ < (. Based on the output from the
Regularity Lemma, we define a reduced graph R as
follows. The vertices of R are the clusters V1, Va,...,V;
(we skip the cluster V;y here), and we put an edge
between V; and V; in R if (V;,V;) is e-regular with
density > d. From now on we mostly deal with graph R.
In particular, we will treat cluster V5 in the end, and will
also discard some vertices from clusters V;, 1 > 1, and
place them into Vy. € was a fixed constant, k < M (e),
k = |V(R)|, so k is also a fixed constant.

LEMMA 3.3. The degree of each vertex in R is at least
(3 +a-p)k.

Proof. Let us fix a vertex v; € V(R). Let V; be the
cluster corresponding to vertex v;. Assume towards a
contradiction that degr(v;) < (3 + a — B)k. Consider
all the clusters V; # V; such that d(V;,V;) < d. The
number of such clusters V; is k — degr(v;) — 1, and
for each such cluster V; there are less than dm? edges
between V; and V; (by d(V;,V;) < d). The overall
number of edges running between V; and such k —
degr(vi)—1 clusters Vj is less than dm?(k—degr(v;)—1).
Therefore, there is a vertex in cluster V;, say u € V;,
such that deg(u, W) < dm(k — degr(v;) — 1), where W
is the union of k — deggr(v;) — 1 clusters V. Finally, the
degree of u in G can be bounded as

degg(u) < deg(u, W) + degr(v;)m + deg(u, V;)+

deg(u, Vo) < dm(k — degr(v;) — 1) + degr(v;)m+
m +en = degr(vi)m(1 — d) + dmk + m(1 — d)+

1
+en < <§+a—5) (1 —d)mk + dmk + 2en <

((A3+a-p)(1—-d)+d+2)n<(1/34+a)n.
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Figure 1: An illustration for proofs of Lemma 3.4 & 3.5.

The last estimate follows by using our assumption, that
z’l%f < B. And thus we have derived a contradiction,
which proves the claim. a

Step 2. We call a path on 3 vertices a v-shape, and a
cycle of length 3 a triangle. Compute a decomposition
of R into a maximal collection of edges, triangles and v-
shapes, s.t. these subgraphs are pairwise vertex-disjoint
in R. Since R has constant size, we can use brute force.

LEMMA 3.4. Fach vertex of R is included in this de-
composition.

Proof. Otherwise, there is a vertex u € V(R) not in-
cluded in any edge, triangle or v-shapes of the decom-
position. Since the degree of u is, by Lemma 3.3, greater
than %k, u cannot be just adjacent to all center vertices,
like vertex d in Fig. 1, of all v-shapes. Thus, if u is adja-
cent to an end vertex — vertex c in Fig. 1 — of a v-shape,
then we could produce two new edges (u,c) and (d,e)
from u and the v-shape. A contradiction. If u is adja-
cent to a vertex of a triangle — vertex b in Fig. 1 — then
we can produce two new edges from u and that trian-
gle, which again gives a contradiction. If u is adjacent
to a vertex, say a of an edge in Fig. 1, then we obtain a
contradiction by producing a new v-shape. O

Step 3. Let us fix an edge (V;,V;) of the decomposition
of R. Recall, that pair (V;,V;) was e-regular with
density > d. We first make the pair (V;,V;) super-
regular. We know: |V;| = |V;| = m. By Lemma
3.1, the number of vertices v € V; with small degree
deg(v,V;) < (d—¢)|V;| is at most €|V;| = em. We delete
these em low degree vertices from V; and put them
into V5. Similarly, we delete em low degree vertices
from V; and put them into V5. After that, for any
v € V;, deg(v,V;) > (d — 2¢)|V;|, and for any w € V},
deg(w, V;) > (d—2¢)|V;|. By Lemma 3.2, withy = 1—¢,
we get &/ = 2¢ (since £ < 1). And by that lemma, the
new pair (V;,V;) is 2e-regular, with density > d — ¢.
Now easily, pair (V;,V;) is (2e,d — 3¢)-super-regular,
and |V = [Vj].

We can now apply the Blow-up Lemma to pair
(Vi,V;), with 6 = d— 3¢, A = 2 (i.e. we are looking for a

Hamilton cycle), r = 2, ny = na = |V;| = |V;|. By that
lemma, there is a Hamilton cycle of length 2n; spanning
(Vi,V;) (this cycle can be found efficiently [26]).

We sketch that the same can be done for any v-
shape (V;,V;,V;) of the decomposition. First, we make
the pairs (V;,V;) and (Vj, Vi) super-regular exactly in
the same way as before. Then, the new clusters V;
and V; have sizes greater than the size of the new
Vi. To make the sizes equal, we use Lemma 3.2 once
to pair (V;,V;) and once to pair (V},V;), by deleting
arbitrary em vertices in V; and arbitrary em vertices
in V;. Then, we use the Blow-up Lemma and find:
(i). Two Hamilton cycles: one in (V;,V;) and the other
in (V;,V) (for 2-VC and 2-EC problems); or (ii). A
set of |V;| vertex disjoint paths, each going between
three vertices — one in V;, one in Vj, and one in V; (for
maximum path packing and TSP(1,2) problems). In
this case we delete from each cluster 2em vertices and
place them into V4.

Similar arguments can be applied to any triangle
(V;, Vi, Vi) of our decomposition, to find one Hamilton
cycle for the subgraph induced by the vertex-set V; U
V;UV;. In this case we need to delete up to 4em vertices
from each cluster, and place them into Vj.

Finally, in the worst case for each cluster V;, we
have deleted at most 4em vertices from V; and placed
them into V4. Thus, the size of V; increased by at most
4emk < 4en, and so the new Vj has size at most 5en.

We use the computed structures in the decomposi-
tion subgraphs to built the final solution to a problem
in mind. The rest of the algorithm is problem-specific.
We have to specify how to put the structures together,
and how to deal with cluster V5. The lower/upper
bound used to relate the size of the solution to the
optimum, will always be n — the number of vertices.
We upper/lower bound the sizes of the computed struc-
tures in the decomposition by charging the vertices in
the clusters, using them as a “local” lower /upper bound.

Generic Analysis. The next lemma is crucial.

LEMMA 3.5. If %pzk is the number of all edges in the
decomposition of R (p2 € [0,1]), then ps > 6(a — ).

Proof. Recall, that k is the number of clusters (vertices)
of the reduced graph R. Let p; - k¥ be the number of
vertices (clusters) in V' (R) in all the triangles of the
decomposition, and let p; - k£ be the number of vertices
in V(R) in all the edges of the decomposition, for some
p1,p2 € [0,1]. Then (1 — p; — ps) - k is the number of
vertices in all the v-shapes. If there is no v-shape, then
by Lemma 3.6, the local approximation factor is one.
Assume thus that there is at least one v-shape, say P,
in the decomposition. Consider an end vertex, say c,



of P (see Fig. 1). There is no edge in E(R) between
¢ and any triangle, since otherwise we could replace
that triangle and the v-shape P by three new edges in
the decomposition (this is impossible by the maximality
of our decomposition). Now, if ¢ is adjacent to some
edge of the decomposition, then it cannot be adjacent
simultaneously to its two end vertices. Otherwise, we
could replace that edge and the v-shape P by a new
triangle and a new edge in the decomposition (this
is again impossible by the maximality). Finally, we
observe that if c is adjacent to an end vertex of any other
v-shape, then we could replace the two v-shapes by three
new edges, which contradicts the maximality. Thus,
the maximum possible degree of c is 22k + (l_péi_pz)k,
and since R has minimum degree at least (% +a -

B)k by Lemma 3.3, we obtain: E2k + (l_péi_pz)k >
(1/3 4+ a — B) k, which gives p; > 6(ac — ). O

Application to 2-Connectivity. We run Steps 1,2
and 3 of the generic algorithm. In this way, we connect
each edge and each triangle in the decomposition by
one Hamilton cycle, and each v-shape by two Hamilton
cycles. Thus, charging the edges used in the Hamilton
cycles to the vertices of the original graph (as a “local”
lower bound of 2-VC), the “local” approximation factor
for each edge or triangle is one (Hamilton cycle has the
number of edges equal to the number of vertices in these
subgraphs), and for each v-shape it is 3 (Hamilton cycle

3
has 4|V;| edges, and we have 3|V;| vertices).

LEMMA 3.6. The worst case local ratio for 2-connecting
within any edge or triangle in the decomposition is one,
and the ratio for 2-connecting within any v-shape is %.
Step 4. So far we have 2-vertex-connected each sub-
graph of the decomposition. Let us contract each such
subgraph into a single super-vertex, and delete all re-
sulting self-loops. Consider now a graph, say G, with
vertices being the union of the new super-vertices and
the vertices in V5. This graph is clearly 2-EC, and it
has at most &+ 5en vertices. Compute an ear decompo-
sition of G, and discard all 1-ears from it. The resulting
graph is a spanning 2-EC subgraph of G. Tt is easy to
check that the ear decomposition has at most 2(k+5en)
edges. To make the graph 2-VC, it clearly suffices to add
one additional edge for each block. Since the number of
blocks is at most k + ben, the overall additive error is
at most 3(k + 5en) = 15en + 3k.

LEMMA 3.7. The overall additive error, i.e. the number
of edges added to 2-connect all the structures of the
decomposition and the vertices of cluster Vy together,
is at most 15en + 3k.

Finally, by Lemma 3.6 and 3.7, the size of the
output solution can be upper-bounded by: 1 - %k -3
(m—4em) +1-2k-2-(m —em)+ § - 1222 . 3.
(m — 2em) + 15en + 3k < p1km + p2km + % -(1—p1 —
p2)km + 15en + 3k — emk.

Assume that 3k < emk. Then, since mk < n, the
size of the solution is at most: pin + pen + % -(1—p1 —
p2)n + 15en = (5 — 21322 4 15¢) n. This, by Lemma
3.5, and by the fact that e < d+¢ < 3, and n <
opt, is upper-bounded by: (3 —2(a—p8)+ 15e)n <
(3 — 20+ 178) opt. By choosing 3/17 instead of 3, we
can get a bound of (3 — 2a + S)opt.

Assume now that 3k > emk. Then m < 3/¢, and
since |Vp| < 5en, we must have that the number of the
rest of the vertices inside clusters Vi,...,V} is at least
(1 —5e)n. But mk > |Vi|+ ...+ [Vi| > (1 — 5e)n.
This, by m < 3/e, gives n < E(13_k56) < ;f{(gg). Thus,
the input graph has a fixed size, and we can solve the 2-
connectivity problem on it exactly by enumeration. The
polynomial running time of the overall algorithm follows
basically by the algorithmic versions of the Regularity
and Blow-up lemmas [1, 26]. Finally, we have proved
the following theorem (the implementation is omitted).

THEOREM 3.3. Let G = (V,E) be a given 2-EC (or
2-VC) graph, with |V| = n, and degree of each vertex
being at least (% + a)n, where o € [0, %] is any fized
constant. Let 8 > 0 be any fized constant. Then there is
a polynomial time (% —2a+ f)-approzimation algorithm
for the unweighted 2-EC (and 2-VC) problem on G. The

algorithm can be implemented in the NC class.

Remark. If density is smaller than % (a < 0), then we
can use known %—approximation algorithms.

Applications to path packing and TSP.

THEOREM 3.4. Let G = (V, E) be a given graph, with
|V| = n, and degree of each vertex at least (% + a)n,
where a € [0,%] is any fived constant. Let 3 > 0
be any fixed constant. Then there is a deterministic
polynomial time (% + 2a — B)-approzimation algorithm
for the mazimum path packing problem on G.

THEOREM 3.5. Let G = (V,E) be a given complete
graph, with |V| = n, with weights 1 or 2 on its edges.
Let H be a subgraph of G induced by all the edges of
weight 1. Assume that the minimum degree of H is at
least (3 + a)n, where a € [0,%] is any fived constant.
Then G defines a dense instance of the TSP(1,2), and
there is a deterministic polynomial time (% —2a+ 0)-
approzimation algorithm for the TSP(1,2) defined by G
for any fized B > 0.



Remark. If a > t and V(H) = V, H has a Hamilton
cycle, which can be found in polynomial time (Dirac’s
theorem). In this regard, Theorem 3.5 is a generaliza-
tion of Dirac’s theorem.

Application to longest path problem. To apply
here the technique, we need the following result due to
Bollobés and Brightwell.

ProprosITION 3.1. (THM. 2.14, PAGE 27 IN [19])

Let p € N be positive and G be a simple gmph with
n vertices and of minimum degree at least -*'5, where
n > 3. Then G contains a simple cycle of length > %

THEOREM 3.6. Let G = (V, E) be a given graph, with
|[V| = n, and degree of each vertex at least cn, where
c € [0,%] is any fizred constant. Let B > 0 be any fized
constant. Then there is a deterministic polynomial time
(1% — B)-approximation algorithm for the longest path
problem on G. More exactly, the algorithm produces a
path of length at least (< — B)n.

Remark. We can obtain a similar result for the dense
version of the longest cycle problem.

4 2-EC & 2-VC on Bounded Degree 3 Graphs

It is easy to see that in a graph with maximum degree
3, any ear decomposition is open. Thus 2-EC and 2-VC
problems are here equivalent.

Local Optimization Heuristics. Let II be a min-
imization problem on G = (V,E), s.t. we want to
find a subgraph of G feasible w.r.t. II, with minimum
number of edges. Given j € N, the j-opt heuristic
is the algorithm which given any feasible solution
H C G to II, repeats, until possible, the j-opt exchange
operation: if there are sets Eg C E\ E(H), E; C E(H)
with |Eg| = j, |E1| > j, and (H \ E1) U Ey is feasible
w.r.t. II, then set H < (H \ E;) U Ey.

The Algorithm. Let G = (V,E) be a given 2-EC
graph, with |V| = n. W.lo.g. we can assume that
G is 2-VC. Otherwise we can solve the 2-EC problem
separately on each 2-VC component.

The 1st step of the algorithm finds an ear decompo-
sition H of G with minimum number ¢ of even ears, us-
ing the algorithm of Frank [14, 6] (delete all 1-ears, since
they are redundant). In the 2nd step, the algorithm
performs all possible 1-opt exchanges on H w.r.t. 2-EC.
The resulting ear decomposition, say H’, is the output.

LEMMA 4.1. ([6]) n + ¢ — 1 is a lower bound on the
optimum 2-EC solution in G. An ear decomposition
with ¢ even ears can be computed in O(|V |- |E|) time.

Analysis. For the purpose of our analysis, we analyse
a slightly different algorithm that produces a solution
of a size lower bounded by the size of H' — the size of
the original solution. Let a j-opt exchange that does
not increase the number of even ears in H be called
a parity-preserving j-opt exchange. More precisely, a
parity-preserving j-opt exchange is a j-opt exchange
which given H, produces a new feasible graph, say H,
such that H has an ear decomposition with no more
than ¢ even ears.

The modified algorithm has the same first step as
the previous one, producing the ear decomposition H.
In the second step, the algorithm uses only parity-
preserving l-opt exchanges w.r.t. 2-EC, producing the
final solution, say H". It is clear that the size of H'
is at most the size of H"”. (We can just perform the
second step of the original algorithm skipping all the
1-opt exchanges that are not parity-preserving.)

Let p; be the number of internal vertices in all /-
ears of H". Then, p;/(¢ — 1) is the number of ¢-ears.
Let us fix a positive integer k < 7. Then:

2k . 2k
1 2k +1
() BE <3 o <n—2pz).
1=2 =2

The first summation in the right-hand-side of (1) is
the number of all edges in f-ears for £ = 2,3,... ,2k.
Note, n — Efiz p; is the number of the internal vertices
in all l-ears, for £ > 2k. We can rewrite (1) as follows.

(2)
|EH")| < (2k+1 +z ( i %)pl)

2k—1 i 2k+1
(52 (- 42 ).

Since in the modified algorithm we only use parity-
preserving exchanges, the bound ¢ on the number of

. . 2k pi
even ears still applies. Thus, we have: n + > ;") 24 —
2i

1<n+ ¢ —1, which gives
2k+1

3) it (ne 3y ) <

Ztl(n + ¢ — 1) + 2.

2h41 o 2k41 1
1

LEMMA 4.2. For any i > 2, 3 — 5~ < 5=~

The first term in the brackets in (2) can be upper
bounded by 25t opt + 2551 Bounding the second term
is harder. leen any ear S in an ear decomposition &,
we say that an internal vertex in S is free if its degree in
£ is exactly two. To prove the next lemma we heavily
use the properties of a locally optimal solution.



LEMMA 4.3. Each odd ear in the ear decomposition H"
has at least 2 free internal vertices.
Assumption (x). Ja > 0: E% ! (ﬁpz) <n
If assumption (*) holds, then we have.

2k—1

2 (3 2k+1

4 22
W 21650

=3
2ti

1—1 " a

ap; <2 §_2k+1 n
2 2k

LEMMA 4.4. Fori >3, (3 — 2&tL

By Lemma 4.4, and (4), we can upper bound the
second term in the brackets in (2) by 2(3 — 2kt1yy,

2k
Since n < opt, and usmg (3), we bound our solution

from (2) by: |E(H")] (2k+1 + 2 (2 - 2ktL)) opt
+2641 - and so |E(H")| < (1414 22)opt + 251,

We can plug n/2 in k, to finally get

n+1

1 a-—2
(5) |E(H") < (1 + -+ a—) opt +
a an

LEMMA 4.5. If the input graph is of mazimum degree
3, then assumption (x) holds with a = 4

Proof. Note that p;/( — 1) is the number of all i-ears.
For each odd ear, we assign to that ear its 2 free internal
vertices (they exist by Lemma 4.3) and its 2 end vertices.
Since the input graph has maximum degree 3, no vertex
is assigned simultaneously to two different ears. O

Using Lemma 4.5, and the fact that in such a graph
opt < %n, we obtain: |E(H")| < (% —+ %) opt + "T'H <
Sopt + 3 + 2L < 2opt + 2. The last estimate holds
if n > 4. Now, if 2/opt > ¢, where € > 0 is a fixed
constant, since n < opt < 2/e, the input graph is of
constant size. The problem can be solved exactly by
enumeration. Otherwise, when n > 4 and 2/opt < €, we
get a (2 + €)-approximation. Our analysis is tight with
respect to the lower bound we use. This follows from the
work of Cheriyan et al. [6], who show an infinite family
of maximum degree 3 graphs, where the ratio of the size
of optimum 2-EC and 2-VC subgraph to n + ¢ — 1, is
asymptotically % Therefore, we obtain the following
theorem.

THEOREM 4.1. The local search is a (2 + ¢)-
approzimation algorithm for the 2-EC problem on
mazimum degree 3 graphs (for any ¢ > 0). The
approzimation ratio is asymptotically tight with respect
to the lower bound.

5 Related Conjectures and Integrality Gaps

This section describes applications of our results in the
polyhedral combinatorics. Consider the standard cut
LP relaxation for the unweighted 2-EC problem.

min Y ecE Te
(6) st Pecss)Te 22 VSCV,S#0
Ze >0 Vee E

6(S) denotes the set of all edges with exactly one
end vertex in S. The optimum value of the LP is
a lower bound on the optimal integral solution to 2-
EC problem. If we add to this LP the constraints
2ees(qo}) Te = 2,Yv € V, then the new LP is the
famous subtour relaxation of the TSP. It was proved that
the optimal solution to LP (6) is equal to the optimum
of the subtour relaxation, if one assumes metric costs on
the edges [29].5 The famous metric 3 TSP conjecture
due to Goemans [17] is as follows.
Conjecture 1. The integrality gap of the subtour
relaxation of TSP with metric edge costs is at most %.
A related conjecture, see Carr and Ravi [5], reads.
Conjecture 2. The integrality gap of the LP (6) of 2-EC
problem with metric edge costs is at most %.
Conjecture 1 implies the second one. Both are as
now unsettled. Carr and Ravi [5] give a proof of a special
case of Conjecture 2, where they restrict the LP (6) to
half-integral solutions, i.e. with all z. € {0, %, 1}.

Fact 5.1. (CHERIYAN et al. [6]) If Conjecture 2 (and
thus also Conjecture 1) holds, then the integrality gap of
LP (6) for unweighted 2-EC problem is at most 4.

The considerations in [6] and Fact 5.1 allow us to
formulate the following.

Conjecture 3. The integrality gap of LP (6) for the
unweighted 2-EC problem is at most %.

Conjecture 3 is implicit in Cheriyan et al. [6], and
they prove it with % replaced by iZ. Let LP be the
optimum value of LP (6). Obviously n < LP, and n
is the lower bound we used to obtain our algorithms
for dense problems. By the parsimonious property, the
optimum value of the LP (6) is equal to the optimum
value of the LP relaxation of TSP(1,2) (weights 1 and
2 define a metric). This, and our previous results give:

THEOREM 5.1. Let G has the minimum degree at least
(% +a)n, where a € [0, %] is a fized constant. Let 3 >0
be any fized constant. Then the integrality gap of: (i).
the LP relazation for the unweighted 2-EC problem on
such graphs G; and (ii). the subtour LP relazation of

5A generalization of this property is a so-called parsimonious

property [18].



the TSP(1,2) where G is the graph induced by weight
one edges, is at most % —2a+ . The integrality gap of
the LP relazation for the unweighted 2-EC on maximum
degree 3 graphs is at most % + €, for any fized € > 0.

Thus, our results prove stronger (density-
parametrized) versions of Conjectures 1 and 3,
and of Conjecture 3 on maximum degree 3 graphs.
On the other hand, the worst known lower bound on
the integrality gap of LP for unweighted 2-EC: (i)
on maximum degree 3 graphs is &, (ii) on -3-dense
graphs is 15 (Petersen graph).

6 Hardness of Approximation
Hardness of Dense TSP, 2-EC & 2-VC.

LEMMA 6.1. Assume, that TSP(1,2) is NP-hard to ap-
prozimate within (1 + €9), for a fized 9 > 0. Fiz any
dyp s.t. 0 < dy < %, and let § be s.t. dy = 12;5. Let G
with v(G) = n be an instance of TSP(1,2), where the
input graph has minimum degree don. If we know that
its minimum cost TSP tour is either of cost n or at least
(14&¢0)n, it is NP-hard to decide which of the two cases
holds. The claim holds for eg = 1/742.

The following simple lemma can easily be deduced
from the proof of Lemma 5.1 in [7].

LEMMA 6.2. ([7]) Let G = (V,E) be a graph with n
vertices, and with weights 1 or 2 on its edges. Let H
be the subgraph of G induced by all edges of weight 1,
and assume that H is a spanning 2-VC subgraph of G.
Let moreover T be a spanning tree of H, and T having |
vertices of degree one. Then, we can find in polynomial
time a TSP tour in G of cost at most n + 1 — 1.

Using Lemmas 6.1 and 6.2 we can prove:

THEOREM 6.1. Let G = (V, E) be a 2-VC graph, and
do be s.t. 0 < dy < 1/2. Then the unweighted 2-
VC problem is Max SNP-hard on instances G with
density > dy. Moreover, if the TSP(1,2) is NP-hard to
approzimate within a factor of (1 + &¢), then it is NP-
hard to approximate the unweighted 2-VC problem on
do-dense instances to within (1 + £3%), where do = 15°.
The claim holds for eq = 1/742.

Proof. Assume, that we are given an instance of the
dense TSP(1,2) problem on G (v(G) = n), where the
subgraph, say Gi, of G induced by edges of weight
one has minimum degree don. Let the minimum cost
TSP tour, say T*, on G be either of cost n or at
least (1 4+ €9d)n. We show that if the unweighted 2-
VC problem could be approximated to within (1 + %),

then we could decide in polynomial time which of the
two cases holds.

If G is not 2-VC, then the minimum cost TSP tour
T* on G has cost cost(T*) > n, and so cost(T*) >
(1 + €0d)n. So assume now that G; is 2-VC. Notice,
that this also means that G1 is a spanning subgraph
of G. Let H; be any 2-VC spanning subgraph of Gy,
and let T be a spanning tree of Hq, having [ vertices of
degree one. Since each vertex in H; has degree at least
two, we have that |[E(H;)| > n—1+[4]. By Lemma 6.2,
we can find in polynomial time a TSP tour, say 7', in G,
such that cost(T") <n+l—1=2(n—-1+%)—(n—-1) <
2|E(H1)|—n+ 1.

Let H; be a minimum size 2-VC spanning subgraph
of Gy. If cost(T*) = n, then of course |[E(Hy)| =n. If
cost(T*) > (1 + £9d)n, then by the above argument,
we obtain that 2|E(H:)| —n+ 1 > (1 + &d)n, and
so |E(Hy)| > (1 + %°)n — 1. Thus, if there is a
polynomial time (1 + gg—‘s)—approximamtion algorithm for
the unweighted 2-VC problem (with just a bit smaller
constant than £g), then it can decide if cost(T*) = n or
cost(T*) > (14¢€96)n, which is NP-hard by Lemma 6.1.
The best known hardness constant g¢ is 1/742 [11]. O

Remark. The hardness result in Theorem 6.1 can be
modified to hold for the dense 2-EC problem.

Hardness of Dense Path Problems. As corollaries
to the methods used in the previous section and using
[13] one can also show:

THEOREM 6.2. Let us fizx any do such that 0 < dy <
%, and let § be such that dy = 12;6. The longest
path problem and the path packing problem on dy-dense
graphs are both NP-hard to approrimate within (1—eod),
where g9 = 1/742.

Hardness of Sparse TSP, 2-EC & 2-VC. We show
here a similar result to this in Lemma 6.1.

LEMMA 6.3. Assume, we are given an instance of
TSP(1,2) on a graph G, s.t. subgraph of G (v(G) = n)
induced by weight-1 edges has mazimum degree 3. As-
sume, that we know that its minimum cost TSP tour
is either of cost n or at least (1 + €g)n, for some fized
€o > 0. Then there exists such a constant g9 > 0, for
which it is NP-hard to decide which of the two cases
holds. The claim holds foreq = 1/786. If G is 3-regular,
then the claim holds for g = 1/1290.

THEOREM 6.3. Let G = (V,E) be a 2-VC (or 2-EC)
graph, with mazimum degree 3. Then the unweighted 2-
VC (and 2-EC) problem is Max SNP-hard on instances
G. Moreover, it is NP-hard to approximate the un-
weighted 2-VC (2-EC) problem on such graphs G within
1573/1572, and within 2581/2580 if G is 3-regular.
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