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ABSTRACT
We introduce a new graph decomposition method, which
works for relatively small or sparse graphs, and can be used
to substitute the Regularity lemma of Szemerédi in some
graph embedding problems.

Categories and Subject Descriptors
G.2.2 [Graph theory]: Extremal graph theory; Regularity;
Trees

General Terms
Graph theory
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1. INTRODUCTION
All graphs considered in this paper are simple. The Sze-
merédi Regularity lemma [10] is one of the most powerful
tools of graph1 theory. It is also used in many areas outside
graph theory, for example in number theory and algorithms.
Theorem 1 (Szemerédi). For every ε > 0 there exists a
n0 = n0(ε) > 0 such that if G is a simple graph on n ≥ n0

vertices then G admits an ε-regular equipartition of its vertex
set.

We will give a short introduction to the necessary notions
in the next section. Here we only mention that ε-regularity
is a notion of quasirandomness, and equipartition means,
roughly, the partition of the vast majority of the vertex set
of G into equal sized subsets so that all, but an ε proportion
of the pairs of subsets span an ε-regular bipartite subgraph
of G.
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1There are also hypergraph versions that play crucial role
in extremal hypergraph theory and combinatorial number
theory, see eg., [6] or [9].

The dependence of n0 on ε in Theorem 1 is determined by a
tower function T evaluated at 1/ε5, where T can be defined
inductively as follows: T (1) = 2, and for i > 1 we have

T (i) = 2T (i−1). Hence, the value of n0 makes the Regularity
lemma essentially impractical. It is also well-known that we
cannot hope for a much better bound, since as was proven by
Gowers [4], there are graphs for which the number of clusters
in the Regularity lemma is necessarily a tower function of
1/ε. Note also that the lemma is only meaningful for so
called dense graphs, that is, graphs that contain a constant
proportion of the possible edges.

In this paper we present a new graph decomposition method
for bipartite graphs, which can be applied for graphs of prac-
tical size and for graphs having vanishing density. While the
Regularity lemma is useful in many areas of mathematics
and computer science, our contribution may not be so widely
applicable. Still, it can be used for finding certain subgraphs
in a host graph. As an illustration, we will give the details
of a tree embedding algorithm that uses this graph decom-
position method.

Let us mention that Gowers in [5] presented a decomposi-
tion for bipartite graphs that is somewhat similar to the one
discussed here, and used it for a problem in number theory.
That decomposition has different parameters and a much
longer and harder proof. Due to the importance of the Reg-
ularity lemma, other researchers also found weakened ver-
sions (eg. [1], [3]) in which the dependence of ε and n0 is not
determined by a tower function. These are important devel-
opments with several applications, still, none of them seems
to be so widely applicable as the original one. One can find
more details in [2]. The so called absorption method [11] is
also a choice for avoiding the use of the Regularity lemma
in some embedding problems.

The outline of the paper is as follows. First, we provide the
necessary notions for the decomposition and then describe
the decomposition method in the next section. In the sub-
sequent section we provide an application, namely, we show
that we can find a large subtree in a graph on n vertices
having Ω(n2 log logn/logn) edges.

2. DEFINITIONS, MAIN RESULT
Given a graph G with vertex set V and edge set E, we
let degG(v) denote the degree of v ∈ V. If it is clear from
the context, the subscription may be omitted. The neigh-
borhood of v is denoted by N(v), so deg(v) = |N(v)|. The



minimum degree of G is denoted by δ(G). If S ⊂ V, then
deg(v;S) = |N(v)∩S|. The set of edges between two disjoint
sets S, T ⊂ V is denoted by E(S, T ), and we let e(S, T ) =
|E(S, T )|. We also let e(G) = |E(G)|.

LetG = G(A,B) be a bipartite graph. The density dG(A,B)
or, if G is clear from the context, d(A,B), is defined as
follows:

d(A,B) = dG(A,B) =
e(G)

|A| · |B| .

Given a number ε ∈ (0, 1) we say that G = G(A,B) is
an ε-regular pair if the following holds for every A′ ⊂ A,
|A′| ≥ ε|A| and B′ ⊂ B, |B′| ≥ ε|B|:

|dG(A,B)− dG(A′, B′)| ≤ ε.

The ε-regular equipartition of a graph G on n vertices means
that V (G) = V0 ∪ V1 ∪ . . . ∪ Vk such that Vi ∩ Vj = ∅ for
i 6= j, |V0| ≤ εn, ||Vi| − |Vj || ≤ 1 for every 1 ≤ i, j ≤ k and
all but at most εk2 pairs ViVj are ε-regular for 1 ≤ i, j. The
Vi sets are called clusters, and V0 is the exceptional cluster.

Roughly speaking, the Regularity lemma asserts that every
graph can be well approximated by a collection of quasir-
andom graphs that are defined between the non-exceptional
clusters. Unfortunately, by the result of Gowers [4], in gen-
eral the number of non-exceptional clusters is a tower func-
tion of 1/ε.

While our goal is to provide an alternative for the Regular-
ity lemma, we will also make use of the regularity concept.
Our definition is slightly more permissive than the usual one
above, this enables us to give a very short proof of our de-
composition, and it is still powerful enough to be applicable
in several embedding problems. It is called lower regularity,
and is used by other researchers as well.
Definition 2. Given a bipartite graph G = G(A,B) we
say that G is a lower (ε, η, γ)-regular pair, if for any A′ ⊂
A,B′ ⊂ B with |A′| ≥ ε|A|, |B′| ≥ η|B| we have e(A′, B′) ≥
γ · |A′| · |B′|.

Note that in the usual definition of an ε-regular pair one
has ε = η, and the edge density between two sufficiently
large subsets is between dG−ε and dG+ε. We want to have
flexibility in this notion, and allow sub-pairs with relatively
low density, and the ε 6= η case, too.

We are ready to state our main result, the precise formula-
tion is as follows.
Theorem 3. Let G = G(A,B) be a bipartite graph with
vertex classes A and B such that |A| = n and |B| = m,
and every vertex of A has at least δm neighbors in B. Let
0 < ε, η, γ < 1 be numbers so that η ≤ 1/6 and γ ≤
min{η/4, δ/20}. Then there exists a partition A = A0∪A1∪
. . .∪Ak, and k not necessarily disjoint subsets B1, . . . , Bk of
B, such that |Ai| ≥ ε · exp

(
−2 log( 1

ε
) log( 2

δ
)/η
)
n for i ≥ 1,

|A0| ≤ εn, the subgraphs G[Ai, Bi] for 1 ≤ i ≤ k are all
lower (ε, η, γ)-regular, and

k∑
i=1

e(G[Ai, Bi]) ≥ e(G)− (ε+ 2γ)nm.

Moreover,

k ≤ 2

εδ
e2 log( 1

ε
) log( 2

δ
)/η.

3. PROOF OF THEOREM 3
Let us remark that we will not be concerned with floor signs,
divisibility, and so on in the proof. This makes the notation
simpler, easier to follow.

As we have seen, edge density plays an important role in
regularity. We need a simple fact which is called convexity
of density (see eg. in [7]), the proof is left for the reader.
Claim 4. Let F = F (A,B) be a bipartite graph, and let
1 ≤ k ≤ |A| and 1 ≤ m ≤ |B|. Then

dF (A,B) =
1(|A|

k

)(|B|
m

) ∑
X∈(Ak),Y ∈(Bm)

d(X,Y ).

In order to prove Theorem 3 we need a lemma that is the
basic building block of our decomposition method.
Lemma 5. Let F = F (A,B) be a bipartite graph with vertex
classes A and B such that |A| = a and |B| = b, and every
vertex of A has at least δb neighbors in B. Let 0 < ε, η, γ < 1
be numbers so that η ≤ 1/6 and γ ≤ min{η/4, δ/20}. Then
F contains a lower (ε, η, γ)-regular pair F [X,Y ] such that
|X| ≥ exp

(
−2 log( 2

ε
) log( 2

δ
)/η
)
a and |Y | ≥ (δ(1−η)−2γ)b.

Proof: We prove the lemma by finding two sequences of
sets X0 = A,X1, . . . , Xl and Y0 = B, Y1, . . . , Yl such that
for every 1 ≤ i ≤ l we have Xi ⊂ Xi−1, Yi ⊂ Yi−1,

ε|Xi−1|/2 ≤ |Xi| ≤ ε|Xi−1|

and

|Yi| = (1− η)|Yi−1|,

moreover, the last pair F [Xl, Yl] is lower (ε, η, γ)-regular.
Hence, we may choose X = Xl and Y = Yl.

We find the set sequences {Xi}i≥1 and {Yi}i≥1 by the help
of an iterative procedure. This procedure stops in the lth
step if F [Xl, Yl] is lower (ε, η, γ)-regular. We have another
stopping rule: if |Yl| ≤ (δ(1 + η/2) − 2γ)b for some l, we
stop. Later we will see that in this case we have found what
is desired, F [Xl, Yl] must be a lower (ε, η, γ)-regular pair.

In the beginning we check, if F [X0, Y0] is a lower (ε, η, γ)-
regular pair. If it is, we stop. If not then X0 has a subset
X ′1 precisely of size ε|X0| and Y0 has a subset Y ′1 precisely
of size η|Y0| such that e(F [X ′1, Y

′
1 ]) < γ|X ′1| · |Y ′1 |, here we

used Claim 4 in order to obtain the sizes of X ′1 and Y ′1 .

Let X ′′1 be the set of those vertices of X ′1 that have more
than 2γ|Y ′1 | neighbors in |Y ′1 |. Simple counting shows that
|X ′′1 | ≤ |X ′1|/2. Let X1 = X ′1 − X ′′1 , those vertices of X ′1
that have less than 2γ|Y ′1 | neighbors in |Y ′1 |. By the above
we have |X ′1|/2 ≤ |X1| ≤ |X ′1|. Set Y1 = Y0 − Y ′1 .

For i ≥ 2 the above is generalized. If F [Xi−1, Yi−1] is not
a lower (ε, η, γ)-regular pair then we do the following. First
find X ′i ⊂ Xi−1 and Y ′i ⊂ Yi−1 such that |X ′i| = ε|Xi−1| and
|Y ′i | = η|Yi−1| and e(F [X ′i, Y

′
i ]) < γ|X ′i| · |Y ′i |. Similarly to

the above we define Xi ⊂ X ′i to be the set of those vertices



of X ′i that have less than 2γ|Y ′i | neighbors in Y ′i . As before,
we have |X ′i|/2 ≤ |Xi| ≤ |X ′i|. Finally, we let Yi = Yi−1−Y ′i .

Using induction one can easily verify that the claimed bounds
for |Xi| and |Yi| hold for every i. It might not be so clear
that this process stops in a relatively few iteration steps. For
that we first find an upper bound for the number of edges
that connect the vertices of Xi with B−Yi. If u ∈ Xi then u
have at most 2γ(|Y ′1 |+ . . .+ |Y ′i |) ≤ 2γb neighbors in B−Yi
using that Y ′s ∩ Y ′t = ∅ for every s 6= t.

Next we show that if (δ(1 + η/2) − 2γ)(1 − η)b < |Yl| ≤
(δ(1 + η/2) − 2γ)b then F [Xl, Yl] must be lower regular.
Assume that u ∈ Xl. Then deg(u;Yl) ≥ (δ− 2γ)b, using our
argument above, hence, the number of non-neighbors of u in
Yl is at most (δ(1 + η/2) − 2γ)b − (δ − 2γ)b = δηb/2. Let
Y ′ ⊂ Yl be arbitrary with |Y ′| = η|Yl|. Then

5

6
η(δ(1 + η/2)− 2γ)b ≤ |Y ′| ≤ η(δ(1 + η/2)− 2γ)b,

using that η ≤ 1/6. We have

deg(u;Y ′) ≥ |Y ′| − δηb/2 ≥ 5

6
η(δ(1 + η/2)− 2γ)b− δηb/2.

Using the upper bounds we imposed on η and γ, one easily
obtains that

deg(u;Y ′) ≥ (δη/3 + 5δη2/12− 5/3γη)b ≥ γ|Y ′|.

Hence, for every X ′ ⊂ Xl and Y ′ ⊂ Yl with |Y ′| = η|Yl| we
have

e(X ′, Y ′) ≥ γ|X ′| · |Y ′|,

that is, if the procedure stopped because we applied the
stopping rule, then the resulting pair must always be lower
(ε, η, γ)-regular. Of course, this means that no matter how
the procedure stops, it finds a lower regular pair.

Next we upper bound the number of iteration steps. In every
step the Y -side shrinks by a factor of (1− η). We also have
that |Yl| > (δ(1 + η/2)− 2γ)(1− η)b. Putting these together
we get that

(1− η)l > (δ(1 + η/2)− 2γ)(1− η) > δ/2.

Hence,

l <
log(2/δ)

log(1/(1− η))
< 2

log(2/δ)

η
,

here we used elemantary calculus (in particular, the Taylor
series expansion of log(1 + x)) and our condition that η is
less than 1/6.

What is left is to show the lower bound for |Xl|. Note, that
|Xi|/|Xi−1| ≥ ε/2 for every i ≥ 1. Hence,

|Xl| ≥
( ε

2

)l
a = e−2 log(2/ε) log(2/δ)/ηa.

2

We are ready to prove the main result of the paper.

Proof (of Theorem 3): The proof is based on iteratively
applying Lemma 5. First we apply Lemma 5 for G and

find a lower (ε, η, γ)-regular pair G[Xl, Yl], where Xl ⊂ A
and Yl ⊂ B. Let A1 = Xl and B1 = Yl. Next we repeat this
procedure for the graph G[A−A1, B]. Similarly to the above
we define the A2 and B2 sets, where A2 ⊂ A−A1, B2 ⊂ B,
and G[A2, B2] is a lower (ε, η, γ)-regular pair.

Continue this way, finding the lower regular pairs G[Ai, Bi]
using Lemma 3 such that Ai ⊂ A−(A1∪. . .∪Ai−1), Bi ⊂ B,
and G[Ai, Bi] is a lower (ε, η, γ)-regular pair. We stop when

|A− (A1 ∪ . . . ∪Ai)| < ε|A|.

At this point set A0 = A− (A1 ∪ . . . ∪Ai).

Let us now prove the upper bound for the number of pairs
in the decomposition. As we have shown earlier |Ai| ≥
exp

(
−2 log( 2

ε
) log( 2

δ
)/η
)
n for i ≥ 1. The number of edges

in an AiBi pair is at least |Ai|(δ − 2γ)m > |Ai|δm/2. For
any 1 ≤ i 6= j ≤ k the edge sets of the pairs AiBi and AjBj
are disjoint, and the total number of edges in lower regular
pairs is at most nm. Hence, we have

k ≤ 2nme2 log( 1
ε
) log( 2

δ
)/η

εδnm
=

2

εδ
e2 log( 1

ε
) log( 2

δ
)/η.

There is only one question left, bounding the total number
of edges that belong to the lower regular pairs. Assume
first that u ∈ A − A0. We saw earlier in Lemma 3 that
u lost at most 2γ|B| edges. This explains the 2γmn term
in the theorem. If u ∈ A0, none of the edges incident to it
belongs to any of the lower regular pairs, however, |A0| ≤ εn,
therefore, the total number of edges incident to vertices of
A0 is at most εnm. With this we found the decomposition
of G what was desired. 2

Let us finish this section with a remark. Without the lower
bound for the sizes of the Ai sets, the Theorem 3 would
be trivial: every vertex v ∈ A could be a “subset” Av (a
singleton), and its neighborhood N(v) is the corresponding
Bv. The result is interesting only when the Ai sets are large.
For example, let G be the following. It is a sparse bipartite
graph with vertex classes A and B such that |A| = |B| = n.
Set ε = η = 1/10, δ = log logn/ logn, and γ = δ/20. Then
G has O(n2 log logn/ logn) edges, and the Ai sets for i ≥ 1
have size Ω(n/(logn)c), where c < 60, and every (Ai, Bi)
pair is a lower (0.1, 0.1, log log n/(20 logn))-regular pair.

4. AN APPLICATION
The main advantage of Theorem 3 is that, as the above
example shows, it can be applied for graphs having“real-life”
size, or foe relatively sparse graphs, unlike the Szemerédi
Regularity lemma. Therefore, it may extend the scope when
usual methods for graph embedding (eg. counting lemma or
the Blow-up lemma [8]) can be applied.

Below in Proposition 6 we show how to embed an almost
spanning tree into one lower regular pair. This can be used
to approximately tile the edge set of a sufficiently dense
graph G by large edge-disjoint subtrees. The rough sketch
of this approximate decomposition is as follows. Apply The-
orem 3 for the graph G, and then using Proposition 6 find
one-one almost spanning subtree in the lower regular pairs.
Delete the edges used for the subtrees. If the resulting graph
has sufficiently many edges then one can use Theorem 3



again, and then Proposition 6 for every lower regular pair.
The process stops when the remaining vacant subgraph of G
is too sparse, and therefore one cannot find many large de-
gree vertices in it. Hence, with this method one can tile the
vast majority of edges of a graph having sufficiently large
density. Due to the length of the proof we do not give every
detail in this extended abstract.

Given a tree T rooted at r its level sets are defined as follows:
L1 = r, L2 = N(r), in general, Li+1 = N i(r), etc., where
N i(r) denotes those vertices of T that are exactly at distance
i from r in T.
Proposition 6. Let 0 < ε, η, γ < 1/10 such that η = 4γ and
ε = γ2/10. Assume G[A,B] is a lower (ε, η, γ)-regular pair.
Let T be a tree rooted at r, having color classes X and Y
such that r ∈ X, |X| ≤ (1− 10γ)|A| and |Y | ≤ (1− 10γ)|B|.
Assume further that for every i ≥ 1 we have |L2i| ≤ ε|A|
and |L2i+1| ≤ η|B|. Then T ⊂ G[A,B].

Let us remark that T does not have to have bounded de-
gree, unlike in many tree embedding results. In fact, it can
have vertices with linearly large degrees, if δ and the other
parameters are constants. The statement holds for every G
for which Lemma 5 can be applied, hence, G can have o(n2)
edges.

We need the following simple claim, the proof is left for the
reader.
Claim 7. Let F = F (U, V ) be a lower (ε, η, γ)-regular pair.
Let U ′ ⊂ U and V ′ ⊂ V such that |U ′| ≥ ε|U | and |V ′| ≥
η|V |. Then U ′ can have at most ε|U | vertices that have less
than γ|V ′| neighbors in V ′. Similarly, V ′ can have at most
η|V | vertices that have less than γ|U ′| neighbors in U ′.

Proof of the theorem: We prove the theorem via an
embedding algorithm. Let X = {x1, . . . , xk} and Y =
{y1, . . . , ym}, where r = x1. We will find the images of the
vertices of T so that we embed height-2 subtrees of T in
every step, having vertices from Y in the middle level.

Denote ϕ : V (T ) −→ A ∪ B the edge-preserving mapping
that we construct. Let Af , respectively, Bf denote the
free (ie. vacant) vertices of A, respectively, B. These sets
are shrinking as the embedding of T proceeds, but due to
the conditions of Proposition 6 we always have that |Af | ≥
10γ|A| and |Bf | ≥ 10γ|B|. Divide Af randomly into three

disjoint, approximately equal-sized subsets Af1 , A
f
2 and Af3 .

Let B′1 ⊂ Bf be the set of those vertices that have less
than γ|A| neighbors in Af1 , the sets B′2 and B′3 are defined
analogously. Then |B′1|, |B′2|, |B′3| ≤ η|B|.

Let v be an arbitrary vertex of, say, Af1 that has at least
γ|Bf −B′1 −B′2 −B′3| neighbors in Bf −B′1 −B′2 −B′3. By

Claim 7 we know that Af1 has many such vertices. By the
definition of the B′i sets we have that every vertex in N(v)

has at least γ|Afi |/4 neighbors in Afi for i = 1, 2, 3. Pick the

largest of the Afi sets, say, it is Af2 . Then the height-2 sub-
tree originating at r will be embedded so that the neighbors
of r will be mapped onto N(v) arbitrarily (|L2| is smaller,
than |N(v)|), and by construction every vertex of N(v) will

have many neighbors in Af2 . Now we redetermine the sub-
sets B′1, B

′
2, B

′
3, as some vertices have become covered in A

and in B. For the third level of the height-2 subtree origi-
nating at r we take those vertices of Af2 that are neighboring
with at least a γ proportion of Bf − B′1 − B′2 − B′3. Note
that for every ϕ(y) where y is in the middle level we have

many choices: except at most ε|A| vertices of Af2 the neigh-
borhood N(ϕ(y)) contains vertices with large degrees into
Bf −B′1−B′2−B′3. This means that we are able to map the
third level. Next we continue this process so that we embed
the height-2 subtrees originating at the vertices of the third
level one-by-one.

There is only one missing detail here, the reason why we
divided Af randomly in the beginning: if we have three Afi
sets, then the active level belongs to one of them, say, it is
Afi . Then we map the vertices of T that are exactly two levels

below them into the larger Afj -set, where j ∈ {1, 2, 3} − i.
This way we never eat up any of the Afi sets at any point in
time. Since the color classes of T are sufficiently small, this
procedure never gets stuck. 2
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[9] V. Rödl, B. Nagle, J. Skokan, M. Schacht and
Y. Kohayakawa, The hypergraph regularity method
and its applications, P. Natl. Acad. Sci. USA 102
(2005), 8109–8113.
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