GRAPH THEORY - EXERCISES

8TH OF SEPTEMBER, 2020
(1) Is it possible that a degree sequence of a graph is $3,3,3,3,5,6,6,6,6,6,6$? Prove or disprove!
(2) Let G be a simple graph. Show that it must have two distinct vertices, x and y such that $d(x)=d(y)$. What if G is not simple?
(3) Can the following numbers be the degrees of a simple graph on five vertices? $\mathcal{S}=3,3,4,4,6$
(4) Let G be a graph (not necessarily simple). Assume that it has exactly two vertices, x and y with odd degree, every other vertex has even degree. Show that there is a path between x and y - note that G may be disconnected!
(5) Let G be a connected graph. Prove the following: if G is not a tree, then one can remove an edge from it so that the resulting graph is connected.
(6) Let G be a connected graph. Prove the following: one can remove a vertex from it so that the resulting graph is connected.

