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Abstract. The notion of almost left factorizability and the results on
almost left factorizable weakly ample semigroups, due to Gomes and the
author, are adapted for restriction semigroups. The main result of the
paper is that each restriction semigroup is embeddable into an almost
left factorizable restriction semigroup. This generalizes a fundamental
result of the structure theory of inverse semigroups.

1. Introduction

Each inverse semigroup can be obtained from a semidirect product of a
semilattice by a group in two different ways, namely, by taking (a) an (idem-
potent separating) homomorphic image of an inverse subsemigroup, and (b)
an inverse subsemigroup of an (idempotent separating) homomorphic image
of such a semidirect product ([11], [12], [13], [14], [9]). The members of
the intermediate classes of these approaches are just the E-unitary and the
almost factorizable inverse semigroups, respectively. These subclasses are
well studied, and are playing a central role in the structure theory of inverse
semigroups ([10]). These results have been generalized, at least partly, in
a number of directions, for example, for orthodox, locally inverse, weakly
(left) ample semigroups ([15], [8], [1], [16], [2], [4], [3]). The aim of this paper
is to generalize approach (b) for restriction semigroups.

The algebraic structures we call in this paper left restriction semigroups
have been studied from various points of view, and under different names,
since the 1960’s. The notion of a restriction semigroup is a two-sided version
of a left restriction semigroup. For a historical overview, and for a more
complete introduction in the basic properties of these structures than it is
provided here, the reader is referred to [3] and [6]. Note that the name
‘(left) restriction’ is fairly recent, such a structure was formerly often called
a ‘weakly (left) E-ample semigroup’.

A restriction semigroup is a semigroup equipped with two additional
unary operations which satisfy certain identites. Thus, from universal alge-
braic point of view, a restriction semigroup is an algebra of type (2, 1, 1).
Among others, the defining identities imply that both unary operations as-
sign an idempotent to any element, and the ranges of the two unary opera-
tions coincide. This common range is the set of projections. In particular,
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each inverse semigroup naturally determines a restriction semigroup if we
consider the unary operations which assign the idempotents aa−1 and a−1a,
respectively, to any element a. Thus restriction semigroups are non-regular
generalizations of inverse semigroups.

Notions of factorizability and almost factorizability, more precisely, left
factorizability and almost left factorizability are introduced in [5] for weakly
ample semigroups in a way similar to the usual notions of factorizability and
almost factorizability, respectively, for inverse semigroups. Moreover, the
fundamental results known on the structure of factorizable inverse monoids
and almost factorizable inverse semigroups are generalized for the weakly
ample case. The construction taking over the role of a semidirect product
of a semilattice by a group is a construction from [2] which we call a W -
product of a semilattice by a monoid. It turns out that these results can be
easily adapted to the more general class of restriction semigroups (Section
3).

The main result of the paper establishes that each restriction semigroup
is embeddable in an almost left factorizable restriction semigroup (Section
4). Combining this with the main theorem of Section 3, we deduce that
each restriction semigroup can be obtained as a (2, 1, 1)-subsemigroup of a
(projection separating) homomorphic image of a W -product of a semilattice
by a monoid. This generalizes approach (b) from inverse semigroups to
restriction semigroups. Note that we prove in [17] that each restriction
semigroup has a proper cover which is (2, 1, 1)-embeddable into a W -product
of a semilattice by a monoid, which extends approach (a) to restriction
semigroups.

2. Preliminaries

In the first part of this section we provide the notions and basic facts on
restriction semigroups we need in the paper. For the proofs of these facts and
for more details, the reader is referred to [6]. In the second part we recall the
definition of a W -product, and establish its most important properties. In
the third part we recall several basic universal algebraic notions. For details,
see [7]. Finally, based on [17], we present a model of the free restriction
semigroup on a set X together with an embedding into a W -product.

A left restriction semigroup is defined to be an algebra of type (2, 1),
more precisely, an algebra S = (S; ·,+) where (S; ·) is a semigroup and + is
a unary operation such that the following identities are satisfied:

(2.1) x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

For our later convenience, we list several consequences of these identities
which, together with the defining identities (2.1), are used throughout the
paper without further reference:

(2.2) x+x+ = x+, (x+)+ = x+, x+(xy)+ = (xy)+,

(2.3) (x+y+)+ = x+y+, (xy)+ = (xy+)+.

A right restriction semigroup is defined dually, that is, it is an algebra S =
(S; ·, ∗) satisfying the duals of the identities (2.1). Finally, if S = (S; ·,+, ∗) is
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an algebra of type (2, 1, 1) where S = (S; ·,+) is a left restriction semigroup,
S = (S; ·, ∗) is a right restriction semigroup and the identities

(2.4) (x+)
∗

= x+, (x∗)+ = x∗

hold then it is called a restriction semigroup. Notice that the defining prop-
erties of a restriction semigroup are left-right dual. Therefore later on the
dual definitions and statements will not be explicitely formulated.

Among the restriction semigroups, the notions of a subalgebra, homomor-
phism, congruence and factor algebra are understood in type (2, 1, 1). In or-
der to emphasize this, we use the expressions (2, 1, 1)-subsemigroup, (2, 1, 1)-
morphism, (2, 1, 1)-congruence and (2, 1, 1)-factor semigroup, respectively.

If a restriction semigroup S has an identity element 1 with respect to the
multiplication then it is straightforward to see by (2.1) that

(2.5) 1+ = 1∗ = 1.

Such a restriction semigroup is called a restriction monoid.
If S is a restriction semigroup having no identity element with respect

to the multiplication then the semigroup S1 can be easily formed to a re-
striction monoid by extending the nullary operations by the rule (2.5). This
restriction monoid will also be denoted by S1. As usual, the same notation
will be used for S itself if S is a restriction monoid.

The class of restriction semigroups is fairly big. For example, each inverse
semigroup Sinv = (S; ·,−1) determines a restriction semigroup S = (S; ·,+, ∗)
where the unary operations are defined by the rules

a+ = aa−1 and a∗ = a−1a for every a ∈ S.

By the Wagner–Preston theorem, such a restriction semigroup is, up to
(2, 1, 1)-isomorphism, a (2, 1, 1)-subsemigroup of (I(X); ·,+, ∗) for some set
X, where I(X) is the set of all partial bijections on X, and

α+ = 1domα and α∗ = 1imα for every α ∈ I(X).

On the other hand, each monoid M becomes a restriction semigroup by
defining a+ = a∗ = 1 for any a ∈M . It is easy to see that these restriction
semigroups are just those with both unary operations being constant. Such
a restriction semigroup will be called unary trivial, and, since it is neces-
sarily a monoid, we also call it a unary trivial restriction monoid. Notice
that the congruences, homomorphisms, etc. of monoids and the (2, 1, 1)-
congruences, (2, 1, 1)-morphisms of the unary trivial restriction semigroups
(monoids) obtained from them coincide. Therefore we often consider unary
trivial restriction semigroups just as monoids, and vice versa. Note that, in
the literature, unary trivial restriction semigroups (monoids) are sometimes
called reduced restriction semigroups (monoids).

Let S be any restriction semigroup. By (2.4), we have {x+ : x ∈ S} =
{x∗ : x ∈ S}. This set is called the set of projections of S, and is denoted
by P (S). By (2.1)–(2.3) and their duals, P (S) is a (2, 1, 1)-subsemilattice
in S, and both unary operations are identical on it. In particular P (S)
consists of idempotent elements only. Notice that a restriction semigroup
S is unary trivial if and only if P (S) is a singleton, and, if this is the case
then the unique element of P (S) is the identity element of S. If S, T are
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restriction semigroups, and φ : S → T is a (2, 1, 1)-morphism then φ is said
to be projection separating if eφ = fφ implies e = f for every e, f ∈ P (S).

Given a restriction semigroup S, we define a relation ≤ on S such that,
for every a, b ∈ S,

a ≤ b if and only if a = a+b.

Observe that the dual of this relation is the same since a = a+b implies
a = b(a+b)∗ = ba∗, and the dual implication is also valid. The relation ≤ is
a compatible partial order on S, and it extends the natural partial order of
the semilattice P (S). It is called the natural partial order on S.

We also consider a relation on S, denoted by σS , or simply σ: for any
a, b ∈ S, let

aσb if and only if ea = eb for some e ∈ P (S).

Again notice that if there exists e ∈ P (S) with ea = eb then there exists
also f ∈ P (S) with af = bf , and conversely. Therefore the relation defined
dually to σ coincides with σ. The relation σ is the least congruence on
S = (S; ·) where P (S) is in a congruence class, which we denote by P (S)σ.
Consequently, it is the least (2, 1, 1)-congruence ρ on S = (S; ·,+, ∗) such that
the (2, 1, 1)-factor semigroup S/ρ is unary trivial. Therefore we call σ the
least unary trivial (2, 1, 1)-congruence on S. Obviously, P (S)σ is the identity
element of S/σ. The unary trivial restriction monoid S/σ is often considered
just as a monoid S/σ = (S/σ; ·, P (S)σ). In particular, S is a weakly ample
semigroup if it is a restriction semigroup and P (S) = E(S), the set of all
idempotents of S. Consequently, if S is a weakly ample semigroup then
S/σ is a unipotent monoid, that is a monoid where the identity element is
the unique idempotent. In fact, the relation σ is the least unipotent monoid
congruence on S.

Now we give an alternative definition for (left) restriction semigroups.
Let S be a semigroup, and let E be a subsemilattice in S, whence clearly

E ⊆ E(S). The relation R̃E is defined on S by the rule that, for any a, b ∈ S,

a R̃E b if and only if ea = a⇐⇒ eb = b for any e ∈ E.

The semigroup S is said to be weakly left E-ample if the following conditions

are fulfilled: the relation R̃E is a left congruence on S; for each a ∈ S, the

R̃E-class R̃Ea (S) of S containing a has an idempotent (necessarily unique)
denoted by a+; and for all a ∈ S and e ∈ E, we have ae = (ae)+a. A weakly
right E-ample semigroup is defined dually, in which case, the relation taking

over the role of R̃E is denoted by L̃E , and the unique idempotent in the

L̃E-class L̃Ea (S) of an element a by a∗. A weakly E-ample semigroup S is
a semigroup that is both weakly left and weakly right E-ample (with the
same semilattice E).

It is well known that a semigroup S is weakly (left) E-ample with respect
to the semilattice E in S if and only if (S; ·,+, ∗) is a (left) restriction semi-

group with P (S) = E. Later on, when considering the relations R̃P (S), L̃P (S)

on a restriction semigroup S, we simply write R̃ and L̃, and analogously,

R̃a(S) and L̃a(S). In the literature, the latter notation is used only for
weakly ample semigroups, but this will not cause any confusion. Note that
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a R̃ b if and only if a+ = b+, and, dually a L̃ b if and only if a∗ = b∗. It is

natural to introduce the relation H̃ = R̃ ∩ L̃.
A left ample semigroup is defined to be a restriction semigroup S where

R̃ coincides with the relation defined, for any a, b ∈ S, by

a R∗ b if and only if xa = ya⇐⇒ xb = yb for all x, y ∈ S1.

A right ample semigroup is defined dually, and by an ample semigroup we
mean a restriction semigroup that is both left and right ample. On a (left)
ample semigroup, the relation σ is the least (right) cancellative congruence.

A restriction semigroup S is said to be proper if the following condition
and its dual are fulfilled:

a+ = b+ and a σ b imply a = b for every a, b ∈ S.
It is worth mentioning that ≤ generalizes the natural partial order of

an inverse semigroup, the relation σ generalizes the least group congruence
on an inverse semigroup, and the notion of a proper restriction semigroup
generalizes that of an E-unitary inverse semigroup. For, if a restriction
semigroup S is obtained form an inverse semigroup Sinv = (S; ·,−1) as above
then the natural partial orders of S and Sinv coincide, σS is the least group
congruence on Sinv, and S is proper if and only if Sinv is E-unitary.

The construction of W (T, Y ) with Y being a semilattice and T a right
cancellative monoid was introduced in [2] as a construction of a left ample
semigroup. In [5], it was generalized for any unipotent monoid T , and it
was noticed that there is a natural unary operation ∗ on W (T, Y ), so that it
becomes a weakly ample semigroup. If we drop the requirement for T being
unipotent, then W (T, Y ) is immediately seen to be a restriction semigroup.
Since unipotency of T is applied only for deducing that P (W (T, Y )) contains
all the idempotents of W (T, Y ), the main properties presented in [5] remain
valid in this more general setting.

Let T be a monoid and Y a semilattice. We say that T acts on Y on
the right [left] if a monoid homomorphism is given from T into the endo-

morphism monoid EndY of Y [into the dual EnddY of the endomorphism
monoid of Y ]. For brevity, at [ta] is used to denote the image of the element
a ∈ Y under the endomorphism assigned to the element t ∈ T . It is well
known that the fact that T acts on Y on the right is equivalent to requiring
that the equalities

(2.6) (ab)t = atbt, (at)u = atu, a1 = a

are valid for every a, b ∈ Y and t, u ∈ T . Suppose that T acts on the right on
Y by injective endomorphisms such that the range of each endomorphism
corresponding to an element of T forms an order ideal in Y . Equivalently,
suppose that, additionally to (2.6), we have

(2.7) at = bt implies a = b,

and

(2.8) a ≤ bt implies a = ct for some c ∈ Y
for every a, b ∈ Y and t ∈ T . Consider the set

W (T, Y ) = {(t, at) ∈ T × Y : a ∈ Y, t ∈ T},
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and define a multiplication and two unary operations on it by the following
rules: for any (t, at), (u, bu) ∈W (T, Y ), put

(t, at)(u, bu) = (tu, atu · bu),

(t, at)+ = (1, a),(2.9)

(t, at)∗ = (1, at).

It is straightforward to see that W (T, Y ) is a subsemigroup in the reverse
semidirect product T n Y . Moreover, this construction has the following
basic properties.

Result 2.1. Let Y be a semilattice and T a monoid acting on Y on the
right, so that conditions (2.7), (2.8) are fulfilled.

(1) W (T, Y ) = (W (T, Y ); ·,+, ∗) is a restriction semigroup, and its set
of projections is P (W (T, Y )) = {(1, a) : a ∈ Y }, which is isomorphic
to Y .

(2) The first projection π : W (T, Y )→ T is a surjective homomorphism
whose kernel is σ. Consequently, W (T, Y )/σ is isomorphic to T .

(3) W (T, Y ) is proper.
(4) W (T, Y ) is a monoid if and only if Y has an identity.

Remark 2.2. In particular, if Y is a semilattice and T a monoid acting on
Y on the right by automorphisms then conditions (2.7), (2.8) are satisfied,
and W (T, Y ) = T n Y .

If Y is a semilattice and T a monoid acting on Y on the right, so that
conditions (2.7), (2.8) are satisfied, then the restriction semigroup W (T, Y )
is called a W -product of Y by T . If W (T, Y ) has no identity, that is, by the
last statement of Result 2.1, Y has no identity, then we find it convenient to
interpret the adjoint identity element in the form ε = (1, e1) = (1, e) where
e is an identity adjoint to Y , and to extend the action of T on Y to an
action of T on Y e by defining et = e for every t ∈ T . For, in this case,
the equalities (2.9) remain valid for W ε(T, Y ) = W (T, Y ) ∪ {ε}. However,
let us call the attention to the fact that the extended action need not have
property (2.8), so W ε(T, Y ) cannot be considered as a (2, 1, 1)-subsemigroup
in a W -product of Y e by T .

Now we recall several definitions and facts of general algebraic nature,
but we formulate them only for restriction semigroups; more precisely, for
algebras of type (2, 1, 1) with a binary operation · and two unary operations
+ and ∗.

Given a set X of variables, by a term in X we mean a formal expression
built up from the elements of X by means of the operational symbols —
the binary operational symbol · and the unary operational symbols + and
∗ — in finitely many steps. For example, the left and right hand sides of
the equalities in (2.1)–(2.3) are terms in variables x, y. If we work with
an associative binary operation then we delete the unnecessary parentheses
from the terms. If S is a restriction semigroup then we introduce a nullary
operational symbol for every element s in S, and, for simplicity, denote
it also by s. By a polynomial of S we mean an expression obtained in
a way similar to terms, but from variables and these nullary operational
symbols. A polynomial can also be interpreted in the way that such nullary
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operational symbols are substituted for certain variables in a term. For
simplicity, later on we just say that elements of S are substituted for the
variables. As it is usual for semigroups, we allow to substitute also 1 ∈ S1

for several, but not all, variables to indicate that the variables in question
be deleted from the term. For example, if 1 is substituted for the variable y
in the terms yxz and zy∗(x∗y)+ then the terms obtained are xz and z(x∗)+,
respectively. A unary polynomial of S is a polynomial with at most one
variable. Their set is denoted by P1(S).

If t = t(x1, x2, . . . , xn) is a term or p = p(x1, x2, . . . , xn) is a polynomial
in the variables x1, x2, . . . , xn, and we substitute elements s1, s2, . . . , sn of S1

with {s1, s2, . . . , sn} ∩ S 6= ∅ for the variables, then we can evaluate the ex-
pression so obtained in S1. The result is an element of S which is denoted by
tS(s1, s2, . . . , sn) and pS(s1, s2, . . . , sn), respectively. Notice that the evalu-
ation is compatible with the interpretation of the substitution of 1 ∈ S1 for
variables. The polynomial function of S corresponding to the polynomial p
is the mapping pS : Sn → S, (s1, s2, . . . , sn) 7→ pS(s1, s2, . . . , sn), which we
denote also by pS(x1, x2, . . . , xn).

An identity is a formal equality t = u of two terms, considered with a
common set of variables. A restriction semigroup satisfies the identity t = u
if tS(s1, s2, . . . , sn) = uS(s1, s2, . . . , sn) for any s1, s2, . . . , sn ∈ S. A class V
of algebras of a given type is called a variety if it is defined by identites. By
definition, we immediately see that the class of restriction semigroups forms
a variety of algebras of type (2, 1, 1). Note that weakly ample semigroups
and ample semigroups form sub-quasivarieties in the variety of restriction
semigroups.

Given a class V of algebras of type (2, 1, 1), a non-empty set X, a member
F ∈ V and a mapping f : X → F , we say that (F, f), or, briefly, F is a free
object in V on X if it possesses the following universal property: for any
V ∈ V and any mapping v : X → V , there is a unique (2, 1, 1)-morphism
φ : F → V such that fφ = v. One can prove that F is, up to (2, 1, 1)-
isomorphism, unique, provided it exists. It is well known that if V is a
variety then there exists a free object in V on any non-empty set, and each
member of V is a (2, 1, 1)-morphic image of a free object. In particular, this
ensures that there exists a free restriction semigroup on any non-empty set,
and, up to (2, 1, 1)-isomorphism, it is uniquely determined. Moreover, each
restriction semigroup is a (2, 1, 1)-morphic image of a free one.

A transparent model of the free restriction semigroup on X is given in
[3] as a full subsemigroup in the free inverse semigroup on X (cf. [10]).
Here we need another model obtained from this in [17] which is given as a
subsemigroup in a W -product.

LetX be a set, and consider the free monoidX∗ and the free group FG(X)
on X. The elements of X∗ are said to be words in X. The multiplication
in X∗ is juxtaposition. The identity element of X∗ is the empty word which
we denote by 1. The subset X+ = X∗ \ {1} forms a subsemigroup in X∗,
and X+ is the free semigroup on X.

The elements of FG(X) are supposed to be the reduced words in X∪X−1.
For any word w ∈ (X ∪X−1)∗, the reduced form of w is denoted by red(w).
Thus the product of any elements u, v in FG(X) is red(uv). Obviously,
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X∗ is a subsemigroup in FG(X) but FG(X) is not a sub(semi)group in
(X ∪X−1)∗.

The prefix order ≤p is a partial order defined on FG(X) by u ≤p v
if u is a prefix of v, that is, v = uw(= red(uw)) for some w ∈ FG(X).

If S is a non-empty subset in FG(X) then [S]↓ denotes the order ideal of

(FG(X); ≤p ) generated by S. In particular, [u]↓ is the set of all prefixes of
the word u(∈ FG(X)) including 1 and u. Therefore each order ideal∗ but

[1]↓ = {1} has at least two elements.
Denote by Y the set of all finite order ideals of (FG(X); ≤p ) with at least

two elements. For any v ∈ FG(X) and any subset S ⊆ FG(X), define

(2.10) vS = {red(vs) : s ∈ S},

and let X = FG(X)Y.
It is well known that the Cayley graph ΓFG(X) of FG(X), as an X-

generated group, is a tree, that is, it is a connected graph without cycles.
Moreover, FG(X) acts on ΓFG(X) on the left by the rule v(u, x) = (vu, x) for
any v ∈ FG(X) and any edge (u, x). Recall that there is a natural bijection β
from X onto the set of all finite connected subgraphs of ΓFG(X) containing
at least one edge, where S ∈ X is the set of vertices of Sβ, and this bijection
respects the left action of FG(X), that is, we have (vS)β = v(Sβ) for every
v ∈ FG(X) and S ∈ X . For example, hence it easily follows that, for any
S ∈ X , we have S ∈ Y if and only if 1 ∈ S. Moreover, this relation makes it
transparent that any two elements R,S ∈ X have a least upper bound R∨S
in the partially ordered set X = (X ;⊇), and it can be obtained as follows:

R ∨ S = r
(
r−1
R ∪

[
r−1s

]↓ ∪ r−1
S
)

for every r ∈ R and s ∈ S. In particular, R ∨ S = R ∪ S if R ∩ S 6= ∅.
Consequently, X = (X ;∨) is a semilattice, and it is also easy to see that
FG(X) acts on this semilattice on the left by automorphisms.

The left action of the group FG(X) on the semilattice X naturally defines
a right action of FG(X) on X by the rule

Su = u−1
S (u ∈ FG(X), S ∈ X ).

Its restriction to X∗ is clearly a right action of the monoid X∗ on the semi-
lattice X by automorphisms.

Consider the subset

Q = YX∗
= {Q ∈ X : Q ∩ (X∗)−1 6= ∅}

in X , where T−1 is used to denote the subset {t−1 : t ∈ T} in FG(X) for
any T ⊆ X∗. Then Q forms a subsemilattice in X = (X ;∨), and the monoid
X∗ acts on it on the right by injective endomorphisms. Moreover, for each
t ∈ X∗, we have

Qt = {Q ∈ X : Q ∩ (X∗t)−1 6= ∅},
and so it is a dual order ideal in (Q;⊇). These properties of the right action
of X∗ on Q allow us to define the W -product W (X∗,Q).

∗The empty set is not considered an order ideal.



EMBEDDING OF RESTRICTION SEMIGROUPS 9

Result 2.3. The subset

FWRS(X) = {(t, At) ∈W (X∗,Q) : A ∈ Y and t ∈ A}
= {(t, At) ∈ X∗ × Y : A ∈ Y}

forms a (2, 1, 1)-subsemigroup in W (X∗,Q). Furthermore, FWRS(X) to-
gether with the injective mapping

X → FWRS(X), x 7→ (x, {1, x−1})
is a free restriction semigroup on X.

Following the general observation above, the adjoint identity to W (X∗,Q)
is interpreted as ε = (1, ∅) where ∅ is the identity adjoint to Q, and ∅t = ∅
for every t ∈ X∗.

3. Almost left factorizable restriction semigroups

In this section we introduce the notion of a permissible set in a restric-
tion semigroup, and notice that the set of all permissible sets constitutes a
restriction monoid in which the original semigroup is naturally embedded.
Similarly to the inverse case, we define the notion of an almost left facto-
rizable restriction semigroup by means of permissible sets. Moreover, we
establish the analogues of most results known on the general structure of
factorizable inverse monoids and of almost factorizable inverse semigroups.
Finally, for completeness, we deal with the left-right symmetric versions
of factorizability and almost factorizability, although these results are not
needed in the rest of the paper.

The notions and results of this section are slight generalizations of those
in [5]. All the proofs there can be easily adapted to get proofs of the results
here. Therefore all the proofs are left to the reader.

In what follows, let S be a restriction semigroup. A non-empty subset
A ⊆ S is said to be permissible if A is an order ideal of S with respect to
the partial order ≤, and the equalities a+b = b+a and ab∗ = ba∗ are valid
for every a, b ∈ A. Denote by C(S) the set of all permissible subsets of S,
consider the usual set multiplication on C(S), and define, for any A ∈ C(S),

A+ = {a+ : a ∈ A} and A∗ = {a∗ : a ∈ A}.

Theorem 3.1. The algebra C(S) = (C(S); ·,+, ∗) is a restriction monoid
with identity element P (S), where the set of projections is

P (C(S)) = {A ⊆ P (S) : A is an order ideal in P (S)},
and the natural partial order is the set inclusion. The mapping τS : S →
C(S), a 7→ (a], where (a] stands for the principal order ideal of S generated
by a, is a (2, 1, 1)-embedding of S into C(S). If S = S1 then τS is also a
monoid embedding. Moreover, C(S) is (left) ample if and only if S is (left)
ample.

Notice that if S is a restriction semigroup obtained from an inverse semi-
group Sinv, and A is a non-empty subset in S then A is a permissible subset
of S if and only if it is a permissible subset of Sinv. Thus the restriction
monoid C(S) is just that corresponding to the inverse monoid C(Sinv).

If S is proper then C(S) has important additional properties.
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Theorem 3.2. The restriction monoid C(S) is proper if and only if S is
proper. If this is the case then each σC(S)-class has a maximum element,
and the monoids S/σS and C(S)/σC(S) are isomorphic.

Corollary 3.3. Every proper restriction semigroup S can be (2, 1, 1)-em-
bedded in a proper restriction semigroup T where T/σT is isomorphic to
S/σS and each σT -class has a maximum element.

It is easy to verify that if M is a restriction monoid then R̃1(M) is a

submonoid in M . In particular, if M is left ample then R̃1(M) is right
cancellative. We say that a restriction monoid M is left factorizable if M =

P (M)R̃1(M). Note that, by the dual of the last identity in (2.1), we have

P (M) R̃1(M) = R̃1(M)P (M). A right factorizable restriction monoid is
defined dually. Notice that left factorizability and right factorizability are
independent properties even for ample monoids, see [5, Example 4.1].

We say that a restriction semigroup S is almost left factorizable if, for any

a ∈ S, there exists A ∈ R̃P (S)(C(S)) such that a ∈ A. We define an almost

right factorizable restriction semigroup dually. Recall that R̃P (S)(C(S)) =

{A ∈ C(S) : A+ = P (S)}, and it is not difficult to see that S is almost left

factorizable if and only if the equality SτS = P (S)τS · R̃P (S)(C(S)) holds in
C(S). This observation and the following statement justify this definition.

Proposition 3.4. A restriction monoid is almost left factorizable if and
only if it is left factorizable.

As in the inverse case, the following holds.

Proposition 3.5. Let M be a left factorizable restriction monoid. Then

M \ R̃1(M) is an almost left factorizable restriction semigroup.

However, in the contrary to the inverse case, the reverse statement fails
even for proper restriction semigroups which are left ample, see [5, Example
4.6].

The main result on almost left factorizable restriction semigroups is the
following.

Theorem 3.6. For every restriction semigroup S, the following conditions
are equivalent:

(1) S is almost left factorizable;
(2) S is a projection separating (2, 1, 1)-morphic image of a W -product

of a semilattice by a monoid;
(3) S is a (2, 1, 1)-morphic image of a W -product of a semilattice by a

monoid.

The proper and almost left factorizable restriction semigroups are char-
acterized as follows.

Theorem 3.7. A restriction semigroup is proper and almost left factorizable
if and only if it is (2, 1, 1)-isomorphic to a W -product of a semilattice by a
monoid.

Now we turn to considering the left-right symmetric versions of factoriz-
ability and almost factorizability. The analogy with the inverse case is, of
course, closer in this case.
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In a restriction monoid M , the H̃-class H̃1(M) forms a monoid. In par-
ticular, if M is ample then it is cancellative. A restriction monoid M is

said to be factorizable if M = P (M) H̃1(M). Clearly, a restriction monoid
M obtained from an inverse monoid Minv is factorizable if and only Minv is
factorizable in the usual sense.

Proposition 3.8. A restriction monoid is factorizable if and only if it is
both left and right factorizable.

A restriction semigroup S is said to be almost factorizable if, for any a ∈ S,

there exists A ∈ H̃P (S)(C(S)) such that a ∈ A. Notice that a restriction
semigroup S obtained from an inverse semigroup Sinv is almost factorizable
if and only Sinv is almost factorizable in the usual sense.

It is clear that, for any restriction semigroup, almost factorizability im-
plies both almost left and almost right factorizability. The converse is true
for proper restriction semigroups.

Proposition 3.9. A proper restriction semigroup is almost factorizable if
and only if it is both almost left and almost right factorizable.

The connection between the structures of almost factorizable restriction
semigroups and factorizable restriction monoids is more intimate than in the
one-sided case, and it is analogous to the inverse case.

Proposition 3.10. A restriction monoid is almost factorizable if and only
if it is factorizable.

Theorem 3.11. If M is a factorizable restriction monoid then M \ H̃1(M)
is an almost factorizable restriction semigroup. Conversely, each almost fac-
torizable restriction semigroup is (2, 1, 1)-isomorphic to a restriction semi-

group of the form M \ H̃1(M) where M is a factorizable restriction monoid.

The left-right symmetric analogues of Theorems 3.6 and 3.7 are the fol-
lowing, cf. Remark 2.2.

Theorem 3.12. For every restriction semigroup S, the following conditions
are equivalent:

(1) S is almost factorizable;
(2) S is a projection separating (2, 1, 1)-morphic image of a reverse semi-

direct product T n Y where Y is a semilattice and T is a monoid
acting on Y on the right by automorphisms;

(3) S is a (2, 1, 1)-morphic image of a reverse semidirect product T n Y
where Y is a semilattice and T is a monoid acting on Y on the right
by automorphisms.

Theorem 3.13. A restriction semigroup is proper and almost factorizable
if and only if it is (2, 1, 1)-isomorphic to a reverse semidirect product T nY
where Y is a semilattice and T is a monoid acting on Y on the right by
automorphisms.

4. Embedding in almost left factorizable restriction
semigroups

This section is devoted to proving the main result of the paper:
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Theorem 4.1. Each restriction semigroup is (2, 1, 1)-embeddable into an
almost left factorizable restriction semigroup.

Let S be any restriction semigroup. Then, by Result 2.3, there exists a
non-empty set X such that S is isomorphic to a (2, 1, 1)-factor semigroup of
FWRS(X) modulo a (2, 1, 1)-congruence τ . Since FWRS(X) is a (2, 1, 1)-
subsemigroup in W (X∗,Q), the relation τ generates a (2, 1, 1)-congruence
τ# on W (X∗,Q), and the mapping

φ : FWRS(X)/τ →W (X∗,Q)/τ#, (t, At)τ 7→ (t, At)τ#

is obviously a (2, 1, 1)-morphism. In particular, if the restriction of τ# to
FWRS(X) coincides with τ then φ is a (2, 1, 1)-embedding. On the other
hand, W (X∗,Q)/τ# is an almost left factorizable restriction semigroup by
Theorem 3.6. Therefore, in order to prove Theorem 4.1, it suffices to show
the following statement.

Proposition 4.2. Let X be a non-empty set, and let τ be a (2, 1, 1)-con-
gruence on FWRS(X). Consider the (2, 1, 1)-congruence τ# on W (X∗,Q)
generated by τ . Then the restriction of τ# to FWRS(X) is equal to τ .

Now we prepare ourselves for the proof of this proposition by describing
the (2, 1, 1)-congruence of a restriction semigroup generated by any given
relation τ . For notational convenience, we suppose that τ is symmetric.
This is enough for our purposes, and this assumption does not essentially
reduce generality. For, if τ is an arbitrary relation then τ ∪ τ−1, where τ−1

is the converse of τ , is a symmetric relation, and τ# = (τ ∪ τ−1)
#

.
A well-known universal algebraic fact implies the following description.

Lemma 4.3. Let S be a restriction semigroup and τ a symmetric relation
on S. Then, for any s, t ∈ S, we have s τ# t if and only if s = t, or there
exists k ∈ N, there exist elements c1, d1, c2, d2, . . . , ck, dk ∈ S and unary
polynomials p1, p2, . . . , pk ∈ P1(S) such that

(4.1) ci τ di (i = 1, 2, . . . , k),

and

s = pS1 (c1), pS1 (d1) = pS2 (c2), pS2 (d2) = pS3 (c3), . . . ,(4.2)

pSk−2(dk−2) = pSk−1(ck−1), pSk−1(dk−1) = pSk (ck), p
S
k (dk) = t.

We can simplify this description by choosing the unary polynomials in-
volved in a special way. In the language of restriction semigroups, let us
define two sequences of terms in variables x, y, z, y0, z0, . . . , yn, zn, . . .. Let

t
(0)
+ (x, y0, z0) = (y0xz0)+, t

(0)
∗ (x, y0, z0) = (y0xz0)∗,

and, for every i ∈ N, let

t
(i)
+ (x, y0, z0, . . . , yi−2, zi−1, yi) =

(
yit

(i−1)
∗ (x, y0, z0, . . . , yi−2, zi−1)

)+
,

t
(i)
∗ (x, y0, z0, . . . , zi−2, yi−1, zi) =

(
t

(i−1)
+ (x, y0, z0, . . . , zi−2, yi−1)zi

)∗
.
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For convenience, we note that

t
(1)
+ (x, y0, z0, y1) =

(
y1(y0xz0)∗

)+
,

t
(1)
∗ (x, y0, z0, z1) =

(
(y0xz0)+z1

)∗
,

t
(2)
+ (x, y0, z0, z1, y2) =

(
y2

(
(y0xz0)+z1

)∗)+
,

t
(2)
∗ (x, y0, z0, y1, z2) =

((
y1(y0xz0)∗

)+
z2

)∗
.

Define
T

(i)
+ = {t(i)

+ }, T
(i)
∗ = {t(i)

∗ },
T+ = {t(i)

+ : i ∈ N0}, T∗ = {t(i)
∗ : i ∈ N0},

and, finally, put

T = {yuz : u = x or u ∈ T+ ∪T∗}.
Let t ∈ T+∪T∗∪T. We call the sequence of all variables but x occurring

in t the t-sequence of variables, and we denote it var t. More precisely, let

var t
(0)
+ = (y0, z0) = var t

(0)
∗ ,

and

var t
(i)
+ = (var t

(i−1)
∗ , yi), var t

(i)
∗ = (var t

(i−1)
+ , zi)

for every i ∈ N. In particular, we have

var t
(1)
+ = (y0, z0, y1), var t

(1)
∗ = (y0, z0, z1),

var t
(2)
+ = (y0, z0, z1, y2), var t

(2)
∗ = (y0, z0, y1, z2).

Moreover, if t = yuz ∈ T then let

var t =

{
(y, z) if u = x,
(y, z, varu) if u ∈ T+ ∪T∗.

Observe that the members of the sequence var t are pairwise distinct. We
will find it convenient to use the notation var t to denote also the set of
variables occurring in the sequence var t.

Let S be a restriction semigroup, and, as above, let t ∈ T+ ∪T∗ ∪T. A
sequence of elements of S1 is called a t-sequence in S1 if its length is equal
to the length of var t. If α is a t-sequence in S1 then, by writing t(x, α) we
mean the unary polynomial obtained from t by substituting each member
of α for the respective variable in var t.

For any subset X in the set of terms T+ ∪T∗ ∪T, we define the subset

X(S) = {t(x, α) : t ∈ X, and α is a t-sequence in S1}
of P1(S), and denote by XS(S) the set of polynomial functions of S corre-
sponding to X(S). Notice that

(4.3) TS
+(S) ∪TS

∗ (S) ⊆ TS(S).

For, if u ∈ T+ ∪T∗ then t = yuz ∈ T, and, for any u-sequence α in S1, we
have uS(x, α) = tS(x, (1, 1, α)) where (1, 1, α) is obviously a t-sequence in
S1.

Before establishing that Lemma 4.3 remains valid if we require that the
polynomials p1, p2, . . . , pk belong to T(S), we formulate a lemma needed in
the proof and also later on.
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Lemma 4.4. Let i ∈ N0. For every a, b ∈ S1 and every t
(i)
+ -sequence α

in S1, the polynomial function of S corresponding to the unary polynomial(
at

(i)
+ (x, α)b

)+
belongs to

(
T

(i)
+

)S
(S).

Proof. Assume that a, b ∈ S1 and α is a t
(i)
+ -sequence in S1. If i = 0 then

let α = (a0, b0), and if i ∈ N then let α = (a0, b0, . . . , bi−1, ai). In the latter

case, denote (a0, b0, . . . , bi−1) by β, an recall that it is a t
(i−1)
∗ -sequence in

S1. For brevity, put q =
(
at

(i)
+ (x, α)b

)+
. If i = 0 then

qS(c) =
(
a(a0cb0)+b

)+
=
(
a(a0cb0)+b+

)+
=
(
ab+(a0cb0)+

)+
= (ab+a0cb0)+ =

(
t

(0)
+

)S
(c, ab+a0, b0),

and t
(0)
+ (x, ab+a0, b0) ∈ T

(0)
+ (S). Thus qS ∈

(
T

(0)
+

)S
(S). If i ≥ 1 then

qS(c) =
(
a
(
t

(i)
+

)S
(c, α)b

)+
=
(
a
(
ai
(
t

(i−1)
∗

)S
(c, β)

)+
b
)+

=
(
a
(
ai
(
t

(i−1)
∗

)S
(c, β)

)+
b+
)+

=
(
ab+

(
ai
(
t

(i−1)
∗

)S
(c, β)

)+)+
=
(
ab+ai

(
t

(i−1)
∗

)S
(c, β)

)+
=
(
t

(i)
+

)S
(c, (β, ab+ai)),

and t
(i)
+ (x, (β, ab+ai)) ∈ T

(i)
+ (S). Hence qS ∈

(
T

(i)
+

)S
(S) follows. �

Proposition 4.5. Let S be a restriction semigroup and τ a symmetric re-
lation on S. Then, for any s, t ∈ S, we have s τ# t if and only if s = t,
or there exists k ∈ N, there exist elements c1, d1, c2, d2, . . . , ck, dk ∈ S and
unary polynomials p1, p2, . . . , pk ∈ T(S) such that conditions (4.1) and (4.2)
are fulfilled.

Proof. For any s, t ∈ S, define s τ t if s = t, or (4.1) and (4.2) hold for some
k ∈ N, c1, d1, c2, d2, . . . , ck, dk ∈ S and p1, p2, . . . , pk ∈ T(S). Obviously,
τ ⊆ τ . The inclusion T(S) ⊆ P1(S) implies τ ⊆ τ# by Lemma 4.3. Thus all
we have to show is that τ is a (2, 1, 1)-congruence on S. By definition, τ is
clearly an equivalence relation. Assume that s, t ∈ S with s τ t and s 6= t. Let
us choose and fix k ∈ N, c1, d1, c2, d2, . . . , ck, dk ∈ S and p1, p2, . . . , pk ∈ T(S)
such that (4.1) and (4.2) are satisfied.

In order to check that τ is compatible with the multiplication on the left,
notice that, for any u ∈ S, we have

us = upS1 (c1), upS1 (d1) = upS2 (c2), upS2 (d2) = upS3 (c3), . . . ,

upSk−1(dk−1) = upSk (ck), up
S
k (dk) = ut.

For each index j, we have pj ∈ T(S), and so pj = t(x, α) for some t ∈ T
and a t-sequence α = (a, b, a0, b0, . . .) in S1. By definition, t = yuz where
u ∈ {x} ∪ T+ ∪ T∗, and y /∈ varu. Hence upSj (c) = tS(c, α′) for every

c ∈ S, that is, upSj (x) = tS(x, α′), where α′ = (ua, b, a0, b0, . . .). Since

t(x, α′) ∈ T(S), this implies that us τ ut.
In order to show that τ is compatible with the unary operation +, observe

that (4.2) implies

s+ =
(
pS1 (c1)

)+
,
(
pS1 (d1)

)+
=
(
pS2 (c2)

)+
,
(
pS2 (d2)

)+
=
(
pS3 (c3)

)+
, . . . ,(

pSk−1(dk−1)
)+

=
(
pSk (ck)

)+
,
(
pSk (dk)

)+
= t+.
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Similarly to the previous argument, we verify s+ τ t+ by establishing that(
p+
j

)S ∈ TS(S) for every index j. As above, let pj = t(x, α) with t ∈ T

and a t-sequence α = (a, b, a0, b0, . . .) in S1, where t = yuz for some u ∈
{x} ∪ T+ ∪ T∗. Notice that if u ∈ T+ ∪ T∗ then α0 = (a0, b0, . . .) is a
u-sequence in S1, and uS(c, α0) is a projection in S for any c ∈ S.

Case u = x. For every c ∈ S, we have (p+
j )S(c) = (pSj (c))+ = (acb)+ =(

t
(0)
+

)S
(c, α), and so (p+

j )S(x) =
(
t

(0)
+

)S
(x, α). Hence (p+

j )S belongs to

TS
+(S), and TS

+(S) ⊆ TS(S) by (4.3).

Case u = t
(i)
+ . We have p+

j =
(
at

(i)
+ (x, α0)b

)+
, and Lemma 4.4 and

inclusion (4.3) imply that (p+
j )S ∈ TS

+(S) ⊆ TS(S).

Case u = t
(i)
∗ . Now, we have

(p+
j )S(c) =

(
a
(
t

(i)
∗
)S

(c, α0)b
)+

=
(
a
(
t

(i)
∗
)S

(c, α0)b+
)+

=
(
ab+

(
t

(i)
∗
)S

(c, α0)
)+

=
(
t

(i+1)
+

)S
(c, (α0, ab

+)),

where (α0, ab
+) is a t

(i+1)
+ -sequence in S1, and

(
t

(i+1)
+

)S
(x, (α0, ab

+)) ∈
TS

+(S) and TS
+(S) ⊆ TS(S). This ensures (p+

j )S ∈ TS(S).
The compatibility of τ with the multiplication on the right and that with

the operation ∗ follow dually. �

In particular, if S is W (X∗,Q), then we can impose additional condition
on the substitutions in the definition of T(S). For brevity, denote W (X∗,Q)
by W . Furthermore, let us simplify our arguments by agreeing that any
element u ∈ W ε is supposed to be u = (u, Uu) where u ∈ X∗ and U ∈ Q∅.
If δ = (d0, d1, . . . , ds) is a sequence in W ε then we write δ for the sequence
(d0, d1, . . . , ds),

By a reduced t
(0)
+ -sequence [reduced t

(0)
∗ -sequence] in W ε we mean a t

(0)
+ -

sequence [t
(0)
∗ -sequence] (a0, b0) in W ε such that b0 = 1 [a0 = 1]. If

i ∈ N then a t
(i)
+ -sequence (a0, b0, . . . , ai−2, bi−1, ai) in W ε is called re-

duced if (a0, b0, . . . , ai−2, bi−1) is a reduced t
(i−1)
∗ -sequence in W ε, ai 6= 1,

and the word aibi−1
−1 ∈ (X ∪ X−1)∗ is reduced. Dually, a t

(i)
∗ -sequence

(a0, b0, . . . , bi−2, ai−1, bi) in W ε is termed reduced if (a0, b0, . . . , bi−2, ai−1) is

a reduced t
(i−1)
+ -sequence in W ε, bi 6= 1, and the word ai−1

−1bi ∈ (X∪X−1)∗

is reduced.
Now we characterize the reduced t

(i)
+ -sequences directly. Let i ∈ N, and

consider a t
(i)
+ -sequence α = (a0, b0, . . . , ai−2, bi−1, ai) in W ε. Observe that

α = (a0, b0, α
−) where

α− =

{
(a1, b2, . . . , ai−2, bi−1, ai) if i is odd,
(b1, a2, . . . , ai−2, bi−1, ai) if i is even.

Define a word in X∗ corresponding to α by

w(α) =

{
a0 if i is odd,

b0 if i is even,
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and another one in (X ∪X−1)∗ by

w(α) =

{
aibi−1

−1
ai−2 . . . b2

−1
a1b0

−1
if i is odd,

aibi−1
−1
ai−2 . . . a2b1

−1
a0 if i is even.

Lemma 4.6. For every i ∈ N, a t
(i)
+ -sequence α in W ε is reduced if and

only if w(α) = 1, the members of α− are in X+, and w(α) is a reduced word
in (X ∪X−1)∗.

A characterization of a reduced t
(i)
∗ -sequence (i ∈ N) in W ε could be

given dually. For example, if α = (a0, b0, . . . , bi−2, ai−1, bi) is a t
(i)
∗ -sequence

in W ε then w(α) would be . . . bi−2ai−1
−1bi. However, we will find it more

convenient to consider the inverse of this word to be w(α), that is, we define

w(α) =

{
bi
−1
ai−1bi−2

−1
. . . a2b1

−1
a0 if i is odd,

bi
−1
ai−1bi−2

−1
. . . b2

−1
a1b0

−1
if i is even.

For, in this case, we have w((α1, ai)) = aiw(α1) for any t
(i−1)
∗ -sequence

α1 and t
(i)
+ -sequence (α1, ai), and, similarly, w((α1, bi)) = bi

−1
w(α1) for

any t
(i−1)
+ -sequence α1 and t

(i)
∗ -sequence (α1, bi). Since the word w(α) ∈

(X ∪ X−1)∗ is reduced if and only if its inverse is, the formulation of the
dual of Lemma 4.6 does not change with this modification.

One can easily prove Lemma 4.6 and its dual simultaneously by induction
on i, therefore it is left to the reader.

Now let t = yuz ∈ T with u ∈ {x} ∪T+ ∪T∗. A t-sequence α = (a, b, β)
in W ε, where β is empty if u = x and is a u-sequence in W ε otherwise, is said
to be a reduced t-sequence in W ε if β is empty or is a reduced u-sequence
in W ε.

For any subset X in the set of terms T+ ∪T∗ ∪T, we define the subset

X[W ] = {t(x, α) : t ∈ X, and α is a reduced t-sequence in W ε}

of P1(W ), and denote by XW [W ] the set of polynomial functions of W
corresponding to X[W ]. Obviously, we have

(4.4) XW [W ] ⊆ XW (W ) for any X ⊆ T+ ∪T∗ ∪T.

We intend to show that the reverse inclusion also holds, that is, the equality
is valid.

Lemma 4.7. Let i ∈ N, and let α = (a0, b0, . . . , ai−2, bi−1, ai) be a t
(i)
+ -

sequence in W ε.

(1) If ai = 1 then
(
t

(i)
+

)W
(x, α) ∈

(
T

(i−1)
∗

)W
(W ).

(2) If ai 6= 1 then there exist elements a′i ∈W , b′i−1 ∈W ε such that

red
(
ai bi−1

−1)
= a′i b

′
i−1

−1
,

and we have

(4.5)
(
t

(i)
+

)W
(x, α) =

(
t

(i)
+

)W
(x, α′)

for the t
(i)
+ -sequence α′ = (a0, b0, . . . , ai−2, b

′
i−1, a

′
i) in W ε.
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Proof. If i ≥ 2 then denote the t
(i−2)
+ -sequence (a0, b0, . . . , ai−2) by α2.

For brevity, let p = t
(i)
+ (x, α), and define

r =

{
a0x if i = 1,

t
(i−2)
+ (x, α2) otherwise.

Then, by definition, we have

(4.6) p =
(
ai(rbi−1)∗

)+
.

(1) If ai = 1 then ai ∈ P (W ). Therefore, for every c ∈ W , we see that

pW (c) =
(
ai(r

W (c)bi−1)∗
)+

=
(
(rW (c)bi−1)∗ai

)+
=
(
(rW (c)bi−1ai)

∗)+ =

(rW (c)bi−1ai)
∗. Hence pW (c) =

(
t

(i−1)
∗

)W
(c, (β, bi−1ai)), where β = a0 if i =

1 and β = α2 otherwise. Clearly, we have t
(i−1)
∗ (x, (β, bi−1ai)) ∈ T

(i−1)
∗ (W )

which implies that pW ∈
(
T

(i−1)
∗

)W
(W ).

(2) For brevity, write a for ai and b for bi−1. Suppose that a = ut and

b = vt where u, v, t ∈ X∗ and red
(
ab
−1)

= uv−1. For an arbitrary c ∈ W ,

let rW (c) = (r,Rr). Thus we obtain by (4.6) that

pW (c) =
(
ai(r

W (c)bi−1)∗
)+

=
(
(a,Aa)

(
(r,Rr)(b, Bb)

)∗)+
=
(
(a,Aa)

(
1, (R ∨ rB)

rb))+
=
(
1, A ∨ a

(
(R ∨ rB)

rb))
=
(
1, A ∨ ab

−1
r−1

(R ∨ rB)
)

=
(
1, A ∨ uv−1r−1

(R ∨ rB)
)
.

Obviously, (u,Au) ∈W since A 6= ∅ is implied by a = ai 6= 1, and (v,Bv) ∈
W ε. Hence a similar calculation to the previous one but in the reverse order
shows that

pW (c) =
(
1, A ∨ uv−1r−1

(R ∨ rB)
)

=
(
(u,Au)

(
(r,Rr)(v,Bv)

)∗)+
.

Choosing a′i = (u,Au) and b′i−1 = (v,Bv), we deduce that

pW (c) =
(
a′i(r

W (c)b′i−1)∗
)+

=
(
t

(i)
+

)W
(c, α′).

This shows that
(
t

(i)
+

)W
(x, α) =

(
t

(i)
+

)W
(x, α′) where

red
(
ai bi−1

−1)
= uv−1 = a′i b

′
i−1

−1
.

�

Lemma 4.8. For every i ∈ N, t ∈ T
(i)
+ ∪ T

(i)
∗ and every t-sequence α in

W ε, we have either

tW (x, α) ∈
i−1⋃
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ],

or

tW (x, α) = tW (x, α′)

for some reduced t-sequence α′ in W ε with red (w(α)) = w(α′).
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Proof. We prove this statement by induction on i. First let i = 0 and

t = t
(0)
+ . For p = t

(0)
+ (x, α) where α = (a0, b0), we have pW (c) = (a0cb0)+ =

(a0cb
+
0 )+ for any c ∈ W . Thus pW =

(
t

(0)
+

)W
(x, α′) ∈

(
T

(0)
+

)W
[W ] follows

for α′ = (a0, b
+
0 ). For, b+0 = 1, and so α′ is, indeed, reduced. This and the

dual argument show that, in case i = 0, the assertion of Lemma 4.8 holds.
Let i ∈ N, and suppose that the statement of the lemma holds for any

index smaller than i. In particular, it implies that

(4.7)
(
T

(k)
+ ∪T

(k)
∗
)W

(W ) ⊆
k⋃
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ] for every k < i.

Let t = t
(i)
+ , α = (a0, b0, . . . , ai−2, bi−1, ai), and put p = t

(i)
+ (x, α). If ai = 1

then Lemma 4.7(1) implies pW ∈
(
T

(i−1)
∗

)W
(W ), and (4.7) ensures that

pW ∈
⋃i−1
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ].

Assume that ai 6= 1. Now Lemma 4.7(2) implies that equality (4.5)

holds for some a′i ∈ W , b′i−1 ∈ W ε with red
(
ai bi−1

−1)
= a′i b

′
i−1

−1
, and

for the t
(i)
+ -sequence α′ = (a0, b0, . . . , ai−2, b

′
i−1, a

′
i). If a′i = 1 then the

argument in the previous paragraph applies for p̃ = t
(i)
+ (x, α′), and pW =

p̃W ∈
⋃i−1
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ] follows.

From now on, assume that a′i 6= 1, and, introducing the notation α1 =

(a0, b0, . . . , ai−2, b
′
i−1) and q = t

(i−1)
∗ (x, α1), we obtain that p̃ = (a′iq)

+. If

b′i−1 = 1 then the dual of the argument in the previous paragraph verifies

that qW ∈
⋃i−2
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ]. If qW ∈
(
T

(j)
∗
)W

[W ] for some j ≤ i− 2

then qW =
(
t

(j)
∗
)W

(x, γ) for some t
(j)
∗ -sequence γ in W ε, and so

p̃W =
(
a′iq

W
)+

=
(
t

(j+1)
+

)W
(x, (γ, a′i)) ∈

(
T

(j+1)
+

)W
(W )

follows. If qW ∈
(
T

(j)
+

)W
[W ] for some j ≤ i− 2 then qW =

(
t

(j)
+

)W
(x, γ) for

some t
(j)
+ -sequence γ in W ε, and so Lemma 4.4 implies that

p̃W =
(
a′iq

W
)+

=
(
a′i
(
t

(j)
+

)W
(x, γ)

)+ ∈ (T(j)
+

)W
(W ).

Thus we deduce that if qW ∈
⋃i−2
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ] then pW = p̃W ∈⋃i−1
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

(W ), which implies by (4.7) that

(
t

(i)
+

)W
(x, α) = pW ∈

i−1⋃
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ].

In the opposite case, that is, if(
t

(i−1)
∗

)W
(x, α1) = qW /∈

i−2⋃
j=0

(
T

(j)
+ ∪T

(j)
∗
)W

[W ],

and, consequently, b′i−1 6= 1, then the induction hypothesis implies that(
t

(i−1)
∗

)W
(x, α1) =

(
t

(i−1)
∗

)W
(x, α′′1)
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for some reduced t
(i−1)
∗ -sequence α′′1 = (a′′0, b

′′
0, . . . , a

′′
i−2, b

′′
i−1), where

(4.8) red
(
w(α1)

)
= w(α′′1).

Hence pW = p̃W = (a′iq
W )+ =

(
t

(i)
+

)W
(x, α′′) where α′′ = (α′′1, a

′
i) is a t

(i)
+ -

sequence in W ε such that a′i 6= 1. We intend to verify that α′′ is reduced.
Taking into account the properties of α′′1, all we have to check is that the

word a′i b
′′
i−1

−1 ∈ (X ∪X−1)∗ is reduced.

By the dual of Lemma 4.6, the members of (α′′1)− belong to X+. Since the
lengths of α1 and α′′1 are the same, equality (4.8) implies that no member

of α−1 is the empty word, and, when reducing the word w(α1), no member

of α−1 is fully deleted. Therefore b′′i−1

−1
is a prefix of b′i−1

−1
. Since, by the

choice of a′i and b′i−1, we know that a′i b
′
i−1

−1
is reduced, this implies that

a′i b
′′
i−1

−1
is also reduced. �

An immediate consequence of this lemma is that the inclusion

(T+ ∪T∗)
W (W ) ⊆ (T+ ∪T∗)

W [W ]

is valid. Hence TW (W ) ⊆ TW [W ] follows, and so we obtain the following
statement by (4.4).

Lemma 4.9. The equality TW (W ) = TW [W ] holds.

This lemma allows us to replace T(W ) by T[W ] in Proposition 4.5 if
S = W . Denote by (4.2)S=W the condition obtained from (4.2) by replacing
S by W .

Proposition 4.10. If τ is a symmetric relation on W = W (X∗,Q) then,
for any s, t ∈ W , we have s τ# t if and only if s = t, or there exists k ∈
N, there exist elements c1, d1, c2, d2, . . . , ck, dk ∈ W and unary polynomials
p1, p2, . . . , pk ∈ T[W ] such that conditions (4.1) and (4.2)S=W are satisfied.

The main idea of the proof of Proposition 4.2 is that if τ is a (2, 1, 1)-
congruence on FW = FWRS(X), s, t are distinct τ#-related elements in
FW , and k ∈ N, c1, d1, c2, d2, . . . , ck, dk ∈ FW , p1, p2, . . . , pk ∈ T[W ] fulfil
conditions (4.1) and (4.2)S=W , then we find p̃1, p̃2, . . . , p̃k ∈ T(FW ) such
that

p̃FW
j (cj) ≤ pWj (cj) and p̃FW

j (dj) ≤ pWj (dj) for j = 1, 2, . . . , k,

and
p̃FW
j (dj) = p̃FW

j+1(cj+1) for j = 1, 2, . . . , k − 1.

In order to help finding p̃j+1 to p̃j with the above properties, we show several
lemmas. Recall that, for any u = (u, Uu) ∈W , we have u ∈ FW if and only
if 1, u ∈ U .

Lemma 4.11. Let a, b ∈W ε, q ∈W and s ∈ FW such that s ≤ aqb.
(1) If q ∈ FW then there exist ã, b̃ ∈ FW such that ã ≤ a, b̃ ≤ b and

s = ãqb̃.
(2) If q ∈ P (W ) then there exist ã, b̃, q̃ ∈ FW such that ã ≤ a, b̃ ≤ b,

q̃ ≤ q and s = ãq̃b̃.
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Proof. Recall that u ≤ v in W ε if and only if u = v in X∗ and U ⊇ V in
Q. Let a, b ∈ W ε, q ∈ W and s ∈ FW with s ≤ aqb. The latter relation is
equivalent to requiring that

s = aqb, and S ⊇ A ∨ aQ ∨ aqB.

This implies

(4.9) S ⊇ A, Sa ⊇ Q and Saq ⊇ B.

Since s ∈ FW , we have 1, s ∈ S. Hence a, aq ∈ S follows because s = aqb
and S is prefix closed. Therefore we also see that 1 ∈ Sa and 1, b ∈ Saq.
This implies that the elements ã = (a, Sa), q̃ = (1, Sa) and b̃ =

(
b, (Saq)b

)
belong to FW . It is straightforward by (4.9) that ã ≤ a and b̃ ≤ b. Moreover,
if q ∈ P (W ), that is, q = 1, then we also have q̃ ≤ q. Finally, we check that
s is of the form required.

(1) We have

ãqb̃ = (a, Sa)(q,Qq)
(
b, (Saq)b

)
=
(
aqb, Saqb ∨Qqb ∨ Saqb

)
= (s, Ss ∨Qqb) = (s, Ss) = s,

where we apply in the last step that (4.9) implies Qqb ⊆ (Sa)qb = Ss.
(2) Now we have q = 1, and so

ãq̃b̃ = (a, Sa)(1, Sa)(b, (Sa)b) =
(
ab, Sab

)
= (s, Ss) = s.

�

Lemma 4.12. Let a ∈W ε, q ∈W and s ∈ FW such that s ≤ (aq)+.

(1) If q = rb for some r ∈ FW and b ∈ P (W ε), then there exist ã, b̃ ∈ FW
such that ã ≤ a, b̃ ≤ b and s = (ãrb̃)+.

(2) If q = (erf)∗ for some r ∈ FW and e, f ∈ P (W ε), then there exist
ã, q̃ ∈ FW such that ã ≤ a, q̃ ≤ q and s = (ãq̃)+.

(3) If a 6= 1, and q = (pb)∗ for some p ∈ P (W ) and b ∈ W where b 6= 1

and ab
−1

is reduced, then there exist ã, q̃ ∈ FW such that ã ≤ a,
q̃ ≤ q and s = (ãq̃)+.

Proof. (1) Let a ∈ W ε, q ∈ W , r, s ∈ FW and b ∈ P (W ε) such that
q = rb and s ≤ (aq)+. Hence s ≤ (arb)+, or, equivalently,

s = 1, and S ⊇ A ∨ aR ∨ arB.

This implies (cf. (4.9))

(4.10) S ⊇ A, Sa ⊇ R and Sar ⊇ B.

Notice that b ∈ P (W ε) ensures b = 1. Since r, s ∈ FW , we have 1, r ∈ R and
1 ∈ S. The former relation implies a, ar ∈ aR ⊆ S, whence we obtain that
1 ∈ Sar. Thus we see that the elements ã = (a, Sa) and b̃ = (1, Sar) belong

to FW . It is straightforward by (4.10) that ã ≤ a and b̃ ≤ b. Moreover, we
have

(ãrb̃)+ =
(
(a, Sa)(r,Rr)(1, Sar)

)+
= (1, S ∨ aR ∨ S) = (1, S) = s.
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(2) Let a ∈ W ε, q ∈ W , r, s ∈ FW and e, f ∈ P (W ε) such that q =
(erf)∗ and s ≤ (aq)+. This is equivalent to requiring that

q = 1, and Q = (E ∨R)r ∨ F

and

(4.11) s = 1, and S ⊇ A ∨ aQ = A ∨ ar−1
(E ∨R) ∨ aF .

Since r, s ∈ FW , we have r ∈ R and 1 ∈ S. By (4.11) we obtain that
a = ar−1r ∈ S, whence 1 ∈ Sa follows. Thus the elements ã = (a, Sa) and
q̃ = (1, Sa) belong to FW , and the inequalities ã ≤ a, q̃ ≤ q hold by (4.11).
Moreover, we have

(ãq̃)+ =
(
(a, Sa)(1, Sa)

)+
= (a, Sa)+ = (1, S) = s.

(3) Let a, b, q ∈ W , p ∈ P (W ) and s ∈ FW such that a, b 6= 1, ab
−1

is
reduced, and q = (pb)∗, s ≤ (aq)+. The last two relations are equivalent to

q = 1, and Q = (P ∨B)b

and

(4.12) s = 1, and S ⊇ A ∨ aQ = A ∨ ab
−1

(P ∨B),

respectively, since p = 1. Here A,P ∨ B ∈ Q, and so there exist u, v ∈ X∗
such that u−1 ∈ A and v−1 ∈ P ∨ B. This implies by the definition of

the operation ∨ that u−1
[
red
(
uab
−1
v−1
)]↓
∈ A ∨ ab

−1

(P ∨ B) ⊆ S. Since

a, b 6= 1 and ab
−1

is reduced, so is uab
−1
v−1, whence we obtain that ua ∈[

red
(
uab
−1
v−1
)]↓

. Thus we deduce that a ∈ S and 1 ∈ Sa. Therefore we

can again consider the elements ã = (a, Sa) and q̃ = (1, Sa), as in the proof
of the previous statement, and they fulfil all the conditions required. �

Since a W -product is not a left-right symmetric construction, we need to
verify the dual of Lemma 4.12 separately.

Lemma 4.13. Let b ∈W ε, q ∈W and s ∈ FW such that s ≤ (qb)∗.

(1) If q = ar for some r ∈ FW and a ∈ P (W ε) then there exist ã, b̃ ∈ FW
such that ã ≤ a, b̃ ≤ b and s = (ãrb̃)∗.

(2) If q = (erf)+ for some r ∈ FW and e, f ∈ P (W ε) then there exist

b̃, q̃ ∈ FW such that b̃ ≤ b, q̃ ≤ q and s = (q̃b̃)∗.
(3) If b 6= 1, and q = (ap)+ for some p ∈ P (W ) and a ∈W where a 6= 1

and b
−1
a is reduced, then there exist b̃, q̃ ∈ FW such that b̃ ≤ b, q̃ ≤ q

and s = (q̃b̃)∗.

Proof. (1) Let a ∈ P (W ε), b ∈ W ε and r, s ∈ FW such that s ≤ (arb)∗.
Then

s = 1, and S ⊇ (A ∨R)rb ∨Bb.

This implies rbS ⊇ A,R and bS ⊇ B. Since r, s ∈ FW , and so 1, r ∈ R and

1 ∈ S, we obtain that 1 ∈ rbS and 1, b ∈ bS. Thus the elements ã = (1, rbS)
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and b̃ =
(
b, (bS)b

)
belong to FW , and ã ≤ a and b̃ ≤ b by the above inclusions.

Furthermore, we have

(ãrb̃)∗ =
(

(1, rbS)(r,Rr)
(
b, (bS)b

))∗
= (1, S ∨Rrb ∨ S) = (1, S) = s.

(2) Let b ∈ W ε, q ∈ W , r, s ∈ FW and e, f ∈ P (W ε) such that q =
(erf)+ and s ≤ (qb)∗. These relations are equivalent to

q = 1, and Q = E ∨R ∨ rF

and

(4.13) s = 1, and S ⊇ (Q ∨B)b = (E ∨R ∨ rF ∨B)b,

respectively. Since r, s ∈ FW , we have 1 ∈ R,S. Therefore b ∈ bS follows,

and (4.13) implies that b
−1 ∈ Rb ⊆ S. From the latter observation we see

that 1 ∈ bS. Thus we deduce that the elements b̃ =
(
b, (bS)b

)
, q̃ = (1, bS)

belong to FW , and the inequalities b̃ ≤ b and q̃ ≤ q hold by (4.13). We also
have

(q̃b̃)∗ =
(

(1, bS)
(
b, (bS)b

))∗
=
(
1, (bS)b

)
= (1, S) = s.

(3) Let a, b, q ∈ W , p ∈ P (W ) and s ∈ FW such that a, b 6= 1, b
−1
a is

reduced, and q = (ap)+, s ≤ (qb)∗. Since p = 1, the last two relations are
equivalent to

q = 1, and Q = A ∨ aP

and

(4.14) s = 1, and S ⊇ (Q ∨B)b = Ab ∨ (aP )b ∨Bb,

respectively. Notice that 1 ∈ S implies b ∈ bS. The inclusion in (4.14)

implies S ⊇ (aP )b = b
−1
aP . Since P ∈ Q, there exists u ∈ X∗ with u−1 ∈ P ,

whence red (b
−1
au−1) ∈ S follows. However, b, a 6= 1 and b

−1
a is reduced,

therefore red (b
−1
au−1) = b

−1
red (au−1). Since the set S is prefix closed,

this implies that b
−1 ∈ S, and so 1 ∈ bS. Thus we can consider the elements

b̃ =
(
b, (bS)b

)
, q̃ = (1, bS), as above, and they satisfy all the conditions

required. �

Now we are ready to prove the crucial statement that allows us to find
the unary polynomials p̃j mentioned above. If α = (a1, a2, . . . , an), β =
(b1, b2, . . . , bn) are sequences of the same length consisting of elements in
W ε then we write α ≤ β to denote that ak ≤ bk for k = 1, 2, . . . , n.

Lemma 4.14. If t ∈ T+ ∪ T∗ ∪ T, α is a reduced t-sequence in W ε and
r, s ∈ FW such that s ≤ tW (r, α), then there exists a t-sequence α̃ in FW
such that α̃ ≤ α and s = tFW (r, α̃).

Proof. First we verify the assertion for T+ ∪T∗ =
⋃
i∈N0

(
T

(i)
+ ∪T

(i)
∗
)

by

induction on i. If α = (a0, b0) is a reduced t
(0)
+ -sequence in W ε, that is,

b0 = 1, and r, s ∈ FW such that s ≤
(
t

(0)
+

)W
(r, α) = (a0rb0)+, then Lemma

4.12(1) shows the existence of elements ã0, b̃0 ∈ FW such that the statement

is valid for the t
(0)
+ -sequence α̃ = (ã0, b̃0) in FW . This observation and its
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dual (where we apply Lemma 4.13(1) instead of Lemma 4.12(1)) verify the

assertion for t ∈ T
(0)
+ ∪T

(0)
∗ .

Let i ∈ N, and suppose that, for any t ∈
(
T

(i−1)
+ ∪T(i−1)

∗
)
, the proposition

holds. Consider a reduced t
(i)
+ -sequence α = (a0, b0, . . . , ai−2, bi−1, ai) in

W ε. By definition, α1 = (a0, b0, . . . , ai−2, bi−1) is a reduced t
(i−1)
∗ -sequence,

ai 6= 1 and aibi−1
−1

is reduced. Moreover, let r, s ∈ FW such that s ≤(
t

(i)
+

)W
(r, α). Putting

(4.15) q =
(
t

(i−1)
∗

)W
(r, α1),

we have

(4.16) s ≤
(
t

(i)
+

)W
(r, α) = (aiq)

+.

We distinguish two cases according to whether bi−1 equals 1 or not. If bi−1 =

1 then, by Lemma 4.6, α1 can be a reduced t
(i−1)
∗ -sequence only if i = 1.

Therefore we have α1 = (a0, b0) and a0 = b0 = 1, and so a0, b0 ∈ P (W ε) such
that q = (a0rb0)∗. Thus Lemma 4.12(2) implies the existence of elements ãi
(where i = 1) and q̃ in FW such that

(4.17) ãi ≤ ai, q̃ ≤ q and s = (ãiq̃)
+.

Now assume that bi−1 6= 1. If i = 1 then we have q = (a0(rb0))∗ where

a0 ∈ P (W ε) and rb0 ∈ W with rb0 6= 1. Furthermore, a1rb0
−1

= a1b0
−1
r−1

is reduced since a1b0
−1

is reduced and b0 6= 1. Therefore Lemma 4.12(3) can
be applied to obtain elements ãi (where i = 1) and q̃ in FW such that (4.17)

holds. If i ≥ 2 then α2 = (a0, b0, . . . , ai−2) is a reduced t
(i−2)
+ -sequence,

and, by (4.15), we have q = (pbi−1)∗ where p =
(
t

(i−2)
+

)W
(r, α2) ∈ P (W )

and bi−1 6= 1. Again, Lemma 4.12(3) implies the existence of elements
ãi, q̃ ∈ FW such that (4.17) is valid. Thus, in each case, we have found an

element q̃ ∈ FW such that, by (4.15) and (4.17), we have q̃ ≤
(
t

(i−1)
∗

)W
(r, α1)

where r ∈ FW and α1 is a reduced t
(i−1)
∗ -sequence in W ε. Therefore the

induction hypothesis can be applied to get a t
(i−1)
∗ -sequence α̃1 in FW such

that α̃1 ≤ α1 and q̃ =
(
t

(i−1)
∗

)FW (r, α̃1). Hence it follows that α̃ = (α̃1, ãi)

is a t
(i)
+ -sequence in FW , and, by (4.17), we have α̃ ≤ α and s = (ãiq̃)

+ =(
ãi
(
t

(i−1)
∗

)FW (r, α̃1)
)+

=
(
t

(i)
+

)FW (r, α̃). This argument together with its

dual (where Lemma 4.13 is applied instead of Lemma 4.12) completes the
proof for T+ ∪T∗.

Now let t ∈ T, and assume that α is a reduced t-sequence in W ε and
r, s ∈ FW such that s ≤ tW (r, α). If t = yxz and α = (a, b) with a, b ∈ W ε,

then tW (r, α) = arb. Thus Lemma 4.11(1) implies that there exist ã, b̃ ∈ FW
with s = ãrb̃, and so α̃ = (ã, b̃) is a t-sequence in FW where α̃ ≤ α and
s = tFW (r, α̃). If t = yuz with u ∈ T+ ∪ T∗, and α = (a, b, β) where
a, b ∈ W ε and β is a reduced u-sequence in W ε, then tW (r, α) = aqb where
q = uW (r, β) ∈ P (W ). Therefore Lemma 4.11(2) can be applied to obtain

elements ã, b̃, q̃ ∈ FW such that ã ≤ a, b̃ ≤ b, q̃ ≤ q and s = ãq̃b̃. Thus
q̃ ≤ uW (r, β) where β is a reduced u-sequence in W ε. Since u ∈ T+ ∪T∗, it
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follows by the previous part of the proof that there exists a u-sequence β̃ in

FW such that β̃ ≤ β and q̃ = uFW (r, β̃). Hence α̃ = (a, b, β̃) is a t-sequence

in FW , α̃ ≤ α and s = ãq̃b̃ = ãuFW (r, β̃)b̃ = tFW (r, α̃). �

Finally, we turn to proving Proposition 4.2.

Proof of Proposition 4.2. For brevity, denote FWRS(X) by FW as be-
fore. Let τ be a (2, 1, 1)-congruence on FW , and let s, t be distinct τ#-
related elements in FW . By Proposition 4.10, let us choose and fix k ∈ N,
c1, d1, c2, d2, . . . , ck, dk ∈ FW , and p1, p2, . . . , pk ∈ T[W ] such that conditions
(4.1) and (4.2)S=W are satisfied. By definition, for every j (j = 1, 2, . . . , k),
we have pj = tj(x, αj) for some tj ∈ T and for some reduced tj-sequence
αj in W ε. Let us define s0, s1, . . . , sk ∈ FW and p̃1, p̃2, . . . , p̃k ∈ T(FW )
in the following manner. Put s0 = s, and notice that, by assumption,
s0 ∈ FW and s0 ≤ pW1 (c1) = tW1 (c1, α1). If sj−1 is defined for some
j (1 ≤ j ≤ k) such that sj−1 ∈ FW and sj−1 ≤ pWj (cj) = tWj (cj , αj),
then, by applying Lemma 4.14, let us choose and fix a tj-sequence α̃j in

FW such that α̃j ≤ αj and sj−1 = tFW
j (cj , α̃j). Consider the unary poly-

nomial p̃j = tj(x, α̃j) in T(FW ), and define sj = p̃FW
j (dj). Obviously,

sj ∈ FW and sj = tFW
j (dj , α̃j) ≤ tWj (dj , αj) = pWj (dj). Furthermore,

if j < k then we have sj ≤ pWj (dj) = pWj+1(cj+1) = tWj+1(cj+1, αj+1).

Thus s0, s1, . . . , sk ∈ FW are defined, s0 = s and sk = tFW
k (dk, α̃k) ≤

tWk (dk, αk) = pWk (dk) = t. Moreover, for every j (1 ≤ j ≤ k), we have

sj−1 = tFW
j (cj , α̃j) = p̃FW

j (cj) τ p̃
FW
j (dj) = sj since cj τ dj in FW and τ is

a (2, 1, 1)-congruence on FW . Hence we obtain s τ sk, and we deduce that
sτ = skτ ≤ tτ in FW /τ . By symmetry, we also have tτ ≤ sτ whence it
follows that s τ t. �

As it was mentioned at the beginning of this section, the main result,
Theorem 4.1 is immediately implied by Proposition 4.2.
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