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Abstract. As an abstraction of the conjugation on multiplicative semigroups of quater-
nions, Garrǎo, Martins-Ferreira, Raposo, and Sobral [2] introduced the notion of a conju-
gation semigroup, and studied the category of commutative cancellative semigroups and
monoids. In this paper the conjugations of a group G are shown to be in one-to-one
correspondence with the endomorphisms of G whose ranges are in the center. Moreover,
cancellative conjugation semigroups are proved to be, up to isomorphism, the subsemi-
groups of conjugation groups that are closed under conjugation.

1. Introduction

The notion of a conjugation semigroup is introduced by Garrǎo, Martins-Ferreira, Ra-
poso, and Sobral [2] in order to present and investigate a new class of weakly Mal’tsev
categories that fail to be Mal’tsev. A conjugation on a semigroup (S; ·) is a unary opera-
tion – on (S; ·) such that the following equalities hold for every x, y ∈ S:

xx = xx,(1.1)

xyy = yyx,(1.2)

xy = y x.(1.3)

By a conjugation semigroup we mean a unary semigroup S = (S; ·, –) where – is a conjuga-
tion on the semigroup (S; ·). If (S; ·) is a monoid with identity element 1, and 1 = 1 then
S is called a conjugation monoid. Notice that if (S; ·) is a cancellative monoid then the
equality 1 = 1 is satisfied by any conjugation on (S; ·). If (S; ·) is a cancellative semigroup
(monoid) or, in particular, a group then S is termed a cancellative conjugation semigroup
(monoid) or, in particular, a conjugation group. For example, rules x = x, x = 1, and
x = x−1 define a conjugation on every commutative semigroup, commutative monoid and
group, respectively. We denote these conjugations by id, 1 and inv, respectively.

Notice that conjugation semigroups (monoids, groups) form a variety of unary semi-
groups (monoids, groups). Therefore a unary subsemigroup (submonoid, subgroup) of a
conjugation semigroup (monoid, group) is a conjugation semigroup (monoid, group), and
so we call it a conjugation subsemigroup (submonoid, subgroup). Obviously, if conjugation
is id (1, inv) in a commutative conjugation semigroup (commutative conjugation monoid,
conjugation group) S then each subsemigroup (submonoid, subgroup) of (S; ·) is a conju-
gation subsemigroup (submonoid, subgroup) of S.
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It is clear by (1.3) that each conjugation on a semigroup (monoid, group) is necessarily
a (monoid, group) anti-endomorphism, that is, a (monoid, group) homomorphism from
the semigroup (monoid, group) into its dual. In particular, on a commutative semigroup
(commutative monoid, Abelian group), the conjugations are just the (monoid, group) endo-
morphisms since (1.1) and (1.2) are implied by commutativity. In particular, conjugations
id and 1 are of this kind.

The examples in [2] motivating the notion of a conjugation semigroup are the multi-
plicative semigroups with underlying sets

TK = {u ∈ K : 0 < |u| < 1} (K ∈ {R,C,H})
together with conjugation id if K = R and with the usual conjugation otherwise. The
same conjugation on the multiplicative group of the field K defines a conjugation group
K∗, therefore TK is a conjugation subsemigroup in K∗ and TK is cancellative. Note also that
TK = TH ∩ K∗, and R∗ is a conjugation subgroup in C∗ and C∗ in H∗. It is an important
observation in [2] that a cancellative semigroup possessing a conjugation is necessarily
emdeddable in a group. It is a natural question whether every cancellative conjugation
semigroup is isomorphic to a conjugation subsemigroup of a conjugation group.

The conjugation group K∗ (K ∈ {R,C,H}) has a nice and simple structure. It is
straightforward that

EK = {u ∈ K : |u| = 1} and R+ = {u ∈ R : u > 0}
form conjugation subgroups in K∗, and the conjugations on them are inv and id, respec-
tively. Moreover, it is also easy to check that the conjugation group K∗ is (isomorphic, as
a unary group, to) their direct product. Obviously, further conjugations can be obtained
on the group (K∗; ·) by considering any endomorphism of (R+; ·) as conjugation instead of
id. The idea naturally arises whether conjugations on groups can be obtained in general
by combining these two kinds of conjugations.

The aim of this note is to answer these questions by proving the following theorems.

Theorem 1.1. For every group G = (G; ·), there is a one-to-one correspondence between
the conjugations on G and the endomorphisms of G whose ranges are in the center of
G. For any such endomorphism ζ of G, the respective conjugation is defined by the rule
g = gζ · g−1 (g ∈ G).

Theorem 1.2. The cancellative conjugation semigroups (monoids) are, up to isomorphism,
just the conjugation subsemigroups (submonoids) of conjugation groups.

2. Conjugation groups

In this section we prove Theorem 1.1.
Our first observation (Lemma 2.1(1)) associates an endomorphism to any conjugation

on a semigroup. Let S = (S; ·) be an arbitrary semigroup (monoid, group), and consider
its center Z(S). By definition, it consists of all elements of S which commute with every
element of S. If Z(S) is non-empty then it forms a subsemigroup (submonoid, subgroup)
in S. Note that 1 ∈ Z(S) if S is a monoid or, in particular, a group. In the rest of the
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section, we deal with conjugations on groups, and G = (G; ·) will denote an arbitrary
group.

Lemma 2.1. (1) Let S be a semigroup, and let – be a conjugation on S. Then the
mapping

ζ : S → S, aζ = aa (a ∈ S)

is an endomorphism of the semigroup (S; ·) such that Sζ ⊆ Z(S).
(2) In particular, if S = G is a group then

g = g−1 · gζ = gζ · g−1 for every g ∈ G.

Proof. Properties (1.1) and (1.2) imply that Sζ ⊆ Z(S). By applying (1.3), (1.2) and
(1.1), we obtain for evey a, b ∈ S that

(ab)ζ = abab = abba = aabb = aabb = aζ · bζ.

Thus ζ is, indeed, an endomorphism of the semigroup S.
If S = G is a group then the equalities in statement (2) are obvious from the definition

of ζ and equality (1.1). �

Conversely, now we associate a conjugation to each endomorphism of a group whose
range is contained in the center.

Lemma 2.2. Suppose that ζ : G → G is an endomorphism of G such that Gζ ⊆ Z(G),
and define a unary operation – on G by the rule

g = gζ · g−1(= g−1 · gζ) (g ∈ G),

where the second equality follows by the assumption Gζ ⊆ Z(G). Then the operation – is
a conjugation on G.

Proof. Equality (1.1) clearly holds by definition, and (1.2) is implied by (1.1) and the
inclusion G ⊆ Z(G). Finally, property (1.3) can be checked as follows:

gh = (gh)ζ · (gh)−1 = gζ · hζ · h−1g−1

= hζ · h−1 · gζ · g−1 (since gζ ∈ Z(G))

= hg.

�

In order to conclude the proof of Theorem 1.1, notice that the assignments

– 7→ ζ and ζ 7→ –

defined in Lemmas 2.1(1) and 2.2, respectively, provide mappings from the set of all conju-
gations on G to the set of all endomorphisms of G whose ranges are contained in Z(G), and
in the reverse direction, respectively. It is straightforward to verify that they are mutual
inverses.
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3. Cancellative conjugation semigroups

This section is devoted to proving Theorem 1.2.
Throughout the section, let S = (S; ·, –) be a cancellative conjugation semigroup. It

was observed in [2] that, due to identities (1.1) and (1.2), conjugation semigroups satisfy
the condition that aS ∩ bS 6= ∅ for every a, b ∈ S, and this implies by Ore’s theorem [1,
Theorem 1.23] that the semigroup (S; ·) is embeddable in a group. Since the identities
mentioned are left-right symmetric, the dual condition Sa ∩ Sb 6= ∅ (a, b ∈ S) also holds
in S. Thus we obtain by [1, Theorem 1.24 and Exercise 1.10.3] that there exists a group
G = (G; ·) containing (S; ·) as a subsemigroup such that

(3.1) every g ∈ G is of the form g = ab−1 = c−1d for some a, b, c, d ∈ S.

Such a group G is uniquely determined up to isomorphism, and called the group of quotients
of (S; ·).

The main step of the proof of Theorem 1.2 is that, given a cancellative conjugation
semigroup S = (S; ·, –), we extend the conjugation – in S to the group of quotients G
of (S; ·) such that we obtain a conjugation ∼ on G. Before introducing ∼, we need two
lemmas.

Lemma 3.1. For every a, b, c, d ∈ S, the following implications hold in G:

(1) if ab−1 = c−1d then b
−1
a = d c−1;

(2) if ab−1 = cd−1 then b
−1
a = d

−1
c.

Proof. If ab−1 = c−1d in G then ca = db in S whence we see by (1.3) that a c = ca = db = b d

in S. This implies the equality b
−1
a = d c−1 in G, and (1) is shown.

If ab−1 = cd−1 in G then property (3.1) ensures that ab−1 = x−1y = cd−1 for some
x, y ∈ S. Thus applying (1) for both equalities, we obtain the equality to be verified in
(2). �

Lemma 3.2. For every a ∈ S and g ∈ G, we have aag = gaa.

Proof. By (3.1), assume that g = bc−1 = x−1y for some b, c, x, y ∈ S. Then xb = yc and
aaxb = aayc in S. By applying (1.2), we obtain that xaab = yaac in S. This implies the
equality aabc−1 = x−1yaa in G, and we deduce by (1.1) that aag = aabc−1 = x−1yaa =
gaa. �

Now we are ready to define the unary operation ∼ on G as follows: for any g ∈ G, if

g = ab−1 for some a, b ∈ S then let g̃ = b
−1
a. Lemma 3.1 shows that ∼ is well defined.

Proposition 3.3. The unary operation ∼ on G is a conjugation, and it extends the con-
jugation – in S.

Proof. First we check that ∼ extends –. Assume that c = ab−1 for some a, b, c ∈ S. Then

a = cb in S, and we have a = cb = b c by (1.3) which implies that c = b
−1
a = c̃.

Now we prove that the unary group (G; ·, ∼) satisfies the identities (1.1)–(1.3). Let
g = ab−1 ∈ G and h = cd−1 ∈ G where a, b, c, d ∈ S.
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(1.1) By definition and Lemma 3.2, we have

g̃g = ãb−1ab−1 = b
−1
aab−1 = aab

−1
b−1 = aa(bb)−1.

Similarly, we see that

gg̃ = ab−1ãb−1 = ab−1b
−1
a = a(bb)−1a = a(a−1bb)−1 = a(bba−1)−1 = aa(bb)−1

whence g̃g = gg̃ follows.
(1.2) Now we show that hg̃g = gg̃h. Due to the equalities in the previous paragraph, it

suffices to check that haa(bb)−1 = aa(bb)−1h. Applying (1.1) and Lemma 3.2, we obtain
that

haa(bb)−1 = aah(bb)−1 = aa(bbh−1)−1 = aa(h−1bb)−1 = aa(bb)−1h,

completing the proof.

(1.3) In order to check the equality g̃h = h̃g̃, notice that h̃g̃ = c̃d−1ãb−1 = d
−1
cb

−1
a

by definition. On the other hand, we have b−1c = xy−1 for some x, y ∈ S by (3.1). This

implies that cy = bx in S, and y c = xb follows by (1.3). Hence we obtain that y−1x = cb
−1

in G. By applying (1.3) and this equality, we see that

g̃h = ˜ab−1cd−1 = ˜axy−1d−1 = ˜ax(dy)−1 = dy
−1
ax = (yd)−1x a = d

−1
y−1x a = d

−1
cb

−1
a.

Thus the equality g̃h = h̃g̃ is verified. �

This proposition shows that the conjugation semigroup S = (S; ·, –) is, indeed, a con-
jugation subsemigroup in the conjugation group G = (G; ·, ∼), and so Theorem 1.2 is
proved for cancellative conjugation semigroups. The statement for cancellative conjuga-
tion monoids is a straightforward consequence since (1.3) implies that each conjugation on
a cancellative monoid is a monoid conjugation.
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