Definability in the embeddability ordering of finite directed graphs

Ádám Kunos

University of Szeged

AAA87 & CYA28, Linz, February 7, 2014

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program—Elaborating and operating an inland student and researcher personal support system” The project was subsidized by the European Union and co-financed by the European Social Fund.
First-order definability in posets

For example, consider a poset with elements 1, 2, 3, 5. The covers of 1 are 1, 2, 4, 5, 60. The covers of 3 are 3, 5, 6, 15, 30. The covers of 5 are 5, 60. The covers of 60 are 60.

Proof: An automorphism:

- 1 ↦ 1
- 2 ↦ 2
- 4 ↦ 4
- 5 ↦ 5
- 6 ↦ 6
- 10 ↦ 10
- 15 ↦ 15
- 30 ↦ 30
- 12 ↦ 12
- 20 ↦ 20
- 12 ↦ 12
- 60 ↦ 60.

This shows that the poset has the desired properties.
First-order definability in posets

\{1\}

Proof: an automorphism:

- \(1 \mapsto 1, 2 \mapsto 2, 4 \mapsto 4, 3 \mapsto 5, 5 \mapsto 5, 6 \mapsto 3 \mapsto 10, 10 \mapsto 6, 15 \mapsto 15, 30 \mapsto 30, 12 \mapsto 12, 60 \mapsto 60\).
First-order definability in posets

\[\{1\} = \{ x : (\forall y)(x \leq y) \} \]
First-order definability in posets

\{1\} = \{x : (\forall y)(x \leq y)\}

\{60\} = \{x : (\forall y)(y \leq x)\}
First-order definability in posets

\{1\} = \{x : (\forall y)(x \leq y)\}

\{60\} = \{x : (\forall y)(y \leq x)\}

\{2, 3, 5\} =
First-order definability in posets

\[
\{1\} = \{x : (\forall y)(x \leq y)\}
\]

\[
\{60\} = \{x : (\forall y)(y \leq x)\}
\]

\[
\{2, 3, 5\} = \{\text{the covers of } 1\}
\]
First-order definability in posets

\{1\} = \{x : (\forall y)(x \leq y)\}
\{60\} = \{x : (\forall y)(y \leq x)\}
\{2, 3, 5\} = \{the \ covers \ of \ 1\}

\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \Rightarrow z = x \lor z = y)\}
First-order definability in posets

\[
\{1\} = \{x : (\forall y)(x \leq y)\}
\]

\[
\{60\} = \{x : (\forall y)(y \leq x)\}
\]

\[
\{2, 3, 5\} = \{\text{the covers of } 1\}
= \{x : 1 \prec x\}
\]

\[
\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \Rightarrow z = x \lor z = y)\}
\]
First-order definability in posets

\{1\} = \{x : (\forall y)(x \leq y)\}

\{60\} = \{x : (\forall y)(y \leq x)\}

\{2, 3, 5\} = \{\text{the covers of 1}\}

\{2, 3, 5\} = \{x : 1 \prec x\}

\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \Rightarrow z = x \lor z = y)\}

\{3, 5\}
First-order definability in posets

\[\{1\} = \{x : (\forall y)(x \leq y)\} \]
\[\{60\} = \{x : (\forall y)(y \leq x)\} \]
\[\{2, 3, 5\} = \{\text{the covers of 1}\} = \{x : 1 \prec x\} \]

\[\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \Rightarrow z = x \lor z = y)\} \]
\[\{3, 5\} = \{x : 1 \prec x, \ x \text{ has exactly two covers}\} \]
First-order definability in posets

$$\{1\} = \{x : (\forall y)(x \leq y)\}$$
$$\{60\} = \{x : (\forall y)(y \leq x)\}$$
$$\{2, 3, 5\} = \{\text{the covers of } 1\} = \{x : 1 \prec x\}$$

$$\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \implies z = x \lor z = y)\}$$
$$\{3, 5\} = \{x : 1 \prec x, \ x \text{ has exactly two covers}\}$$
$$\{3\} = \{x : ???\}$$
First-order definability in posets

\{1\} = \{x : (\forall y)(x \leq y)\}

\{60\} = \{x : (\forall y)(y \leq x)\}

\{2, 3, 5\} = \{\text{the covers of } 1\}

\{2, 3, 5\} = \{x : 1 \prec x\}

\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \Rightarrow z = x \lor z = y)\}

\{3, 5\} = \{x : 1 \prec x, \ x \text{ has exactly two covers}\}

\{3\} = \{x : ???\} Conjecture: NO suitable formula

Ádám Kunos
First-order definability in posets

\{1\} = \{x : (\forall y)(x \leq y)\}

\{60\} = \{x : (\forall y)(y \leq x)\}

\{2, 3, 5\} = \{\text{the covers of 1}\}

\{2, 3, 5\} = \{x : 1 \prec x\}

\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z)(x \leq z \leq y \Rightarrow z = x \lor z = y)\}

\{3, 5\} = \{x : 1 \prec x, \ x \ has \ exactly \ two \ covers\}

\{3\} = \{x : ???\} Conjecture: NO suitable formula

Proof: an automorphism: 1 \mapsto 1, 2 \mapsto 2, 4 \mapsto 4, 3 \mapsto 5, 5 \mapsto 3, 6 \mapsto 10, 10 \mapsto 6, 15 \mapsto 15, 30 \mapsto 30, 12 \mapsto 20, 20 \mapsto 12, 60 \mapsto 60.
Main concept: $A \leq B$ iff A is isomorphic to a substructure of B.

Directed graphs

\[\mathcal{D} \text{: Isomorphism types of finite directed graphs (digraphs)} \]
Directed graphs

\(D \): Isomorphism types of finite directed graphs (digraphs)

\(G \leq G' \) if and only if there exists \(\varphi : G \to G' \) injective graph homomorphism,
Directed graphs

\(\mathcal{D} \): Isomorphism types of finite directed graphs (digraphs)

\(G \leq G' \) if and only if there exists \(\varphi : G \to G' \) injective graph homomorphism, that is \((u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G') \).
Directed graphs

\[D: \] Isomorphism types of finite directed graphs (digraphs)

\[G \leq G' \text{ if and only if there exists } \varphi : G \to G' \text{ injective graph homomorphism, that is } (u, v) \in E(G) \implies (\varphi(u), \varphi(v)) \in E(G'). \]

Example:

![Diagram of directed graph]
Directed graphs

\[\mathcal{D}: \text{Isomorphism types of finite directed graphs (digraphs)} \]

\[G \leq G' \text{ if and only if there exists } \varphi : G \rightarrow G' \text{ injective graph homomorphism, that is } (u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G'). \]

Example:
\(\mathcal{D} \): Isomorphism types of finite directed graphs (digraphs)

\(G \leq G' \) if and only if there exists \(\varphi : G \rightarrow G' \) injective graph homomorphism, that is \((u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G') \).

Example:

![Diagram of directed graphs]
Directed graphs

\(\mathcal{D} \): Isomorphism types of finite directed graphs (digraphs)

\(G \leq G' \) if and only if there exists \(\varphi : G \to G' \) injective graph homomorphism, that is \((u, v) \in E(G) \implies (\varphi(u), \varphi(v)) \in E(G') \).

Example:

\[\leq \text{ is reflexive, transitive, antisymmetric, so } (\mathcal{D}; \leq) \text{ is a poset.} \]
The “bottom” of the poset \((D; \leq)\)
The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.
Some results

The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

Theorem

In $(\mathcal{D}; \leq)$, the set $\{G, G^T\}$ is definable for arbitrary $G \in \mathcal{D}$.

The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

Theorem

In $(\mathcal{D}; \leq)$, the set $\{G, G^T\}$ is definable for arbitrary $G \in \mathcal{D}$.

Corollary

The poset $(\mathcal{D}; \leq)$ has only one nontrivial automorphism, namely $G \mapsto G^T$. Therefore it's automorphism group is isomorphic to \mathbb{Z}_2.

Ádám Kunos
AAA87 & CYA28
Linz, February 7, 2014 6 / 12
The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

A:

\[\begin{array}{c} \bullet \\ \downarrow \\ \bullet \end{array} \]

Theorem

In $(\mathcal{D}; \leq)$, the set \{ G, G^T \} is definable for arbitrary $G \in \mathcal{D}$. In $(\mathcal{D}; \leq, A)$, every $G \in \mathcal{D}$ is definable.
Some results

The map \(G \mapsto G^T \) (reversing the arrows) is a nontrivial automorphism of \((\mathcal{D}; \leq)\).

\[
\begin{aligned}
A: & \quad \bullet \\
& \quad \uparrow
\end{aligned}
\]

Theorem

In \((\mathcal{D}; \leq)\), the set \(\{G, G^T\} \) is definable for arbitrary \(G \in \mathcal{D} \). In \((\mathcal{D}; \leq, A)\), every \(G \in \mathcal{D} \) is definable.

Corollary

The poset \((\mathcal{D}; \leq)\) has only one nontrivial automorphism, namely \(G \mapsto G^T \). Therefore it’s automorphism group is isomorphic to \(\mathbb{Z}_2 \).
A small category

CD: a small category with:

- objects $= O^{CD}$: digraphs with vertices $\{1, \ldots, n\}$
A small category

CD: a small category with:

- objects $= O^{CD}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$:

 $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
A small category

\(CD \): a small category with:

- **objects** = \(O^{CD} \): digraphs with vertices \(\{1, \ldots, n\} \)
- **morphisms**: \(A, B \in O^{CD} \):
 \(CD(A, B) = \{(A, \alpha, B) : \alpha : A \rightarrow B \text{ homomorphism}\} \)
- \(\text{id}_A \in CD(A, A) \)
A small category

\(\mathcal{C}D\): a small category with:

- objects: \(O^{\mathcal{C}D}\): digraphs with vertices \(\{1, \ldots, n\}\)
- morphisms: \(A, B \in O^{\mathcal{C}D}\):
 \[\mathcal{C}D(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}\]
- \(\text{id}_A \in \mathcal{C}D(A, A)\)
- \(f = (A, \alpha, B), \ g = (B, \beta, C): \ fg = (A, \beta \circ \alpha, C)\)
A small category

\(CD\): a small category with:

- **objects**: \(O^{CD}\): digraphs with vertices \(\{1, \ldots, n\}\)
- **morphisms**: \(A, B \in O^{CD}\):
 \[CD(A, B) = \{(A, \alpha, B) : \alpha : A \rightarrow B \text{ homomorphism}\}\]
- \(\text{id}_A \in CD(A, A)\)
- \(f = (A, \alpha, B), \ g = (B, \beta, C)\): \(fg = (A, \beta \circ \alpha, C)\)

Four constants:

- \(E_1 \in O^{CD}\): \(V(E_1) = \{1\},\ E(E_1) = \emptyset\)
A small category

\(CD\): a small category with:

- objects = \(O^{CD}\): digraphs with vertices \(\{1, \ldots, n\}\)
- morphisms: \(A, B \in O^{CD}\):
 \(CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B\ \text{homomorphism}\}\)
- \(\text{id}_A \in CD(A, A)\)
- \(f = (A, \alpha, B), g = (B, \beta, C): fg = (A, \beta \circ \alpha, C)\)

Four constants:

- \(E_1 \in O^{CD}\): \(V(E_1) = \{1\}, E(E_1) = \emptyset\),
- \(I_2 \in O^{CD}\): \(V(I_2) = \{1, 2\}, E(E_1) = \{(1, 2)\}\),
A small category

CD: a small category with:

- objects: O^{CD}: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$:
 $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $id_A \in CD(A, A)$
- $f = (A, \alpha, B), g = (B, \beta, C)$: $fg = (A, \beta \circ \alpha, C)$

Four constants:

- $E_1 \in O^{CD}$: $V(E_1) = \{1\}$, $E(E_1) = \emptyset$,
- $I_2 \in O^{CD}$: $V(I_2) = \{1, 2\}$, $E(E_1) = \{(1, 2)\}$,
- $f_1 \in CD(E_1, I_2)$: $f_1 = (E_1, \{1 \mapsto 1\}, I_2)$,
A small category

\(CD\): a small category with:

- **objects**: \(O^{CD}\): digraphs with vertices \(\{1, \ldots, n\}\)
- **morphisms**: \(A, B \in O^{CD}\):
 \[CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}\]
- **id\(_A\)** \(\in CD(A, A)\)
- **f** = \((A, \alpha, B)\), **g** = \((B, \beta, C)\): \(fg = (A, \beta \circ \alpha, C)\)

Four constants:

- **\(E_1\)** \(\in O^{CD}\): \(V(E_1) = \{1\}\), \(E(E_1) = \emptyset\),
- **\(I_2\)** \(\in O^{CD}\): \(V(I_2) = \{1, 2\}\), \(E(E_1) = \{(1, 2)\}\),
- **\(f_1\)** \(\in CD(E_1, I_2)\): \(f_1 = (E_1, \{1 \mapsto 1\}, I_2)\),
- **\(f_2\)** \(\in CD(E_1, I_2)\): \(f_2 = (E_1, \{1 \mapsto 2\}, I_2)\)
A small category

\(CD \): a small category with:

- objects\(= O^{CD} \): digraphs with vertices \(\{1, \ldots, n\}\)
- morphisms: \(A, B \in O^{CD}\):
 \(CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}\)
- \(\text{id}_A \in CD(A, A)\)
- \(f = (A, \alpha, B), \ g = (B, \beta, C) : fg = (A, \beta \circ \alpha, C)\)

Four constants:

- \(E_1 \in O^{CD} : \ V(E_1) = \{1\}, \ E(E_1) = \emptyset,\)
- \(I_2 \in O^{CD} : \ V(I_2) = \{1, 2\}, \ E(E_1) = \{(1, 2)\},\)
- \(f_1 \in CD(E_1, I_2) : \ f_1 = (E_1, \{1 \mapsto 1\}, I_2),\)
- \(f_2 \in CD(E_1, I_2) : \ f_2 = (E_1, \{1 \mapsto 2\}, I_2).\)

\(CD' = CD + \text{these four constants}\)
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(D;\leq,A)$: first-order language of posets + A

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is injective if $\forall X \in O_{CD} \forall g, h \in CD(X, A) : gf = hf \iff g = h$.

This means all (n-ary) relations first-order denable in $(D;\leq)$ are first-order denable in CD' as well.

We denote this fact by $\text{Def}[(D;\leq)] \subseteq \text{Def}[CD']$.

It is easy to show that $\text{Def}[(D;\leq,A)] \subseteq \text{Def}[CD']$ holds as well.
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(D;\leq,A)$: first-order language of posets + A
- $L\rightarrow$: first-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A,B)$ is injective if:
\[\forall X \in O_{CD} \forall g, h \in CD(X,A) : gf = hf \iff g = h,\]
and surjective if:
\[\forall X \in O_{CD} \forall g, h \in CD(B,X) : fg = fh \iff g = h.\]

This means all (n-ary) relations first-order denable in $(D;\leq)$ are first-order denable in CD' as well.

We denote this fact by $\text{Def}[(D;\leq)] \subseteq \text{Def}[CD']$.

It is easy to show that $\text{Def}[(D;\leq,A)] \subseteq \text{Def}[CD']$ holds as well.
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(D;\leq,A)$: first-order language of posets + A
- $L\rightarrow$: first-order language of digraphs
- $L^2\rightarrow$: full second-order language of digraphs
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(D;\leq, A)$: first-order language of posets + A
- $L\rightarrow$: first-order language of digraphs
- $L^2\rightarrow$: full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(D; \leq, A)$: first-order language of posets + A
- L_{\rightarrow}: first-order language of digraphs
- $L_{2\rightarrow}$: full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is

- injective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(X, A) : \ gf = hf \iff g = h$,
- surjective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(B, X) : \ fg = fh \iff g = h$.
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(D;\leq,A)$: first-order language of posets + A
- $L\rightarrow$: first-order language of digraphs
- L_{\rightarrow}^2: full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A,B)$ is

- injective iff: $\forall X \in O^{CD} \forall g,h \in CD(X,A): \; gf = hf \iff g = h$
- surjective iff: $\forall X \in O^{CD} \forall g,h \in CD(B,X): \; fg = fh \iff g = h$

This means all (n-ary) relations first-order definable in $(D;\leq)$ are first-order definable in CD' as well.
Some languages

- \(L_{CD'} \): first-order language of categories + the 4 constants
- \(L(D; \leq, A) \): first-order language of posets + \(A \)
- \(L_{\rightarrow} \): first-order language of digraphs
- \(L_{2\rightarrow} \): full second-order language of digraphs

Observation: \(L_{CD'} \) can capture isomorphism and embeddability of digraphs.

A morphism \(f \in CD(A, B) \) is

- injective iff: \(\forall X \in O^{CD} \ \forall g, h \in CD(X, A) : \ g f = h f \iff g = h \),
- surjective iff: \(\forall X \in O^{CD} \ \forall g, h \in CD(B, X) : \ f g = f h \iff g = h \).

This means all (n-ary) relations first-order definable in \((D; \leq) \) are first-order definable in \(CD' \) as well. We denote this fact by \(\text{Def}[(D; \leq)] \subseteq \text{Def}[CD'] \).
Some languages

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L(\mathcal{D};\leq,A)$: first-order language of posets + A
- L_\rightarrow: first-order language of digraphs
- L^2_\rightarrow: full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is

- injective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(X, A): \ gf = hf \iff g = h,$
- surjective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(B, X): \ fg = fh \iff g = h.$

This means all (n-ary) relations first-order definable in $(\mathcal{D}; \leq)$ are first-order definable in CD' as well. We denote this fact by $\text{Def}[(\mathcal{D}; \leq)] \subseteq \text{Def}[CD'].$

It is easy to show that $\text{Def}[(\mathcal{D}; \leq, A)] \subseteq \text{Def}[CD'].$ holds as well.
Def[$L\rightarrow]\subseteq\text{Def}[CD']$

Within $(\mathcal{D}; \leq, A)$ the “inner structure” of the digraphs is unavailable by first order formulas.
Within \((D; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(CD'\) we can capture the inner structure of digraphs, meaning \(\text{Def}[L \rightarrow] \subseteq \text{Def}[CD']\).
Within $(\mathcal{D}; \leq, A)$ the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[L \rightarrow] \subseteq \text{Def}[\mathcal{CD}']$.

For any $G \in O^{\mathcal{CD}}$, G
Within \((\mathcal{D}; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(\mathcal{CD}'\) we can capture the inner structure of digraphs, meaning \(\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']\).

For any \(G \in O^{\mathcal{CD}}, \mathcal{CD}(E_1, G)\) is naturally bijective with \(G\).
Within \((D; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(CD'\) we can capture the inner structure of digraphs, meaning \(\text{Def}[L_\to] \subseteq \text{Def}[CD']\).

For any \(G \in O^{CD} \), \(CD(E_1, G)\) is naturally bijective with \(G\). Let

\[
f = (E_1, \{1 \mapsto x\}, G), \quad g = (E_1, \{1 \mapsto y\}, G) \quad (x, y \in V(G)).
\]
Within \((\mathcal{D}; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(\mathcal{CD}'\) we can capture the inner structure of digraphs, meaning \(\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[CD']\).

For any \(G \in O^{CD}\), \(\mathcal{CD}(E_1, G)\) is naturally bijective with \(G\). Let

\[
 f = (E_1, \{1 \mapsto x\}, G), \quad g = (E_1, \{1 \mapsto y\}, G) \quad (x, y \in V(G)).
\]

\((x, y) \in E(G)\) holds iff
Within \((\mathcal{D}; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(CD'\) we can capture the inner structure of digraphs, meaning \(\text{Def}[L \rightarrow] \subseteq \text{Def}[CD']\).

For any \(G \in O^{CD}\), \(CD(E_1, G)\) is naturally bijective with \(G\). Let

\[
 f = (E_1, \{1 \mapsto x\}, G), \quad g = (E_1, \{1 \mapsto y\}, G) \quad (x, y \in V(G)).
\]

\((x, y) \in E(G)\) holds iff
Def\([L \rightarrow] \subseteq \text{Def}[CD']\]

Within \((D; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(CD'\) we can capture the inner structure of digraphs, meaning \(\text{Def}[L \rightarrow] \subseteq \text{Def}[CD']\).

For any \(G \in O^{CD}\), \(CD(E_1, G)\) is naturally bijective with \(G\). Let

\[
\begin{align*}
 f &= (E_1, \{1 \mapsto x\}, G), \\
 g &= (E_1, \{1 \mapsto y\}, G) \quad (x, y \in V(G)).
\end{align*}
\]

\((x, y) \in E(G)\) holds iff

\[
\exists h \in CD(I_2, G) : f_1 h = f, f_2 h = g.
\]
Def[\(L\rightarrow\)] \(\subseteq\) Def[\(CD'\)]

Within \((\mathcal{D}; \leq, A)\) the “inner structure” of the digraphs is unavailable by first order formulas. Surprisingly, in \(CD'\) we can capture the inner structure of digraphs, meaning Def[\(L\rightarrow\)] \(\subseteq\) Def[\(CD'\)].

For any \(G \in O^{CD}\), \(CD(E_1, G)\) is naturally bijective with \(G\). Let

\[
f = (E_1, \{1 \mapsto x\}, G), \quad g = (E_1, \{1 \mapsto y\}, G) \quad (x, y \in V(G)).
\]

\((x, y) \in E(G)\) holds iff

\[
\exists h \in CD(I_2, G) : \quad f_1 h = f, \quad f_2 h = g.
\]
Example. Let B and C be digraphs shown below.

Let us consider the following (heterogeneous) relation:

$$R = \{\ldots\} \subseteq B \times C.$$

We represent R in the following way:

$$B \xrightarrow{e_3} C.$$

So R can be represented as (E_3, \ldots), where E_3 are two morphisms.

Def $[L^2] \subseteq \text{Def}[CD']$
Def[L_{\rightarrow}^2] \subseteq Def[CD']

Example.
Example. Let B and C the digraphs shown below.

\[b_1 \rightarrow b_2 \quad c_1 \rightarrow c_2 \quad c_3 \]
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

So R can be represented as (E_3, p_1, p_2), where p_1, p_2 are two morphisms.
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

So R can be represented as (E_3, p_1, p_2), where p_1, p_2 are two morphisms.
Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

So R can be represented as (E_3, p_1, p_2), where p_1, p_2 are two morphisms.
Final results

We’ve seen:

- $\text{Def}[(\mathcal{D}; \leq, A)] \subseteq \text{Def}[\mathcal{CD'}]
- \text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD'}]
- \text{Def}[L_{\rightarrow}^2] \subseteq \text{Def}[\mathcal{CD'}]
Final results

We’ve seen:

- $\text{Def}[(\mathcal{D}; \leq, A)] \subseteq \text{Def}[\mathcal{CD}']$
- $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$
- $\text{Def}[L_{\rightarrow}^2] \subseteq \text{Def}[\mathcal{CD}']$

$L_{\mathcal{CD}'}$ seems to be the strongest by far...
Final results

We’ve seen:

- \(\text{Def}[(\mathcal{D}; \leq, A)] \subseteq \text{Def}[\mathcal{CD}'] \)
- \(\text{Def}[L_{\to}] \subseteq \text{Def}[\mathcal{CD}'] \)
- \(\text{Def}[L^2_{\to}] \subseteq \text{Def}[\mathcal{CD}'] \)

\(L_{\mathcal{CD}'} \) seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both first-order definable in \((\mathcal{D}; \leq, A)\).
Final results

We’ve seen:

- $\text{Def}[(D; \leq, A)] \subseteq \text{Def}[CD']$
- $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[CD']$
- $\text{Def}[L^2_{\rightarrow}] \subseteq \text{Def}[CD']$

$L_{CD'}$ seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both first-order definable in $(D; \leq, A)$.

Theorem

$\text{Def}[(D; \leq, A)] \supseteq \text{Def}[CD']$

Every isomorphism-invariant relation that is first-order definable in CD' is first-order definable in $(D; \leq, A)$ (after factoring by isomorphism).
Thank you for your attention!