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Abstract We deal with first-order definability in the substructure ordering (D ;v) of
finite directed graphs. In two papers, the author has already investigated the first-order
language of the embeddability ordering (D ;≤). The latter has turned out to be quite
strong, e.g., it has been shown that, modulo edge-reversing (on the whole graphs),
it can express the full second-order language of directed graphs. Now we show that,
with finitely many directed graphs added as constants, the first order language of
(D ;v) can express that of (D ;≤).

The limits of the expressive power of such languages are intimately related to
the automorphism groups of the orderings. Previously, analogue investigations have
found the concerning automorphism groups to be quite trivial, e.g., the automorphism
group of (D ;≤) is isomorphic to Z2. Here, unprecedentedly, this is not the case. Even
though we conjecture that the automorphism group is isomorphic to (Z4

2×S4)oα Z2,
with a particular α in the semidirect product, we only prove it is finite.

Keywords First-order definability · Directed graph · Embeddability ordering ·
Substructure ordering · Automorphism group

1 Introduction and formulation of our main theorems

In 2009–2010 J. Ježek and R. McKenzie published a series of papers [1–4] in which
they have examined (among other things) the first-order definability in the substruc-
ture orderings of finite mathematical structures with a given type, and determined
the automorphism group of these orderings. They considered finite semilattices [1],
ordered sets [4], distributive lattices [2] and lattices [3]. Similar investigations [5–9]
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have emerged since. The current paper is one of such, connected strongly to the au-
thor’s papers [5,6] that dealt with the embeddability ordering of finite directed graphs.
Now, instead of embeddability, we are examining the substructure ordering of finite
directed graphs.

Let us consider a nonempty set V and a binary relation E ⊆ V 2. We call the pair
G = (V,E) a directed graph or just digraph. Let D denote the set of isomorphism
types of finite digraphs. The elements of V (= V (G)) and E(= E(G)) are called the
vertices and edges of G, respectively. A digraph G is said to be embeddable into G′,
and we write G ≤ G′, if there exists an injective homomorphism ϕ : G→ G′, i.e. an
injective map for which (v1,v2) ∈ E(G) implies (ϕ(v1),ϕ(v2)) ∈ E(G′). A digraph
G is a substructure of G′, and we write G v G′, if it is isomorphic to an induced
substructure (on some subset of the vertices) of G′ . Every substructure is embeddable
but the converse is not true. The names of these two concepts often mix both orally
and on paper when it is clear from the context which notion we are using the whole
time. In the present paper, however, we must be very cautios as both concepts are used
alternately throughout the whole paper. It is easy to see that both ≤ and v are partial
orders on D . Both partially ordered sets are naturally graded. The digraph G is on the
nth level of (D ;≤) or (D ;v) if |V (G)|+ |E(G)|= n or |V (G)|= n, respectively. See
Figures 1 and 2 for the bottoms of the Hasse diagrams of the two partial orders.
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Fig. 1 The bottom part of the Hasse diagram of (D ;≤).

Let (A ;≤) be an arbitrary poset. An n-ary relation R is said to be (first-order)
definable in (A ;≤) if there exists a first-order formula Ψ(x1,x2, . . . ,xn) with free
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Fig. 2 The bottom part of the Hasse diagram of (D ;v).

variables x1,x2, . . . ,xn in the language of partially ordered sets such that for any
a1,a2, . . . ,an ∈A , Ψ(a1,a2, . . . ,an) holds in (A ;≤) if and only if (a1,a2, . . . ,an) ∈
R. A subset of A is definable if it is definable as a unary relation. An element a ∈A
is said to be definable if the set {a} is definable.

Our main result is the following.

Theorem 1 There exists a finite set of finite directed graphs {C1, . . . ,Ck} such that
the binary embeddability relation,

{(G,G′) : G≤ G′},

is definable in the first-order language of (D ;v,C1, . . . ,Ck). Consequently, every re-
lation definable in the first-order language of (D ;≤) is definable in that of (D ;v
,C1, . . . ,Ck).

In itself, this theorem is quite weightless, what fills it with content is that we
already know [5, 6] that the first-order language of (D ;≤) is surprisingly strong.
The paper [6] has two parts. The first deals with definability in (D ;≤), the second
determines the automorphism group of (D ;≤) (building on the first part, of course).
The paper [5] extends the main result of the first part of [6], hence if one is only
interested in definability, it is enough to read [5]. The main result there [5, Theorem
5] is some kind of a characterization of the first-order definable relations in (D ;≤
). To even state the result precisely, there is a 3-page-long preparation which we
don’t repeat here. We only provide some corollaries, demonstrating the power of
definability in (D ;≤). With Theorem 1, these corollaries transform immediately into
statements for the first-order language of (D ;v,C1, . . . ,Ck). As this paper is about the
substructure ordering, we formulate these versions, rather than the versions talking
about (D ;≤).

Corollary 2 There exists a finite set of finite directed graphs {C1, . . . ,Ck} such that
in the first-order language of (D ;v,C1, . . . ,Ck)

– every single digraph G is definable,
– the set of weakly connected digraphs is definable, moreover,
– the full second-order language of digraphs becomes available.

Again, for the full scope of Theorem 1, see [5, Section 2].
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We remark that the notations of Theorem 1 and Corollary 2 may suggest that the
set {C1, . . . ,Ck} in the two statements can be the same. This is not necessarily true,
even though there is a strong connection between the two sets. Depending on the set
of Theorem 1, an additional digraph might have to be added the get the corresponding
set of Corollary 2. This is due to the fact that the first-order language of (D ;≤)
does not yield the listed statements of Corollary 2 in itself. A constant (a particular
digraph) needs to be added to the first-order language of (D ;≤) to make these true.
If this constant is not already there in the set of {C1, . . . ,Ck} of Theorem 1 then its
addition might be required to get that of Corollary 2. As the equality of the sets is not
stated anywhere, this is not a problem. This affair is actually about (D ;≤), which is
not the subject of our investigation here. The interested reader should consult the first
two sections of [5].

We wish to make another remark on the lists {C1, . . . ,Ck} to avoid false expec-
tations. Naturally, as we proceed with our proof the lists {C1, . . . ,Ck} will be conti-
nously growing. The final list is revealed late in the paper, and that is why we now
outline it in advance. To do so, we describe a family of our arguments used in the
last, technical section of the paper. Some properties of digraphs can be told by saying
something about the list of their, say, at most 4-element subgraphs (without multi-
plicity, naturally). For example one can tell if a digraph has loops based on the list of
its 1-element subgraphs. Similarly, one can judge if it has a non-loop edge by the list
of its (at most) 2-element subgraphs. Far more complicated properties can be told in
this way, say, locally. We adopt this thinking in the last section of the paper. This will
force our lists {C1, . . . ,Ck} to be {at most 4-element digraphs}. This list is long but
finite nevertheless.

The papers [1–4,6,9], beyond dealing with definability, determined the automor-
phism groups of the orderings in question. In every case, the automorphisms came
naturally and the automorphism groups were either trivial or isomorphic to Z2. De-
spite all expectations, the partially ordered set (D ,v) stands out in that aspect. There
are automorphisms far from trivial. Unfortunately, we are not able to determine the
automorphism group, we can only prove it is finite.

Theorem 3 The automorphism group of (D ,v) is finite.

Even though we can not prove it, we formulate a conjecture for the automorphism
group.

In Section 2, we prove Theorem 3, and tell our conjecture on the automorphism
group in detail. Section 3 contains the proof of Theorem 1 without some technicali-
ties. In Section 4, the reader finds the technicalities skipped in Section 3.

2 On the automorphism group of (D ;v)

First, we prove Theorem 3 using Theorem 1.

Proof (of Theorem 3) It is clear that the orbits of the automorphism group are finite
as an automorphism can only move a digraph inside its level in (D ,v). Let o(G)
denote the size of the orbit of the digraph G (which is therefore a positive integer).
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We state that it suffices to present a finite set of digraphs such that the only au-
tomorphism fixing them all is the identity. To prove that, let {C1, . . . ,Ck} be such a
set and ϕ be an arbitrary automorphism. Observe that the images of Ci under ϕ de-
termine ϕ completely, or in other words, the only automorphism agreeing with ϕ on
{C1, . . . ,Ck} is ϕ . Indeed, with the notations

S = {α ∈ Aut(D ;v) : α(Ci) = ϕ(Ci), i = 1, . . . ,k},

and S′ = {αϕ−1 : α ∈ S}, |S|= |S′| holds, and |S′|= 1 for all elements of S′ fix all of
{C1, . . . ,Ck}. The fact that an automorphism is completely determined by its action
on {C1, . . . ,Ck} means that the automorphism group has at most o(C1) · . . . · o(Ck)
elements. That proves our statement.

Finally, we claim that {C1, . . . ,Ck} of Theorem 1 suffices for the purpose above,
namely the only automorphism fixing them all is the identity. Let ϕ be an automor-
phism that fixes all Ci. Let G ∈D be arbitrary. We need to show that ϕ(G) = G. We
know from Corollary 2 that there exists a formula φG(x) with one free variable, that
defines G in first order language of (D ,v,C1, . . . ,Ck). If we change all occurrences
of Ci to ϕ(Ci) in φG(x), then we get a formula φϕ(G)(x) defining ϕ(G). For ϕ fixes all
Cis, φG(x) = φϕ(G)(x), implying G = ϕ(G). ut

In the remaining part of the section, we present the automorphisms that we know
of. Here, no claim is proven rigorously, they are all rather conjectures. Our intention
is just to offer some insight on how the author sees the automorphism group at the
moment. Before the (semi-)precise definition of our automorphisms, we feel it is use-
ful to give a nontechnical glimpse at them. Automorphisms map digraphs to digraphs
of D . To define an automorphism ϕ , we need to tell how to get ϕ(G) from G. All
the automorphisms, that we know of at the moment, share a particular characteristic.
They are all, say, local in the following sense. Roughly speaking, to get ϕ(G) from G,
one only needs to consider and modify G’s at most two element subgraphs according
to some given rule.

To make this clearer, we give an example. Let ϕ(G) be the digraph that we get
from G such that we change the direction of the edges on those two element subgraphs
of G that have loops on both vertices. It is easy to see that this defines an automor-
phism, indeed. Perhaps, one would quickly discover the automorphism that gets ϕ(G)
by reversing all edges of G, but this is different. In this example, the modification of
G happens only locally, namely on 2-element subgraphs. All the automorphisms, that
we know of, share this property.

Now, we define our automorphisms ϕi (semi-)precisely. We do so by telling how
to get ϕi(G) from G. One of the most trivial automorphisms is

– ϕ1: where there is a loop, clear it, and vica versa, to the vertices with no loop,
insert one.

Observe that this automorphism operates with the 1-element subgraphs. Now we start
to make use of the labels of Fig. 2.

– ϕ2: change the subgraphs (isomorphic to) E to E ′ and vica versa.
– ϕ3: change the subgraphs (isomorphic to) L to L′ and vica versa.
– ϕ4: reverse the edges in the subgraphs (isomorphic to) P.
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– ϕ5: reverse the edges in the subgraphs (isomorphic to) Q.

Let S4 denote the symmetric group over the four-element set {A,B,C,D}, and π ∈ S4.
We define

– ϕπ : We change the subgraphs (isomorphic to) X ∈ {A,B,C,D} to π(X) (such that
the loops remain in place).

Observe that, with the exception of ϕ1, the automorphisms defined above do not
touch loops (when getting ϕi(G) from G). We conjecture that these automorphisms
generate the whole automorphism group.

Finally, we investigate the structure of the group of our conjecture. Let I denote
the set of possible indexes of our ϕs, namely

I = {1, . . . ,5}∪{π ∈ S4}.

Let 〈〉 stand for subgroup generation. Let S = 〈ϕi : i ∈ I〉 denote the group of our
conjecture. It seems that S splits into the internal semidirect product

S = 〈ϕi : i ∈ I \{1}〉o 〈ϕ1〉.

Furthermore, the second factor appears to be a(n internal) direct product

〈ϕ2〉×〈ϕ3〉×〈ϕ4〉×〈ϕ5〉×〈ϕπ : π ∈ S4〉.

Here, at the last factor, the subgroup generation is just a technicality as, clearly, the
ϕπ s constitute a subgroup themselves. These observations all need a proper checking,
but they give rise to the conjecture that S is isomorphic to

(Z4
2×S4)oα Z2,

where S4, again, denotes the symmetric group over the set {A,B,C,D}, and α is the
following. Obviously, α(0) = id ∈Aut(Z4

2×S4). To define α(1), let p,q,r,s ∈ {0,1}
and π ∈ S4. Then

α(1) : (p,q,r,s,π) 7→ (q, p,s,r,(BC)π(BC)),

where (BC) is just the usual cycle notation of the permutation of S4 that takes B to C
and vica versa. Note that the group of our conjecture has 768 elements. Even though
we cannot prove that there are no more automorphisms beyond the ones in S, we
conjecture so.

In the remaining part of the section, we present the automorphisms that we know
of. Here, no claim is proven rigorously, they are all rather conjectures. Our intention
is just to offer some insight on how the author sees the automorphism group at the
moment. All pairs of vertices fall into one of the following three categories in directed
graphs, based on the number of loops they have. A pair of vertices is loop-free if there
is no loop in it, it is loop-full if both vertices have loops, and it is mixed if one vertex
does have a loop, while the other does not. Similarly, we categorize with regard to
the number of non-loop edges. A pair of vertices is disconnected if there is no edge
between the two vertices, strongly connected if there are edges in both directions, and
weakly connected if there is edge only in one direction. We are ready to formulate
some automorphisms. We do so by telling how to get ϕi(G) from G.
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ϕ1: Put loops on loop-free vertices, and clear the loops from loop-full ones.
ϕ2: On pairs of vertices that are weakly connected and loop-free, change the direction

of the edges.
ϕ3: On pairs of vertices that are weakly connected and loop-full, change the direction

of the edges.
ϕ4: On pairs of vertices that are weakly connected and mixed, change the direction of

the edges.
ϕ5: On loop-free pairs, change disconnected pairs to strongly connected ones and vica

versa.
ϕ6: On loop-full pairs, change disconnected pairs to strongly connected ones and vica

versa.
ϕ7: On mixed pairs, change disconnected pairs to strongly connected ones and vica

versa (with the positions of the loops staying the same).

Obviously, arbitrary compositions of these are again automorphisms. All the listed
automorphisms are of order two. Unfortunately, they do not commute, e.g., ϕ1ϕ2 6=
ϕ2ϕ1. Let 〈〉 stand for subgroup generation. For the subgroup S := 〈ϕi : 1 ≤ i ≤ 7〉
of the automorphism group, the seven-element generator set, it is given by, is not
even minimal as, for example, ϕ1ϕ2ϕ1 = ϕ3. The automorphism ϕ1ϕ2 is of order
4. We have seen now that the automorphism group is far from Z7

2, which may be
the first guess after seeing the seven automorphisms listed above. Still, we think
that the automorphism group has 128(= 27) elements. It seems that S is the inter-
nal direct product of its subgroups 〈ϕ1,ϕ2,ϕ3,ϕ5,ϕ6〉 and 〈ϕ4,ϕ7〉. Furthermore,
the factor 〈ϕ1,ϕ2,ϕ3,ϕ5,ϕ6〉 is the internal semidirect product of 〈ϕ1〉 acting on
〈ϕ2,ϕ3,ϕ5,ϕ6〉:

〈ϕ1,ϕ2,ϕ3,ϕ5,ϕ6〉= 〈ϕ2,ϕ3,ϕ5,ϕ6〉o 〈ϕ1〉,

and 〈ϕ2,ϕ3,ϕ5,ϕ6〉 factors into the internal direct product

〈ϕ2,ϕ3,ϕ5,ϕ6〉= 〈ϕ2〉×〈ϕ3〉×〈ϕ5〉×〈ϕ6〉.

These observations all need a proper checking, but they give rise to the conjecture
that S is isomorphic to

(Z4
2 oα Z2)×Z2

2, where (a,b,c,d)
α(1)7−→ (b,a,d,c).

It would be nice to see a digraph with a 128-element orbit under the action of S. We
nominate the digraph of Fig. 3 for this.

Even though we cannot prove that there are no more automorphisms beyond the
ones in S, we conjecture so.

3 The proof of Theorem 1 without some technicalities

As long and technical as it may seem, the whole proof of Theorem 1 is based on
a simple idea, which we outline here. We get substructures of a directed graph by
leaving out vertices, while, to get embeddable digraphs, we can leave out vertices
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Fig. 3

and edges both. We want to define the latter, so we need to be able to leave out edges
somehow. Our main idea is the following. In a digraph G, if there is an edge (u,v) ∈
E(G), then we add a vertex and two edges to “support” the edge (u,v). Namely,
we add w to the set of vertices, and the edges (u,w) and (w,v) to the set of edges.
After the addition, we say that the edge (u,v) is “supported”. The idea is that the
supportedness of an edge can be terminated by leaving out a vertex, in the previous
example w, what we can do by taking substructures. Roughly, what we should do is:
support all edges, take a substructure, and in one more step, leave only the supported
edges in. Of course, there seems to be many problems with this (if told in such a
simplified way). Firstly, how can we distinguish between the supporting vertices and
the original ones? This appears to be an essential part of the plan. Secondly, the
plan ended with “leave only the supported edges in” which just looks running into
the original problem again: we cannot leave edges out. Even though the plan seems
flawed for these reasons, it is manageable. The whole section is no more than building
the apparatus and carrying it out.

Definition 4 In this section, we use three particular automorphism:

– the loop-exchange automorphism, denoted by l, which is ϕ1 (of the previous sec-
tion),

– the edge-reverse (transposition) automorphism, denoted by t, which is ϕ2ϕ3ϕ4,
and

– the complement automorphism, denoted by c, which is ∏
7
i=1 ϕi.

The edge-reverse automorphism just reverses all edges in a digraph, while the
complement automorphism replaces E(G) with V (G)2 \E(G).

Some basic definitions follow

Definition 5 For digraphs G,G′ ∈D , let G ∪̇G′ denote their disjoint union, as usual.

Definition 6 Let En (n = 1,2, . . .) denote the “empty” digraph with n vertices and Fn
(n = 1,2, . . .) denote the “full” digraph with n vertices:

V (En) = {v1,v2, . . . ,vn}, E(En) = /0,

V (Fn) = {v1,v2, . . . ,vn}, E(Fn) =V (Fn)
2.

Definition 7 Let In (n = 1,2, . . .), On (n = 3,4, . . .), and Ln (n = 1,2, . . .) be the
following (Fig. 4.) digraphs:

V (In) =V (On) =V (Ln) = {v1,v2, . . . ,vn},
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E(In) = {(v1,v2),(v2,v3), . . . ,(vn−1,vn)},
E(On) = {(v1,v2),(v2,v3), . . . ,(vn−1,vn),(vn,v1)},

E(Ln) = {(v1,v1),(v2,v2), . . . ,(vn,vn)}.
The digraphs In are called lines, and the digraphs On are called circles.

Note E1 = I1.

I5 O6 L6

Fig. 4

Definition 8 A directed graph is called an IO-graph if it satisfies the following con-
ditions. The only one-element substructure of it is E1. If X is a two-element substruc-
ture then it is either E2 or I2. If X is a three-element substructure then X is E3, or
I2 ∪̇ E1, or I3, or O3. Let the set of IO-graphs be denoted by IO.

Lemma 9 The set IO is definable.

Proof Observe that the set IO is already given by a first-order definition, using the
one, two, and three element digraphs as constants. ut

Observe that the set IO is closed under taking substructures. The following lemma
motivates our notation IO.

Lemma 10 A directed graph is an IO-graph if and only if it is a disjoint union of
lines and/or circles.

Proof Straightforward induction on the number of vertices suffices, using the closed-
ness mentioned prior to the lemma. ut

Lemma 11 The set {On : n≥ 3} is definable.

Proof It is clear that all elements of the set are IO-graphs, we just need to choose
which. It is easy to see that, in IO, those that have a unique lower-cover (within IO)
are:

G ∪̇ · · · ∪̇ G︸ ︷︷ ︸
k copies

, where G ∈ {E1, I2}∪{On : n≥ 3},

for k≥ 1 except when X = E1, then k > 1. In this set, the desired digraphs are exactly
those that are minimal (in this particular set) and have I3 or O3 as a substructure. ut
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Definition 12 A digraph is called loop-full if all vertices have loops on them, and
loop-free if none. The loop-full part of a digraph is the maximal loop-full substructure
of it, and the loop-free part is the maximal loop-free substructure.

Lemma 13 The relation

{(G,F,G ∪̇ F) : G,F ∈D , G is loop-full and F is loop-free}

is definable.

Proof The relation consists of those triples (X ,Y,Z) for which

– X is the loop-full part of Z,
– Y is the loop-free part of Z, and
– there is no two element substructure of Z that consists exactly one loop and has a

non-loop edge in it.
ut

Definition 14 Let L→ denote the digraph with

V (L→) = {v1,v2}, and E(G) = {(v1,v1),(v1,v2)}.

Definition 15 Let G be a loop-full digraph with V (G) = {v1, . . . ,vn}. Then l(G) is
loop-free. Let the set of its vertices be l(G) = {v′1, . . . ,v′n} with

for i 6= j : (v′i,v
′
j) ∈ E(l(G))⇔ (vi,v j) ∈ E(G).

Let G→ l(G) denote the digraph for which

V (G→ l(G)) =V (G)∪V (l(G)), and

E(G→ l(G)) = E(G)∪E(l(G))∪{(vi,v′i) : 1≤ i≤ n}.

Lemma 16 The relation

{(G, l(G),G→ l(G)) : G ∈D , G is loop-full}

is definable.

Proof Let us consider the triples (X ,Y,Z) for which

– X is the loop-full part of Z, and Y is the loop-free part of Z,
– X ∪̇ E1 6v Z, and Y ∪̇ L1 6v Z (both are definable by Lemma 13),
– on two points, the only substructure having exactly one loop and at least one

non-loop edge is L→, and
– no digraph of the first two pictures of Fig. 5 is a substructure. We consider the

dashed edges possibilities, either we draw them (individually) or not. In this way,
there are 6 (isomorphism types) encoded into the first two pictures of Fig. 5. We
exclude them all.

Now we have ensured that the edges L→ constitute a bijection between the vertices
of X and Y in Z. It only remains to force this bijection to be edge and non-edge
preserving as well. This can be done by requiring the additional the property
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Fig. 5

– Consider the third picture of Figure 5 as before, the dashed edges are possibili-
ties. We forbid those from being substructures in which the dashed edges are not
symmetrically drawn on the two (loop-full and loop-free) sides.

ut

We are going to need some basic arithmetic later. We define addition in the fol-
lowing lemma.

Lemma 17 The following relation is definable:

{(En,Em,En+m) : n,m≥ 1}.

Proof The set {En} is definable as it consists of E1 plus those digraphs which have
only E2 as a two-element substructure. En ∪̇ (Lm→ Em) is the digraph X for which

– En ∪̇ Lm v X (using Lemma 13),
– Lm→ Em v X (using Lemma 16),
– the second digraph of Fig. 5, without the dashed edges, is not a substructure,
– En+1 ∪̇ Lm 6v X (En+1 is just the cover of En in {En}),
– on two vertices, the only subgraph having a non-loop edge is L→,
– the maximal loop-full subgraph of X is Lm, and
– the maximal loop-free subgraph of X is of the form Ei.

The Ei of the last condition is En+m. ut

Lemma 18 The following relation is definable:

{(G,F) : G and F have the same number of vertices}. (1)

Proof We “determine” the number of vertices for the loop-full and the loop-free parts
of the graphs separately and add them using Lemma 17. Let G1 denote the loop-
full part of G, and G2 denote the loop-free part. Let X denote the digraph with the
following properties:

– The loop-full part of X is G1, and the loop-free part is Ei for some i.
– On two points, the only substructure having exactly one loop and at least one

non-loop edge is L→.
– G1 ∪̇ E1 6v X , and Ei ∪̇ L1 6v X .
– Just as in the proof of Lemma 16, no digraph of the 6 digraphs of the first two

pictures of Fig. 5 is a substructure. (No matter, we wouldn’t even need all 6 in
this case.)
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Observe that in X , the edges L→ constitute a bijection between G1 and Ei, conse-
quently i in the first condition is |V (G1)|.

Now we proceed analogously for the loop-free part, G2. We do not write all the
conditions down again, as they are just the ones above converted with the automor-
phism l. This way, we get L j with j = |V (G2)|. We already have Ei and L j defined,
such that i+ j = |V (G)|. To conclude, we use the relation of Lemma 16 to get E j and
Lemma 17 to obtain the desired Ei+ j, marking the number of vertices of G.

Finally, (G,F) ∈ (1) holds if and only if, by doing the same, we get the same
Ei′+ j′ marking the number of vertices. ut

We define some more arithmetic in the following lemma, namely multiplication.

Lemma 19 The following relation is definable:

{(En,Em,Enm) : n,m≥ 1}.

Proof The relation {(Ei,Fi) : i = 1,2, . . .} is definable as, beyond (E1,F1), for i > 1,
Fi is the only digraph having the same vertices as Ei that has only F2 as a two element
substructure. Let X be a digraph that is maximal with the following properties:

1. E1 6v X to ensure that the relation E(X) is reflexive.
2. l(I2) 6v X to ensure that the relation E(X) is symmetric.
3. The digraph of Fig. 6 is not a substructure of X to ensure that the relation E(X) is

transitive.
4. Ln is the maximal Li subgraph.
5. Fm is the maximal Fi subgraph.

The conditions 1-3 force E(X) to be an equivalence. Condition 4 tells the equiv-
alence has at most n classes and condition 5 requires the classes to have at most m
elements. It is easy to see that such an equivalence relation has a base set of at most
nm elements, hence |V (X)|= nm. Thus, we can finish with Lemma 18. ut

Fig. 6

Lemma 20 Disjoint union of IO graphs is definable, i.e. the following relation is
definable:

{(G1,G2,G1 ∪̇ G2) : G1,G2 ∈ IO}.

Proof Using G1 and G2, we want to define

G1 ∪̇ (l(G2)→ G2), (2)

whose loop-free part is the sought G1 ∪̇ G2. For this, let X satisfy the following
conditions.
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– |V (X)|= |V (G1)|+2|V (G2)| (using Lemmas 18 and 17).
– G1 ∪̇ l(G2)v X .
– l(G2)→ G2 v X .

It easy to see that these three conditions ensure that (2) is embeddable (not substruc-
ture!) into X : there can be edges between the subgraphs G1 and G2 which we need
to exclude. If there is an edge from G2 to G1 (in this particular direction), then the
first graph of Fig. 7 is a substructure, without the dashed edges. Analogously, if an
edge goes from G1 to G2, then the second digraph of Fig. 7 is a substructure, without
the dashed edges. Thus we need to exclude these two subgraphs. Let Y satisfy the
following conditions.

– |V (Y )|= |V (G2)|+2, and Y w l(G2).
– I2 and L→ are substructures of Y .
– The digraph of Fig. 8 is not a substructure of Y .

These three conditions does not define the two digraphs of Fig. 7 without the
dashed edges, they rather define the set of those with the dashed edges meant as
possibilities, as usual. However none of the dashed edges can actually appear in our
X so by excluding all such, we do not do more than by excluding only the two without
the dashed edges. Finally, (2) is the loop-free part of X . ut

l(G2) l(G2)

Fig. 7

Fig. 8

Lemma 21 The following set is definable.

{G : G is a disjoint union of circles of different sizes}.
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Proof The set of digraphs that are disjoint unions of circles contains those IO graphs
that have unique upper-covers (in the set IO). In this set, the digraphs of the form
Oi ∪̇ Oi are those that have a unique circle substructure Oi and have twice as many
vertices as Oi. We have defined two sets of digraphs, the set of the lemma is just the
set of those digraphs of the first set that have no substructures from the second. ut

Lemma 22 The following relation is definable.

{(O∗,G ∪̇ O∗) :G ∈D and O∗ is a disjoint union of |V (G)|-many circles of

different sizes such that the smallest has at least |V (G)|+1 vertices}.
(3)

Proof First, we define a relation counting the number of circles in O∗, actually we
formulate it without the restriction on the sizes of the circles:

{(Ei,O) : O is a disjoint union of i circles}. (4)

The set of O’s of this relation was defined in the first sentence of the proof of Lemma
21. Let O′ denote such a substructure of O that has no circle in it and has a maximal
number of vertices with this property. Then i+ |V (O′)| = |V (O)| holds for the i of
(4), thus we can conclude with the addition relation defined earlier.

Let O∗ be an element of the set defined in Lemma 21 and i be the number of its
circles. Let X satisfy:

– |V (X)|= |V (O∗)|+ i.
– The smallest circle in O∗ has at least i+1 vertices.
– O∗ v X .
– X does not have a substructure Y for which

– |V (Y )|= |V (O∗)|+1, and Y w O∗,
– Y is loop-free, and
– Y is not an IO-graph.

– X does not have a substructure Y for which
– |V (Y )|= |V (O∗)|+1, and Y w O∗,
– Y has a loop in it, and
– Y has one of L→ or t(L→) or c(L1 ∪̇ E1) as a substructure.

With these properties, X is of the required form G ∪̇ O∗. ut

Remark 1 Let us remark here that for the smoothest continuation of the proof, we
should have had (G,G ∪̇O∗) instead of (O∗,G ∪̇O∗) (with the same assumptions) in
(3). The definability of this, however, seems to be out of reach (at least for the author)
at this point. That is why we proceed in the following, somewhat inelegant, way.

Lemma 23 There exists a definable relation R for which

{(G,O∗,G ∪̇ O∗) : (O∗,G ∪̇ O∗) ∈ (3)} ⊆ R⊆
{(G,O∗,G+ ∪̇ O∗) : (O∗,G+ ∪̇ O∗) ∈ (3), |V (G)|= |V (G+)|, G≤ G+}.

(5)

Observe that the last condition in the formula, G ≤ G+, has embeddability (not
substructureness) in it.
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Proof We define a sufficient R as a set of triples (G,O∗,X) for which the following
hold.

1. (O∗,X) ∈ (3).
2. |V (X)|= |V (O∗)|+ |V (G)|.
3. Gv X .
4. Let Gmax

IO be an IO-substructure of G that has a maximal number of vertices. Note
that this implies v-maximality as well. We require Gmax

IO ∪̇O∗ v X (with Lemma
20).

First off, the left-side containment of (5) is clear. The right-side containment is
less obvious. Let Gw

IO denote the subgraph of G that consist of those weakly connected
components of G that are IO-graphs, and let G′ denote “the rest” (G = Gw

IO ∪̇ G′).
At first glance, it might look like if condition 3 was enough to force X = G ∪̇ O∗.
Unfortunately, this is not the case though, as condition 3 is not able to force Gw

IO
outside O∗, because Gw

IO vO∗ is possible. On the other hand, G′ ∪̇O∗ v X is ensured
by condition 3, as O∗ can only have IO-graph substructures. It is not hard to see that
the last condition makes up for the deficiency we just saw, i. e. it “forces Gw

IO out of
O∗”. However, X = G ∪̇ O∗ is still not necessary as there can be “unwanted” edges
between Gw

IO and G′ in X , but the right-side containment of (5) lets this happen. ut

Some technical tools follow. We introduce digraphs that we denote using the sym-
bol ♂. The motivation is the shape of the digraphs, as usual. Note, that the same
notations were used in the papers [5, 6] in a slightly different way.

Definition 24 Let V (On) = {v1, . . . ,vn} and let us define two digraphs with

V (♂n) :=V (On)∪{u1,u2}, E(♂n) := E(On)∪{(v1,u1),(u1,u2)}, and

V (♂L
n) :=V (♂n), E(♂L

n) := E(♂n)∪{(u2,u2)}.
Now let m be a different positive integer from n and define ♂m and ♂L

m analogously
with V (♂m) =V (♂L

m) = {v′1, . . . ,v′m,u′1,u′2}.
Now we are going to deal with pairs of the digraphs just defined, which leaves us

4 = 2× 2 cases with respect to the presence of the loops. To avoid the tiresomeness
of listing all 4 possibilities all the time, we resort to the following notation. We say,
let (2,O) ∈ { /0,L}2, and for example, in the case (2,O) = (L, /0), we mean (♂L

n ,♂m)
by (♂2

n ,♂
O
m), naturally.

Let (2,O) ∈ { /0,L}2. We introduce two more types of digraphs with

V (♂2
n →♂O

m) :=V (♂n)∪V (♂m), E(♂2
n →♂O

m) :=E(♂2
n )∪E(♂O

m)∪{(u2,u′2)},and

V (♂2
n ↔♂O

m) :=V (♂n)∪V (♂m), E(♂2
n ↔♂O

m) := E(♂2
n →♂O

m)∪{(u′2,u2)}.

Lemma 25 The following relation is definable for all (2,O) ∈ { /0,L}2.

{(Ei,E j,♂2
i ,♂

2
i ∪̇♂O

j ,♂
2
i →♂O

j ,♂
2
i ↔♂O

j ) : i, j > 3, i 6= j} (6)

The proof is put in the last section for its technical nature.
The following definition is not a technicality any more as it is a construction of

great importance in the remaining half of the proof.



16 Ádám Kunos

Definition 26 Let G be a digraph on n vertices with V (G) = {v1, . . . ,vn}, and let
(O∗,G ∪̇O∗) ∈ (3) with V (O∗) = {u j

i : 1≤ j ≤ n,1≤ i≤ i j} such that the mth circle
Okm of O∗ consists of the vertices {um

i : 1 ≤ i ≤ im}. Let C(O∗) = {Ok1 , . . . ,Okn}
denote the set of the circles of O∗ and let α : C(O∗)→V (G) be a bijective map. We
introduce the notation G α← O∗ for the digraph with

V (G α← O∗) =V (G ∪̇ O∗)∪{w1, . . . ,wn}, and

E(G α← O∗) = E(G ∪̇ O∗)∪{(u j
1,w j) : 1≤ j ≤ n}∪{(w j,α(Ok j)) : 1≤ j ≤ n}.

Lemma 27 The following relation is definable.

{(O∗,G ∪̇ O∗,G α← O∗) : (O∗,G ∪̇ O∗) ∈ (3), α : C(O∗)→V (G)}. (7)

Proof As we already defined (3), we only need to define the digraphs G α←O∗ (using
O∗ and G ∪̇ O∗). The relation of the lemma consists of those triples (O∗,G ∪̇ O∗,X)
for which:

– Let V (G ∪̇ O∗) =V (O∗)+n. Then V (X) =V (G ∪̇ O∗)+n.
– G ∪̇ O∗ v X .
– Oi ≤ O∗ implies ♂i v X or ♂L

i v X .
– Oi,O j ≤O∗ (i 6= j) implies♂2

i ∪̇♂O
j v X , or♂2

i →♂O
j v X , or♂2

j →♂O
i v X ,

or ♂2
i ↔♂O

j v X for some (2,O) ∈ { /0,L}2.
ut

In the following definition, we introduce the soul of our proof: the edge-supporting
construction. Before starting to study the long definition, it is worth to read the sim-
plified idea of it, back at the beginning of this section.

Definition 28 In this definition, we introduce the edge-supporting construction. Let
G be a digraph with

V (G) = {v1, . . . ,vn}, and E(G) = {e1, . . . ,ek}.

Note that k ≤ n2 is necessary. Let p1 and p2 be two maps from E(G) to {v1, . . . ,vn}
defined by the rule

∀e ∈ E(G) : e = (vp1(e),vp2(e)).

Let us introduce a digraph Gs with

V (Gs) :=V (G)∪{vs
1, . . . ,v

s
k}, and E(Gs) := E(G)∪

k⋃
i=1

{(vp1(ei),v
s
i ),(v

s
i ,vp2(ei))}.

Let
O∗ = Ol1 ∪̇ Ol2 ∪̇ · · · ∪̇ Oln such that n2 +n < l1 < l2 < · · ·< ln.

Let Ds be a set of integers with

|Ds|= k(= |E(G)|), and x ∈ Ds⇒ x > ln. (8)
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Let s be a bijective map from Ds, satisfying (8), to {vs
1, . . . ,v

s
k}. Let

O∗s := O∗ ∪̇
⋃̇

x∈Ds

Ox with V (O∗s ) = {u
j
i : j ∈ {l1, . . . , ln}∪Ds, 1≤ i≤ j}.

Let α : C(O∗)→V (G) be a bijective map. We define the digraph (G α← O∗)s by

(G α← O∗)s := Gs
β← O∗s , where β |C(O∗) := α, β |{Ox:x∈Ds} := {(Ox,s(x)) : x ∈ Ds},

and say its an edge-supporting digraph for G.

Remark 2 Note that the definition of the edge-supporting digraphs includes a condi-
tion for the size of the circles of O∗. That condition is very important here, and was
not present in (7). We need to be cautious about this later on.

Lemma 29 The following relation is definable.

{(O∗,G α← O∗,(G α← O∗)s) : (G α← O∗)s is an edge-supporting digraph for G} (9)

Proof The relation in question consists of those triples (X ,Y,Z) for which the high-
lighted conditions hold. There are explanations inserted between the conditions.

– There exists a triple (X ,W,Y ) ∈ (7), meaning (X ,Y ) is of the form (O∗,G α←O∗).

Thus, instead of (X ,Y ), we use (O∗,G α← O∗) from now on in the proof. To ensure
the structure of O∗ (see Remark 2), first, we determine the number of vertices of G
with

– |V (O∗)|+2n = |V (G α← O∗)|,

meaning G has n vertices. Now we are ready to shape O∗.

– Oi v O∗ implies i > n2 +n.

We turn to defining Z of the triple we started with.

– There exists a triple (W1,W2,Z) ∈ (7), meaning (W1,Z) is of the form (O∗s ,Gs
β←

O∗s ).

At this point, O∗s , Gs, and β are just notations yet, we need additional conditions to
make them be like in Definition 28.

– O∗ v O∗s ,
– Oi vO∗s implies i≥ l1, where l1 is the size of the smallest circle of O∗, as before.
– G α← O∗ v Z.
– If Oi v O∗ and ♂L

i v Z, then there exists k > ln for which ♂L
i → ♂k v Z and

♂k → ♂L
i v Z both hold. Additionally, if l is different from i,k, and Ol v O∗s ,

then there exists � ∈ { /0,L} for which ♂k ∪̇♂�l holds.
– If Oi,O j v O∗, i 6= j, and ♂2

i →♂O
j v Z with (2,O) ∈ { /0,L}2, then there exists

k > ln for which♂2
i →♂k v Z and♂k→♂O

j v Z both hold. Additionally, if l is
different from i, j,k, and Ol vO∗s , then there exists � ∈ { /0,L} for which♂k ∪̇♂�l
holds.
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– If Oi,O j v O∗, i 6= j, and ♂2
i ↔♂O

j v Z with some (2,O) ∈ { /0,L}2, then there
exist two different k1,k2 > ln for which all of

♂2
i →♂k1 , ♂k1 →♂O

j , ♂
O
j →♂k2 , and ♂k2 →♂

2
i

are substructures of Z. Additionally, if l is different from i, j,ki, and Ol vO∗s , then
there exists � ∈ { /0,L} for which ♂ki ∪̇♂

�
l holds for i = 1,2.

– If OkvO∗s and k> ln, then k is one of the ks or kis of the previous three conditions.

It is not hard to see that these conditions provide the structure we need. ut

We can now handle the problem described in Remark 1. The next lemma does
just that.

Lemma 30 The following relation is definable.

{(G,O∗,G α← O∗) : the circles of O∗ have more than |V (G)|2 + |V (G)| vertices.}
(10)

Proof It is sufficient to define the relation

{(G,O∗,G ∪̇ O∗) : the circles of O∗ have more than |V (G)|2 + |V (G)| vertices.}

as if we have this, we can easily finish the proof with (7). We start with the R of
Lemma 23. For a pair (G,O∗), we need to find the triple (G,O∗,G+ ∪̇ O∗) of R such
that G+ has the least possible number of edges. With (7) and (9), the relation

{(G+ ∪̇ O∗,(G+
α← O∗)s) : (G+

α← O∗)s is an edge-supporting digraph for G+}

is defined easily. To conclude, pick a pair from this relation whose second component
has a least number of vertices possible. The first element of this pair is G ∪̇ O∗. ut

We are finally ready to prove our main theorem.

Proof (of Theorem 1) With (10) and (9) one can easily define the relation

{(G,O∗,(G α← O∗)s) : (G α← O∗)s is an edge-supporting digraph for G}.

Fix a triple (G,O∗,(G α← O∗)s) of this relation and let n be the number of vertices
of G. We need to show that the set of digraphs embeddable into G is definable. Let
X v (G α← O∗)s and let (GX ,O∗X ,GX

γ← O∗X ) be a triple of the relation (10) for which
the following conditions hold. (We have to be careful (see Remark 2), the listed con-
ditions do not contradict the assumption of (10).)

– Oi v O∗X holds if and only if both Oi v O∗, and ♂2
i v X for some 2 ∈ { /0,L}

hold.
– If Oi,O j v O∗X , i 6= j, and (2,O) ∈ { /0,L}2, then

– ♂2
i ∪̇♂O

j v GX
γ← O∗X holds if and only if one of the following three holds:

• ♂2
i ∪̇♂O

j v X , or
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• ♂2
i → ♂O

j v X , but the edge is not supported in X , i. e. there exists no
k > ln (where ln is the size of the largest circle of O∗, as before) for which
♂2

i →♂k v X and ♂k→♂O
j v X both hold, or

• ♂2
i ↔♂O

j v X , but none of the two edges is supported in X .

– ♂2
i →♂O

j v GX
γ← O∗X holds if and only if one of the following two holds

• ♂2
i →♂O

j v X , and the edge is supported in X , or
• ♂2

i ↔♂O
j v X , but only the “i→ j” edge is supported in X .

– ♂2
i ↔ ♂O

j v GX
γ← O∗X holds if and only if ♂2

i ↔ ♂O
j v X and both edges

are supported in X .

It is clear that GX ≤ G and all embeddable digraphs can be obtained this way. ut

4 The remaining technicalities

Definition 31 The sum of the number of (both in- and out-)edges for a vertex, not
counting the loops, is called the loop-free degree of the vertex.

Lemma 32 Let 0 ≤ p and 1 ≤ q be two fixed integers. We can define, with finitely
many constants added to (D ,v), the set of digraphs that contain at most p many
vertices with loop-free degree at least q each.

Before the easy proof, note that we can only use this lemma if we have a fixed
constant, say K = 4, for the whole paper, such that all usage of the lemma restricts to
p,q≤K. Otherwise there would be no guarantee we are using finitely many constants
at all. Fortunately, K = 4 will just do for the whole paper.

Proof Observe that the digraph G has more than p many vertices with at least q
loop-free degree each, if and only if it has an at most (p+ 1)q element “certificate”
substructure with the same property. Hence, by forbidding all those (finitely many)
certificates, we define the set we need. ut

2 2 O

Fig. 9

Proof (of Lemma 25) Let us consider Ei and E j given. We define the other compo-
nents of the relation.

We start with ♂2
i which is just the digraph X for which

– |V (X)|= i+2.
– Oi v X .
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– We use Lemma 32 with p = 1, and q = 3, i. e. X has at most one vertex with
loop-free degree at least 3.

– We use Lemma 32 with p = 0, and q = 4 as well.
– The first digraph of Fig. 9 is a substructure. The2 symbol is understood naturally,

if 2= L, then there is a loop there, if 2= /0, then there is not.
– Depending on 2,

– if 2= /0, then Oi ∪̇ E1 v X , that is the only cover of Oi among the IO-graphs,
– if 2= L, then Oi ∪̇ L1 v X , that is definable with Lemma 13.

We now start to deal with ♂2
i ∪̇ ♂O

j . Oi ∪̇ O j is the digraph with i+ j vertices
that is a disjoint union of circles and both Oi and O j are substructures. ♂2

i ∪̇ ♂O
j is

the digraph X for which

– |V (X)|= |V (♂2
i )|+ |V (♂O

j )|.
– ♂2

i v X , and ♂O
j v X .

– We use Lemma 32 with p = 2, q = 3 and with p = 0, q = 4.
– Depending on (2,O),

– if (2,O) = ( /0, /0), then Oi ∪̇ O j ∪̇ E2 v X , which is just the digraph Y for
which
• |V (Y )|= i+ j+2, and Oi ∪̇ O j v X ,
• Y has the maximal substructure Ek (among the ones with the previous

property).
– if (2,O) = (L, /0) or ( /0,L), then Oi ∪̇ O j ∪̇ E1 ∪̇ L1 v X , which is just the

digraph Y for which
• |V (Y )|= i+ j+2, and Oi ∪̇ O j v X ,
• Oi ∪̇O j ∪̇E1, which is the only IO-graph cover of Oi ∪̇O j, is a subgraph,
• Oi ∪̇ O j ∪̇ L1 is a subgraph, and
• on two elements, there is no subgraph with both a loop and a loop-free

edge.
– if (2,O) = (L,L) then Oi ∪̇ O j ∪̇ L2 v X .

Now we turn to ♂2
i →♂O

j , which is just the digraph X for which

– |V (X)|= |V (♂2
i )|+ |V (♂O

j )|.
– ♂2

i v X , and ♂O
j v X .

– We use Lemma 32 with p = 2, q = 3 and with p = 0, q = 4.
– The second digraph of Fig. 9 is substructure of X .

Finally,♂2
i ↔♂O

j is defined with the analogues of the conditions for♂2
i →♂O

j .
ut
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