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Minimax theorems beyond topological vector spaces

L. L. STACHO

1. Introduction

The numerous applications and generalizations of von Neumann’s classical
minimax theorem constitute an important chapter of modern convex analysis.
However, all proofs make essential use of some variant of Brouwer’s fixed point
theorem, a result that has seemingly nothing to do with convexity but closely con-
nected with the vector space structure of R”.

In his recent paper [3], I. Jo6 submitted a completely new and elementary
proof of Ky Fan’s minimax principle, based on a simple fixed point theorem that
can be easily proved by the usual methods of convex analysis. Now the converse
question arises: Is it possible to give an extension of the concept of convexity that
allows us to find a proof of Brouwer’s fixed point theorem proceeding along the
lines of the fixed point theorem in [3].

Unfortunately, we cannot furnish yet a definitive answer to this problem. How-
ever, by an examination of the proofs in [1] and [3] we can find a deep argument
that may provide some hope in an affirmative answer. Namely, these proofs do
not touch the algebraic structure of the underlying vector spaces and the only prop-
erty arising from convexity which is actually used is the trivial topological fact that
the interval [0, 1] is connected.

The main purpose of the present article is to show how these remarks yield
new generalizations of the Ky Fan and Brézis—Nirenberg—Stampacchia minimax
principles, respectively, for topological spaces that are richer but axiomatically
simpler than the familiar topological vector spaces.

Our goals will be the following three observations:

a) The most suitable concept in describing the topological situation that occurs
in the minimax principles is perhaps the interval space defined (in Section?2) as a
topological space equipped with a system of connected subsets that play the role
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of closed segments in vector spaces. In such spaces the convexity of sets and quasi-
convexity of functions have a natural interpretation and Jo&’s method (even with
some simplifications) can be applied to establish an extension of Ky Fan’s minimax
theorem.

b) On the other hand, by shifting the emphasis from the topology on the order
structure of one of the underlying spaces, a little change in the crucial steps of [1]
(summarized there in formulae (3), (4), (5)) leads to a new elementary proof and
generalization for certain interval spaces of the Brézis—Nirenberg—Stampacchia
minimax theorem [4, p. 289] that provides a deeper explanation of the asymmetry
noted in [4, Remark p. 290].

¢) We can answer by a counterexample a question of L. NIRENBERG [5, p. 144]
concerning the conjectured most general form of minimax theorems in topological
vector spaces.

I am indebted to I. Jo6 for the stimulating discussions and for having called
my attention to Nirenberg’s question.

2. A Joé type minimax theorem in interval spaces

Definition. By an interval space we mean a topological space X endowed
with a mapping [.,.]: XXX~ {connected subsets of X} such that x;, x,€[x;, x,]=
=[x,, x;] for all x;, x,€X.

In interval spaces it makes sense to speak of convexity in a natural way:

Definition. A subset K of an interval space X is convex if for every x;, x,€ K
we have [x;, x,]JcK. Obviously, this concept preserves the following fundamental
properties of convexity in vector spaces:

Proposition 1. Inany interval space X, convex sets are connected or empty.
The intersection of any family of convex sets is convex. The union of any increasing
(with respect to inclusion) net is convex.

For our purposes it is of more importance that, although convex functions
cannot be defined on interval spaces in a reasonable manner, the concept of quasi-
convexity of functions can be extended to interval spaces.

Definition. A function f mapping an interval space X into R is quasiconvex
or quasiconcave if f(z)=max {f(x;)), f(x2)} or f(z)=min {f(xy),f(x;)} whenever
X1, %€ X and z<[x;, x,]. Thus fis quasiconvex [quasiconcave] iff the sets {x: f(x) =y}
[{x: f(x)=y}] are convex for all y<R.

To extend the proof in [1] for interval spaces, we need the following generaliza-

tion of the fixed point theorem in [3]:
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Proposition 2. Let Y be an interval space, X a topological space and K(-)
a mapping of Y into the family of compact subsets of X, such that ,

(1) K(»)=9 for all ycy,
() K K(y)UK(ys) whenever z€[p,, p,] and Y1, €Y,

3) ("] K(y) is connected or empty for every yi, ..., ¥,€Y (n=1,2,..),
i=1
@ x€K(y) whenever y=lim y;, x=lim x; and x,€K(y;) for all i€ #. Then
ics ics
we have () K(3)=0.
yeY

Proof. We must show that the family K (¥) has the finite intersection prop-
erty, i.e.

3D ) K(y) =9 forevery y,,..., Va€Y
i=1

for all n€EN. We prove (3’) by induction on n. For n=1, (3’) follows from (1.
Suppose that (3’) holds for n=1,...,k but there are Yis ooy Viya such that
k+

1 k-+1
(1 K(¥{)=0. Consider now the mapping y—K*( N=K)N N KH. It readily
i=1 i=3

follows from our induction hypothesis that K*(3)=0 for all Y€Y. Moreover,
(2) and (3) ensure that

& K*(z) is a connected subset of K*(yDUK*(p¥) for any z€[y}, yal-
2

By definition, K*(y¥))NK*(3})=0. (5) implies that for every z€[yf, y3], the con--
nected set K*(z) is the disjoint union of the compact sets K* @NK*(y)) (j=1,2).
Hence

(5%) either K*(z)cK*(y¥) or K*(z)cK*(y}) for any z€[yy, ¥i).

Thus the sets S;={z€[y}, y31: K*(2)cK*( yP}(j=1, 2) aredisjoint non-empty and
S:USe=[y7, ¥i]. But from (4) we see that both S, and S, must be closed in
[»% 3], (In fact, let j=1 or 2 be fixed and let (3:: i€F) be anet in S; with
Yi~y€lyi, y;). For any index ic.#, pick a point x;€K*(y;) arbitrarily. Since by
the definition of ;, the sets K*(y;) are contained in the compact K*(y}), for a
suitable subnet (x, : mEAM) we have %;,,~x for some x€ K*(y%). Now (4) ensures
that x€ K*(y) whence K*(y)cK*( ¥}).) However this contradicts our axiomatic
assumption that Intervals are connected.

Theorem 1. Let X, Y be compact interval Spaces and let f: XXY—~R be a
continuous function such that
(6) the subfunctions x—f(x, Y) are quasiconcave for any fixed y€y,
(6%) the subfunctions ysf(x, y) are quasiconvex for any fixed xcX.
Then 7, = max min f(x, y)= min max f(x, y)=7y*.
x ¥y y X
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Proof. A standard compactness argument establishes that both 74 and y* are
attained (thus the statement of Theorem 1 makes sense). Then obviously we have
7+=7*. The converse inequality y, =max min J(x, y)=vy* is equivalent to the exist-

X

ence of some x,€X such that for all y€¥ we have J(x, )=y~

For each ycY, let K(y) be defined by K(»)={x: f(x,) =y*}. Thusto p, =yp*
we have to show N K(y)s=p.
yey

From the definition of 7* we see that K (»)=0 for any y€Y. The continuity of
S implies that K(y) is compact and from (6) we obtain that K(y) is convex for all
YEY. From (6") it follows K(z)= {x: f(x, z)%y*}c{x: max {f(x, y;):j=1, 2}=y")=

2 2
= U {x: flx, ) =y*}= U1 K(y;) whenever z¢[y,, Vel Finally, also from the con-
i=1 j=

tinuity of £ we deduce (4)._ Since convex sets are connected or empty, Proposition 2
can be applied, whose conclusion is M K(»)=0.
€Y

¥y
We close this section with the following question: ,
Questio'n. Is there a choice of X, Yand K in Proposition 2 such that the
conclusion (" K(y)s0 be a known equivalent of Brouwer’s fixed point theorem?
yEY " .

3. A generalization of the Brézis—Nirenberg—Stampacchia minimax theorem

Definition. We shall say that an interval space ¥ is Dedekind complete if for
every pair of points y;, y,€ ¥ and convex subsets H,, H,CY with VicH; (j=1,2)
and [y;, y;Jc H,\UH, there exists Z€Hy such that [y,, zIN\{z}c H, or there exists
z€H, such that [y,, zN\{z}cH,.

Lemma 1. Let ¥ be a convex subset of some real Hausdorff topological vector
Sspace with its natural interval structure s val={1 Ay, +Aye: A€[0, 1]} (for each
Y1, Y2€Y ). Then Y is a Dedekind complete interval space.

Proof. Given y,, Y. and Hy, H, as above, set z=(1-y,+2*y, where
A*=sup {A€f0,1]: *l)y1+lJ’2EH1}- Then z€[y,, y,] and [y, Z]\{Z}CHj (j=1,2).

Proposition 3. Let X be an interval space, Y a Dedekind complete Haus-
dorff interval space and J1 XXY >R a function such that

(7) the subfunctions xe—~f(x, y) are quasiconcave on X and upper semicontinuous
on any interval of X (for all fixed YEY).

(P) the subfunctions y—f(x,y) are quasiconvex on Y and lower semicontinuous
on any interval of Y (for all fixed xcX ). Then the family F of X-subsets defined by

®  F={ D= }yely <y, where y* =infsup f(, y),
has the finite intersection property whenever y*> — oo,
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Proof. The definition of y* ensures that F@ for any FEF (and & =0 if
y* > —o0). Assume now that we have

()] (':] F; 0 for every choice of F,,..., F,¢%,
i=1

n+1
but () F=0 where F}, ..., F},, aresome given elements of &. To complete the
i=1

proof, we show that this is impossible.
By (8) we may suppose that F={x: f(x, y)=yf} (=1, ...,n+1) with
Vis s V€Y and y*>yi=..z=yf, . Set

1) 6=\ f(wyD =11} and KO)={(x€G: f(x, ) >3]} forall yer.

Now (7%) implies that each set K() is convex in X and from (10) and (9) we see that
* *
K@) > {x fG,y) = Y”Ly }ﬂ N {x fx, ¥ 5—”%} #0 (forall yeY).

Also in this proof, the key property of the mapping y—K(y) is that
(2" K()<K(ypUK(y,) whenever z€[yy,y,] (for all yp,,»,€¥) which
can be deduced from (10) and (7) as follows: K(z)={x€G: f(x,z)=y"}c

2
c{xeG: {maxf(x, y): j=1, 2}>7T}=_L_J1 {x€G: flx, y)=y}=K()UK(p).
Hence it follows that !
(5 either K(z2)CK(y7) or K(z)CK(y;) for any ze[y}, yi].
Indeed, xleK(z)ﬂK( y7) and x€K(@Z)NK(y) 1rnphes that for the sets T;=

=[x, %] FfN ﬂ Ff(j=1,2) we have T;N T, ﬂ Ff=0 and [x,, x,] D T, U T, D
2%, xz]m(F;‘ FHNGD[x,, x2]mjL=Jl K(J’}‘)Dby (D) >[x1, x,]NK(2)=[x;, x,]. By

(7%) the sets F}* are closed in X (i=1, ...,n+1) whence T and T, are closed in
[x1, x,]. But this contradicts the connectedness of [x;, x,]. Thus (5*) holds.
(2*) and (5*) show that the sets

an Hf = {z: K@< KO} (=12

are convex in ¥, HfUH;D[y,,»] and yjeH} (j=1,2). Since the interval
space ¥ was assumed to be Dedekind complete, there exist j€{l,2} and z*¢ Hf
such that

(12) i, ZIN{z"y © HY  where  ke{1, 2]\ {/}.
From (10) and (11) we have
(13) f(x*, 2% =9yf for all x*¢K(z%).

11
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On the other hand, if x*¢K(z*) then x*¢K(y}). From (12) and (11) it follows
K(y)>oK(2) for all z€[yf, z*\{z*} whence we obtain by (10) that

139 Fe*, ) =9 forall ze[yy, z'N{z*} and x*€K(z).

Since the topology of ¥ was supposed to be Hausdorff and since the interval [y}, z*]
is connected, the point z* belongs to the closure of [y;, z*]\{z*}. But then (7%)
and (13’) imply f(x*, z¥)=9y} for all x*¢K(z*) (#0) which contradicts (13).

Theorem 2. Suppose that X is an interval space, Y is a Dedekind complete
Hausdorff interval space and that the function f: XXY—~R has the properties (T),

(7%) the subfunctions x—f(x,y) are upper semicontinuous and quasiconcave on
the whole X (for all fixed y€Y),

(7% for some y<1nf sup f(x,y) and y€Y, the set {x: f(x,y)=y} is compact.

Then we have max 1nf f(x, y)-—lnf sup J(x, »).

Proof. From the definition of the operations inf and sup it follows immediately
that sup mf f(x, )<1nf sup f(x,y). Therefore again it suffices to prove that

mf f(xo, )>'y (—mf sup f (x,¥)) for some x,€X, or equivalently that the family

& defined by (8) admlts a common point.

Now (7°) ensures that y*>—c and that some member of & is a non-empty
compact set. By (7%), each member of & is a closed subset of X. Hence MF =0
if and only if & has the finite intersection property. But this is a directe consequence
of Proposition 3.

Corollary. (Brézis—Nirenberg—Stampacchia) If X is a convex subset of a
real Hausdorff topological vector space, Y is a convex subset in a real vector space
and 1 XXY-R is a function satisfying (Ty), (P) and (T°) then we have max inf

S(x, ) =irylf sgpf(x, »)-

Proof. Let us endove ¥ with any locally convex Hausdorff vector space top-
ology. (It is always possible e.g. by taking the convex core topology on the sup-
porting vector space of Y, cf. [6, p. 110, (2.10)].) Then by Lemma 1 we can apply -
Theorem 2.

- 4. A counterexample concerning the extendibility of Theorem 2

In the light of the proof of Proposition 3, we can answer (negatively) the
question raised by L. NIRENBERG [5, p. 144] whether condition (7}) can be replaced
by the weaker condition (7%) in the Brézis—Nirenberg—Stampacchia minimax
theorem.
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Theorem 3. There exist locally convex Hausdorff topological vector spaces F,

G and compact convex subsets XCF and Y@, Jurther a function i XXY~ {0, 1}

satisfying (7%), (1), and such that 0=max min S(x, ) and 1=max minf(x, y).
X y ¥y X

for all u,veV) [6, p- 59, p. 9]. Hence (7*) [respectively (7)] implies that the sub-
functions xX—>f(x, p) [y—f(x, W] restricted to the intersection of X [¥] with any
finite dimensional linear submanifold of F [G] are all upper [lower] semicontinuous.

Proof. Let G be the space of the functions mapping N(={1, 2, ...}) into R en-
dowed with the pointwise convergence topology and let Y= {y€G: range ( »clo, 13}
Thus Y is homeomorphic to the compact product space [0, 1. For i=1,2,...
let e; denote the function € m—~3d;,(=1if i=n, 0 if I#n). Set H,=co {e;: i=n}
(the symbol co standing for the algebraic convex hull operation; n=1,2,...).
Clearly, the sets H, are algebraically closed (because the vectors €1, 8y, ... are

linearly independent). Further we have ﬁ H,=0. Therefore the function
n=1

m(y) = min {ncN: y¢Hy}

is well-defined for all Y€G. Now we define the space F as the set of the functions
mapping Y into R, also with the pointwise Convergence topology, and we set
X={x€F: range (®)clo, 1]}, Again, X is homeomorphic to the compact product
[0, 1]%. To define the function £, first we introduce the following X-subset valued
function K(-) on ¥:

K@) =co {ly:n= m(»)} (for all YEY)

where 1 #, denotes the characteristic function of the set H, (i.e. 1 g,()=1 if ycH,
and 0 else). Since the functions 1 u, (MEN) are linearly independent, the sets K (»
are algebraically closed (for all yeY). Then let

JGx, 9) = 14, () (=1if xeK(y), 0 if x¢K(y)) forall xcx, yeY.

To show (7%), we have to check that for all V€R, the sets {x: f(x, yy=y} are
algebraically closed for any ye¥. But {x: f(x, N=y)=X if y=0, K(y)if 0<y=1,
Pif y=>1.

In particular, {x: fCx, »N=1}=K(p)=0 for each Y€Y, whence 1 =max J(x, )=

X,y
= min max f(x, ).

¥y x

For (7%) we must show that {y: fix, =y} is algebraically closed for all
Y€R and x€ X. Now we have {rv: f(x, »)=y}=0if y<0, Yify=1, and if0=y<1 then

11*
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{y: fix, p=y}={y: f(x, »)=0}={»: xQK(y)}::{y: Xy €0 {1y nzm(y)}}. In case

of xgco {1, : neN} we obviously have {y: x¢co {1, : nzm(i}=Y. If

x€co {1, : n€N} then there exist finite sets J.cN and {A}: i€ £} (0, =) such that
> M=landx= 3 1]+l thusin this case we have [y:xgco {1y :n=m(»}}=

i€y P€F 5

={y: min .ﬁ;<m(y)}={y: min £, <min {x: yeEH,,}}={y: In=min 4, y¢H,} =

min £

={y: Va=min S, yeH}= (| H,=H,,, which is also convex and alge-
n=1

braically closed.
Since for any x€X we have seen that {y: f(x,»)=0}=Y or H, for some
neN, ie. {y: flx, y)=0}2h, we can conclude O=min f(x, y)=max min f{x, ¥).
X, ¥ X y

Question. Does sup irylff(x, y)=i13f sglpf(x, ) hold if the function f: X XY ~R
is such that X and Y are convex compact subsets of some locally convex Hausdorff
topological vector spaces and every restriction to any straight line segment con-
tained in X [in Y] of the subfunctions x—f(x, y) [y—f(x, »)] is continuous and
concave [convex]?
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