
ART ICLE

Domain-Specific Modeling Languages
in Computer-Based Learning Environments:
a Systematic Approach to Support Science Learning
through Computational Modeling

Nicole M. Hutchins1 & Gautam Biswas1 & Ningyu Zhang1
& Caitlin Snyder1 &

Ákos Lédeczi1 & Miklós Maróti2

Published online: 9 September 2020
International Artificial Intelligence in Education Society 2020

Abstract
Driven by our technologically advanced workplaces and the surge in demand for
proficiency in the computing disciplines, it is becoming imperative to provide compu-
tational thinking (CT) opportunities to all students. One approach for making comput-
ing accessible and relevant to learning and problem-solving in K-12 environments is to
integrate it with existing Science, Technology, Engineering, and Math (STEM) curric-
ula. However, novice student learners may face several difficulties in trying to learn
STEM and computing concepts simultaneously. To address some of these difficulties,
we present a systematic approach to learning STEM and CT by designing and
developing domain-specific modeling languages (DSMLs) to aid students in their
model building and problem-solving processes. The paper discusses a theoretical
framework and the design principles for developing DSMLs, which is implemented
as a four-step process. We apply the four-step process in three domains: Physics,
Marine Biology, and Earth Science to demonstrate its generality, and then perform
case studies to show how the DSMLs impact student learning and model building. We
conclude with a discussion of our findings and then present directions for future work.

Keywords Learning-by-modeling . Stem+CT . Synergistic learning . Evidence-centered
design . Domain-specificmodeling language

International Journal of Artificial Intelligence in Education (2020) 30:537–580
https://doi.org/10.1007/s40593-020-00209-z

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s40593-020-
00209-z) contains supplementary material, which is available to authorized users.

* Nicole M. Hutchins
nicole.m.hutchins@vanderbilt.edu

1 Vanderbilt University, Nashville, TN, USA
2 University of Szeged, Szeged, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s40593-020-00209-z&domain=pdf
http://orcid.org/0000-0002-7258-5023
https://doi.org/10.1007/s40593-020-00209-z
https://doi.org/10.1007/s40593-020-00209-z
mailto:nicole.m.hutchins@vanderbilt.edu

Introduction

Computational modeling is fundamental to the learning and practice of science (Wing
2011; Grover and Pea 2018). This multifaceted process includes the building, evaluat-
ing, and revising of models based on the learners’ underlying understanding of the
domain theory and relations that govern the behavior of the model (Schwarz and White
2005). Learning-by-modeling encompasses these processes, facilitating model build-
ing, simulation, and analysis supported by the use of a modeling language. Adopting
learning-by-modeling approaches in K-12 STEM (Science, Technology, Engineering,
and Math) classrooms has proven to be an effective vehicle for integrating the teaching
and learning of STEM and computational thinking (CT), helping students become
active constructors as opposed to passive consumers of scientific knowledge and
practices (Lehrer and Schauble 2015; Clark et al. 2009; Sun and Looi 2013; Wieman
et al. 2008). Technology-enhanced environments can be productive avenues for scaf-
folding and engaging students in modeling processes that support STEM inquiry and
problem-solving (e.g., Jonassen et al. 2005; Keating et al. 2002; Sengupta et al. 2013;
Bredeweg et al. 2013; Shen et al. 2014; Weintrop et al. 2016).

In the context of a K-12 STEM classroom, learning-by-modeling approaches have
adopted multiple representations that include: (1) constraint-based (Leelawong and
Biswas 2008; Bredeweg et al. 2013); (2) system-dynamics (van Joolingen et al.
2005; Metcalf et al. 2000; VanLehn et al. 2015); and (3) agent-based (Basu et al.
2013; Nikolai and Madey 2009; Wilensky et al. 2014; Wilensky and Reisman 2006)
representations to support model building. These representations are translated into an
executable form by mapping them on to programming constructs that express the
dynamic behavior of the target STEM phenomena. To create an interpretable and
transparent representation that students can work with, it is important to develop a
seamless interweaving of the STEM and computing concepts in developing the
modeling language. However, it is also well-known that the advantages provided by
these modeling languages, i.e., the support for synergistic learning of STEM and
computational concepts and practices (Sengupta et al. 2013; Snyder et al. 2019), can
pose significant challenges for students who are novices in the science and CT domains
(Basu et al. 2016b; Chi 2005; Sengupta and Farris 2012; Araujo et al. 2008) and
unfamiliar with the learning environment and its associated components (e.g., the
underlying modeling language) (VanLehn 2013).

To support the learning of science with understanding, the designed modeling
environments must incorporate appropriate and intuitive representational mechanisms
linked to interpretable computational (i.e., language) constructs that can be easily
adopted by classroom teachers and students, and are situated in the relevant domain
concepts and practices. Designing modeling languages whose component structures
clearly imply their associated semantics provides a method for accomplishing these
links (VanLehn 2013).

Domain-specific modeling languages (DSMLs), prevalent in the software engineer-
ing community for application-specific modeling and analysis (Ledeczi et al. 2001),
may provide the needed framework to establish the simultaneous ‘situating’ in domain
modeling and CT constructs seamlessly to better support the synergistic learning of
STEM and CT through computational modeling. DSMLs are categorized by their
“focused, expressive power in the problem domain” (Van Deursen et al. 2000, p. 26).

538 International Journal of Artificial Intelligence in Education (2020) 30:537–580

They support modeling, analysis, and verification of models, while also providing the
needed abstractions for model building and problem solving by domain experts who
are not computer science researchers and practitioners in their domain-specific tasks
(Karsai et al. 2014; Ledeczi et al. 2001).

In this paper, we target the systematic design and development of educational
DSMLs for STEM domains. We develop the framework and conduct case study
analyses to address the following research questions:

1. What are the design steps necessary for ensuring a proper and transparent
mapping from STEM (and specifically, science) curriculum learning objectives
to the required DSML constructs for model building?

We address this question in the “Establishing an Educational DSML Design
Process” section of the paper.

2. How do the DSML-created abstractions support learning of STEM and CT?
We address this question in three parts in the sections “Impact on Student

Learning and Performance” and “DSMLs Support Learning-by-Modeling in
STEM Classrooms”: (1) how DSMLs help students build correct computational
models of scientific processes; (2) how the DSML structures we create help
students to debug their models and correct misunderstanding and errors; and (3)
how DSMLs support the classroom teacher, and help the grounding of modeling
language semantics in science domains.

To characterize and situate our approach, we develop a theoretical framing for our
learning-by-modeling approach, compare it to alternate modeling approaches presented
in the literature, and discuss the pros and cons of each of these approaches in the
context of K-12 science education. We then provide background on DSMLs developed
in software engineering, including design frameworks for developing DSMLs. We
provide an alternate framing for DSMLs, linking them to knowledge representation and
reasoning mechanisms in Artificial Intelligence. The resulting design framework is
based on three design principles:

1. An evidence-centered design approach (Mislevy and Haertel 2006) to ensure
coherence and coverage of domain concepts, relations, and practices in the design
of the DSML constructs;

2. Opportunities for exploratory learning of dynamic processes by creating a discrete-
time step-by-step model of continuous dynamic processes (diSessa 2001; Redish
and Wilson 1993; Wilensky and Reisman 2006), and

3. A block-based programming language (Brown et al. 2016) to lessen programming
difficulties among novice learners, while supporting the effective use of CT
principles (e.g., conditional logic, initializing and updating variables).

We apply this design process to develop curriculum modules that we have designed in
different K-12 science domains (Physics, Marine Biology, and Earth Sciences) for
elementary, middle, and high school students. We then demonstrate the effectiveness of
our DSML approach using case studies that target STEM and CT learning for students
at different levels, while also demonstrating how DSMLs support classroom

International Journal of Artificial Intelligence in Education (2020) 30:537–580 539

instruction. We conclude by summarizing the effectiveness of our DSMLs in
supporting learning-by-modeling in K-12 classrooms and outline directions for future
research.

Background

This section presents our approach to learning science by constructing computational
models and the benefits of this approach. We also discuss the difficulties students face
when working in this framework in K-12 science classrooms.

Learning-by-Modeling

The learning-by-modeling framework, illustrated in Fig. 1 (adapted from the Common
Core Mathematics Standards (CCSSO 2011)), highlights the role that different sub-
processes play in acquiring, interpreting, and refining one’s knowledge when
performing computational modeling tasks. The sub-processes illustrated match the
Next Generation Science Standards (NGSS) on “Developing and Using Models”
(NGSS 2013) and define the key processes that a DSML developed for educational
purposes must support. We investigate and analyze the subprocesses marked with a “*”
in our educational DSML case studies that we discuss later.

Our work focuses on developing comprehensive agent-based models, that capture
the emergent behavior of relevant scientific phenomena expressed using computational
constructs and a discrete-time (step-by-step) simulation framework. Agent-based
modeling has received significant attention as a means for supporting STEM learning
adopting a multi-representational approach. To gain a deeper understanding of the
science phenomena, students can link the behaviors generated by their agent models to
animations and plots to depict the generated behaviors. NetLogo (Wilensky and
Reisman 2006), CTSiM (Basu et al. 2013), AgentSheets (Repenning, et al. 2010),
and Scratch (Resnick et al. 2009) are examples of environments that adopt agent-based
modeling approaches. Agent-based modeling can be contrasted from constraint systems
(e.g., Betty’s Brain (Leelawong and Biswas 2008) and DynaLearn (Bredeweg et al.
2013)), which use sequences of causal relations to model system behaviors, and
systems dynamics models (e.g., Dragoon (VanLehn et al. 2015)), which use simplifi-
cations of differential equations to represent dynamic system behaviors. Table 1
outlines the key benefits and difficulties experienced in the three major modeling

Fig. 1 Processes and subprocesses integral for learning-by-modeling

540 International Journal of Artificial Intelligence in Education (2020) 30:537–580

approaches. The shortcomings described, such as student difficulties in understanding
the simplified forms of differential equations representing dynamic processes in sys-
tems dynamics models (Wetzel et al. 2017), provide a rationale for our work for
reducing student difficulties and leveraging learning-by-modeling as a tool for the
synergistic learning of STEM and CT.

Bolstered by the contributions of the Netlogo environment and systems that extend
this approach, agent-based modeling has demonstrated the benefits of learning systems
behavior by utilizing a modeling language approach, especially when the modeling
language is implemented using a block-based representation (Sengupta et al. 2013,
2018). However, to our knowledge, not much research has established systematic
design processes for developing agent-based modeling languages that focus on ab-
stractions and visual block-structured constructs to reduce the modeler’s programming
burdens while keeping the focus of learning on the STEM domain concepts.

Students’ Difficulties with Learning-by-Modeling

The need to prepare students to utilize computational tools as vehicles for problem-
solving and professional advancement (Dede 2010; Wing 2011; Hilton 2010) conforms
to the NGSS call for engaging students in authentic modeling practices in science and
integrating computational modeling into the K-12 science curriculum. However, re-
search studies show that this integration can create difficulties in student learning. For
example, students often face difficulties in:

1. Translating learnt domain knowledge into computational forms for model building
(Sengupta et al. 2013; Basu et al. 2016b)

2. Integrating key aspects of programming and CT (e.g., programming language
syntax), then identifying appropriate abstractions and developing iterative struc-
tures to model the temporal dynamics of the scientific processes (Hutchins et al.
2020)

Table 1 Comparison of modeling language approaches for STEM learning-by-modeling

Language Benefits Difficulties

Agent-based Engaging programming context with
automatic visual representation from
running code

- Relationship to object-oriented program-
ming supports mapping to real world
objects

Understanding emergent system behavior from
individual agent behavior

Designing and implementing mathematical and
logical expressions

- Lack of grounding in custom variable and block
definitions

Constraint-
based

Explicit representation of relations between
variables in a domain

- Abiltiy to analyze relations with simplified
qualitative representations

Difficult to extend qualitative reasoning to
quantitative representations

- Not easy to describe the dynamic nature of
processes as a simulation

Systems
dynamics

- Matches traditional representations in
science and engineering for modeling
dynamic processes

Translation of mathematical equations to model
form, especially when students lack
knowledge of calculus and higher algebra

- Grounding of symbolic representations

International Journal of Artificial Intelligence in Education (2020) 30:537–580 541

3. Relating the behavior of individual entities to aggregated or emergent system
behaviors (Chi 2005; Wilensky and Resnick 1999)

4. Understanding the mathematical relations between variables and interpreting
graphs in relation to generated simulation behaviors (Sengupta and Farris 2012;
Araujo et al. 2008)

5. Debugging the behaviors (results) generated by the abstract modeling representa-
tions and interpreting them in terms of scientific principles and theories (Basu et al.
2016b).

These difficulties can be mapped on to the subprocess illustrated in Fig. 1, and they
need to be addressed in the context of these subprocesses to make the learning-by-
modeling approach a productive experience for novice learners.

Additional concerns about computational modeling in science arise from a teaching
and classroom perspective. These include developing a shared understanding between
the teacher and the students of the modeling language used for constructing the science
models and understanding the behaviors generated when the model is executed
(VanLehn 2013). We hypothesize that this may be exacerbated when students create
their own modeling structures (e.g., creation of custom blocks in Scratch or Snap!),
especially when students come in with STEM and CT domain misunderstandings prior
to their model building activities (Sengupta et al. 2013). In addition, these approaches
may increase the training requirements for teachers and students (e.g., class time spent
on learning the modeling language) to establish a sufficient understanding of the
computational constructs needed to build meaningful science models and to commu-
nicate results. This is especially true when text-based programming languages are used
(e.g., Hashem and Mioduser 2011; Sherin et al. 1993).

It is important that learning-by-modeling systems support synergistic STEM + CT
learning, as opposed to dealing with the dual tasks of STEM learning and CT learning.
This may require establishing a tight coupling and a shared semantics between the
STEM modeling language and the CT constructs needed to build the models, and serve
as a basis for developing educational DSMLs to support learning-by-modeling in K-12
STEM classrooms. A DSML approach to designing learning-by-modeling environ-
ments may provide the necessary scaffolding that overcomes the difficulties discussed
above, and therefore, provides a systematic approach to synergistic STEM + CT
learning. In this paper, we present a structured design process for developing educa-
tional DSMLs.

What Are Domain-Specific Modeling Languages?

Abstraction is fundamental to developing good software systems (Hudak 1996);
however, determining the right level of abstraction is often application- and task-
dependent. Therefore, it becomes important to involve domain experts when construct-
ing task-specific environments for specific application domains. An approach to
developing computational task-specific environments has been domain-specific lan-
guages (DSLs), which are “a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain” (van Deursen et al.

542 International Journal of Artificial Intelligence in Education (2020) 30:537–580

2000, p. 26). General-purpose programming languages like C and Java, and even
languages defined for specific purposes, such as Fortran for scientific problem-
solving and Lisp for symbol processing, include general language constructs that can
be applied to multiple problem domains. While generality increases expressiveness, the
complexities that come with these generalities can overwhelm practitioners who are not
well-versed in the programming language. In comparison to general-purpose modeling
languages, DSLs help to reduce common programming difficulties linked to syntax
and logic errors, as well as errors related to applying domain constraints and rules that
govern model construction processes (Kelly and Tolvanen 2008).

Domain-specific modeling languages (DSMLs) have evolved from DSLs. They are
designed to enhance the readability of constructs (van Deursen 1997), increase the level
of abstraction to enable a large number of potential users (Karsai et al. 2014), support
application development by experts (Kelly and Tolvanen 2008), and provide domain-
specific documentation for subsequent analysis and use (Kelly and Tolvanen 2008). It
is important to note that guidelines for developing DSMLs start with establishing a
thorough understanding of the application domain, including clearly defining the
domain boundaries and constraints, and collecting relevant conceptual knowledge for
developing the programming constructs. DSMLs have added benefits, providing for
systematic verification methods for model performance against domain-specific
criteria, expressing and automatically enforcing integrity constraints, and providing
“integrated models as opposed to relying merely on source code” (Ledeczi et al. 2001,
p.44). For educational purposes, these characteristics are particularly useful as students
can directly express model behaviors in terms of the laws of the domain thus making it
easier to interpret and verify model performance. DSML applications maintain the
ability to represent data in different formats (Kelly and Tolvanen 2008) and allow for
representations other than text - thus providing for different views and allowing for
additional scaffolding in terms of information provided by the models.

Initially outlined by Paige, Ostroff, and Brooke (2000) and later refined by Karsai
et al. (2014), the general principles for developing modeling languages include sim-
plicity, uniqueness, consistency, and scalability. The principles are actualized in the
implementation of Karsai et al.’s (2014) DSML development guidelines that outline
key categories, including Language Purpose and Consistency, Language Realization,
and Language Content and Scalability. Consistency is established by clearly defining
the target audience of the language (e.g., upper middle school students), associated
models (e.g., for different science topics), and language characteristics (e.g., graphical
or text-based) (Karsai et al. 2014). When considering the Language Content, simplicity
is emphasized through recommendations, such as avoiding unnecessary generality and
conceptual redundancy, as well as utilizing only the necessary domain concepts
(constrain concept selection to those needed for modeling and problem-solving in the
domain). Simultaneously, a core aim of DSMLs is to raise the level of abstraction to
gain simplicity and the increased efficiency of language use. This influences the
Language Content, i.e., avoid the creation of unnecessary language elements and
impose modularity in the DSML design process. Scalability is impacted by the
possibility of extending an existing language whilst adhering to the seamlessness
principle - concepts of the language need to be consistent (Karsai et al. 2014). Adopting
this framework, we will focus on embedding a DSML into an existing modeling
framework (van Deursen et al. 2000); specifically, a block-based environment in which

International Journal of Artificial Intelligence in Education (2020) 30:537–580 543

computational block constructs are derived from domain principles. We will discuss
this further in the “Framing the Design of DSMLs for Learning-by-Modeling Environ-
ments” section.

From another viewpoint, DSMLs are analogous to knowledge representation (KR)
schemes in AI with their associated reasoning mechanisms (Levesque 1986; Niwa et al.
1984). Much like the formulation of DSMLs, KR research addresses the problem of
finding compact and expressive languages to represent domain knowledge in a form
that computer algorithms can be designed to make inferences using the knowledge
structures created. Similar to the DSML structures developed in software engineering,
good KR schemes must be complete in terms of the domain of interest (e.g., laws of
kinematics), they must be computable, the important concepts and relations must be
made explicit and accessible, they should be transparent, and the scheme must suppress
irrelevant detail (Brodie et al. 2012). Given this significant overlap, we incorporate
methods from KR into our design of DSMLs for educational applications, paying
particular attention to the reasoning or inference mechanisms that accompany the
DSML structures, and ensuring that the computational algorithms are easy to follow.

The users of DSMLs in engineering applications are generally domain experts.
However, in our learning-by-modeling environments, the focus of DSML design is
to support novice students in learning science and CT concepts and practices. Tradi-
tionally, the DSML constructs should “adopt existing notations domain experts use”
(Karsai et al. 2014). In the educational context, this equates to representing the
scientific laws as relations between variables expressed using computational structures
at the appropriate levels of abstraction. The syntax (i.e., representation) chosen for a
particular domain may include additional notations that are tailored to the type of
problem solving being addressed in the domain. Karsai et al. (2014) recommend using
descriptive notations, distinguishing between language elements, organizational struc-
tures of models, and supporting documentation of the model. Such approaches also
support the developer’s ability to maintain consistency through the design and devel-
opment of the DSML. For example, designers of the Snap! programming environment
(Harvey et al. 2013) provided two distinct blocks: (1) reporter blocks that report a value
of a variable, and (2) command blocks that carry out actions in the environment
governed by the laws of the domain. To make it easier for novice programmers, distinct
block types are identified by different shapes and colors.

We adopt the general principles of DSML design outlined above along with the
property of transparency of the accompanying reasoning (model execution) methods to
help students develop models and interpret and analyze the behaviors generated by the
models.

Framing the Design of DSMLs for Learning-by-Modeling Environments

Our DSML design process is guided by three key principles for learning by modeling
applications: (1) Adopting an evidence-centered design approach to determine the set
of concepts and practices that need to be included; (2) Supporting exploratory learning
of dynamic processes by tailoring the simulation model for step-by-step analysis; and
(3) Utilizing a block-based programming environment (BBPE) to simplify the syntax
and semantics of the modeling language.

544 International Journal of Artificial Intelligence in Education (2020) 30:537–580

Evidence-Centered Design

Evidence-centered design (ECD) ensures a rigorous framework for structuring domain
concepts and practices, and the design of educational assessments to link claims about
student learning with evidence from learning products as well as features of the
instructional tasks (Mislevy and Haertel 2006; Mislevy and Riconscente 2005;
Hutchins et al. 2020). For educational DSMLs, ECD serves as a systematic approach
to conducting integrated STEM + CT domain analysis in a way that the principles of
completeness, simplicity and consistency discussed in the “What Are Domain-Specific
Modeling Languages?” section can be applied to the design and development of the
DSML constructs. Domain analysis in the context of ECD “leads us to understand the
knowledge people use in a domain, the representational forms, characteristics of good
work, and features of situations that evoke the use of valued domain knowledge,
procedures, and strategies” (Mislevy and Haertel 2006, p.7). The completion of this
process results in a comprehensive understanding of the STEM and CT domain
constructs at the level of abstraction in which they will be utilized for computational
modeling in the integrated curriculum. Consequently, this step must:

1. identify the target audience (typically the grade level of the students),
2. establish boundaries on what needs to be part of the learning content,
3. identify the prerequisite knowledge and skills required to achieve proficiency,
4. define known difficulties in acquisition and understanding of the STEM and CT

constructs, and
5. describes essential relationships among and between the STEM and CT concepts.

Careful consideration of each must be made to ensure consistency in the DSML design.
Discrepancies regarding issues such as boundaries and abstraction levels may result in
difficulties defining block semantics (e.g., multiple options for a single construct may
result in differences in the meaning of the block structures for different users).

Once the contributions of the ECD process are established, the DSML constructs to
support model building tasks can be developed accordingly. For instance, it has been
found that students struggle to distinguish velocity from acceleration (Trowbridge and
McDermott 1981). Representational structures designed for modeling these kinematics
concepts must, therefore, (1) support applications that help target this misunderstanding
and (2) provide evidence of appropriate or inappropriate applications of the relations
between the variables. We hypothesize that the appropriate use of such structures will
support the learning of the velocity-acceleration relationship, and provide a case study
in the “Impact on Student Learning and Performance” section that supports our
hypothesis.

In selecting the abstraction level, we have to consider the students’ level of mathemat-
ical understanding, Therefore, the mechanics curricular content for middle school may
involve concepts and relations expressed as qualitative relations (e.g., a larger force
applied to an object creates a greater acceleration), whereas a high school curriculum uses
analytic representations (e.g., acceleration ¼ Force

mass). We will elaborate on this in the
“Establishing an Educational DSML Design Process” section. In particular, we will
discuss applications of ECD processes in steps one and two of our DSML design process.

International Journal of Artificial Intelligence in Education (2020) 30:537–580 545

Exploratory Learning of Dynamic Processes

The principle of Exploratory Learning of Dynamic Processes builds on our efforts for
targeting DSML support of modeling processes and linking domain principles and laws
to behaviors generated by these models (Fig. 1). Technology-enhanced, modeling-
based instruction may have particular added benefits for learning because it allows
students to explore science phenomena and processes that are complex, abstract, too
small, or dangerous to investigate in real-world contexts. For example, studying a
dynamic phenomenon as a progression or a sequence in discrete time steps makes it
easier for students to understand system behavior in contrast to studying continuous-
time processes derived from equations (Sengupta et al. 2013; diSessa 2001; Sherin
2001b). Decomposing complex behaviors (e.g., into the up and down motion of an
object thrown up) also helps students reason about boundary conditions, such as:
during upward motion does velocity decrease with time? What happens when it
becomes zero? Similarly, when the ball falls down to earth, its velocity increases, but
what happens when it hits the ground?). In other words, the modeling process includes
assumptions that can be made explicit and linked to observed behaviors (diSessa 2001;
Sengupta et al. 2013; Sherin 2001a). Visualizations afforded by the computational
environment (both animation of behaviors and graphs of variables) make it easier for
learners to observe and analyze whether the behaviors generated by the constructed
model seems reasonable (Sherin 2001a). Further, computational modeling supported by
simulations, animations, and plots can facilitate learning by providing rapid feedback
through adaptive scaffolding (Shen et al. 2014), and exposing students to multiple
representations of knowledge (Basu et al. 2016a; Jonassen et al. 2005).

As an extension to the pedagogical benefit of studying a phenomenon as a discrete
process of steps in time (Sengupta et al. 2013; diSessa 2001), the environment used in
our approach is designed for students to build their computational models using a step-
by-step simulation approach. This includes two primary considerations. First, the
temporal evolution of a moving object’s behavior can be decomposed into a set of
fundamental and discrete processes; for example, the motion of an accelerating object is
modeled in two steps: (1) an update in the object’s velocity based on acceleration, and
(2) an update in the object’s position based on its velocity. Second, particular attention
is given to Δt, the simulation time step. By changing values of Δt, students can study
its effects on behavior generated for the object, thus gaining an understanding of how
the choice of the discrete-time step affects the continuous behaviors generated by their
simulation model. Typically, this concept can be discussed in-depth with students who
have had some background in calculus. For upper middle school students, this concept
can be abstracted in a way that students work with fixed rates. For lower middle school
students, the concept of rate may not be made explicit in the model building process,
and students can express relations between variables qualitatively, e.g., velocity in-
creases by acceleration amount (Basu et al. 2013), or the qualitative process theory
models used in DynaLearn (Bredeweg et al. 2013). In addition to the DSML constructs,
the step-by-step simulation approach also provides a transparent and easy to understand
reasoning scheme for execution of the models created by the DSML constructs. Much
like an AI reasoning scheme, this step-by-step approach is well-defined and general,
and applies across all science domain models created using the DSML constructs.

546 International Journal of Artificial Intelligence in Education (2020) 30:537–580

In summary, this approach allows students to apply the decomposition process
during model building, i.e., to build their model in parts (Basu et al. 2017), visualize
the behaviors of their modeled entities through simple animations, and observe the
evolution of variable values over time, using a watch function or by generating plots
(Hutchins et al. 2020; Zhang et al. 2017). In previous studies, students building
kinematics models with well-defined DSML block structures found the decomposition
and step-by-step simulation to be particularly beneficial for understanding and
debugging the motion of objects (Hutchins et al. 2020). In contrast, we have found
that students who are not able to grasp the step-by-step simulation algorithm may have
difficulties with key modeling processes, such as behavior interpretation and using
evidence to verify the behavior of the model. Further analysis of this issue is warranted
and will be discussed in the “Impact on Student Learning and Performance” section.

DSML Development Utilizing a Block-Based Programming Environment

Visual programming environments play a key role in introducing K-12 students to
computer science curricula (Bau et al. 2017, Grover and Basu 2017). These environ-
ments typically provide a set of block constructs that can be selectively dragged onto a
canvas and assembled in a puzzle-like, connected computational structure. When
executed, the blocks execute sequentially and produce visible results that are easier
to interpret than conventional programs. Examples of such environments include
Scratch (https://scratch.mit.edu), Snap! (http://snap.berkeley.edu), App Inventor
(http://appinventor.mit.edu), and App Lab (http://code.org). Block-based
programming environments (BBPEs) simplify program syntax and reduce program
creation time (very little typing is needed to build the program). They also make it
easier for students to create and visualize the algorithmic structure and flow of the
created program. For execution, the blocks are converted into more conventional linear,
text-based code representations under the hood, which are executed much like a
traditional general-purpose programming language. Therefore, the block-based lan-
guages provide additional scaffolds. The block descriptions are abstracted with details
of the execution code hidden from the students, making it easier for them to focus on
the structure and logic of their programs, rather than the syntax and semantics of how
the computer specifically executes the code (Selic 2007). Thus, they facilitate learning
of domain and CT concepts and practices, and do not overwhelm novice learners
(students) with the syntax of traditional programming languages (Grover and Basu
2017, Brennan and Resnick 2012, Werner et al. 2013; Koh et al. 2010). We hypoth-
esize that this approach not only targets difficulties related to programming and CT, but
it will lessen the training necessary before students can engage in meaningful model-
building activities.

BBPEs have been used for developing STEM curricula by adopting a learning-by-
modeling approach. Examples include CTSiM, ViMap, and CT-STEM (Basu et al.
2013, Sengupta et al. 2015, Jona et al. 2014). These environments extend NetLogo, a
multi-agent programming language for building models that simulate the dynamic
behavior of complex natural and social phenomena (Wilensky and Resnick 1999;
Tisue and Wilensky 2004). NetLogo provides a simple agent modeling language that
allows students to create their own models or modify existing models that are available
in a large library that comes with the environment. This enables learners to simulate and

International Journal of Artificial Intelligence in Education (2020) 30:537–580 547

https://scratch.mit.edu
http://snap.berkeley.edu
http://appinventor.mit.edu
http://code.org

“play” with their models, exploring their behavior under various conditions. CTSiM
(Basu et al. 2013), ViMap (Sengupta et al. 2015) and CT-STEM (Jona et al. 2014)
provide a block-structured visual programming environment as an abstraction layer
over NetLogo. This allows students to focus on the domain modeling tasks, without
being overwhelmed by the syntax of the NetLogo programming language. Classroom
studies conducted with these systems have produced very successful results, demon-
strating significant learning gains in the STEM and CT domains (e.g., Basu et al. 2017;
Sengupta et al. 2012), promoting collaborative problem solving skills (Hutchins et al.
2018; Snyder et al. 2019), and lowering the burden of programming syntax in order for
students to students to focus on the domain modeling tasks (Weintrop et al. 2016).

To extend the scope of BBPEs and to support learning opportunities in STEM
domains, additional scaffolding will be needed within the visual programming envi-
ronment to create a low entry threshold for learning by modeling in STEM domains
(Sengupta et al. 2013). To do so, we adopt a more abstract, domain-specific, visual
language to aid students in model building in the integrated STEM+CT learning-by-
modeling environment by (a) shifting the emphasis from programming to a more
foundational introduction to computing concepts and practices, and (b) getting the
students to focus on domain-specific concepts (e.g., position, velocity, and acceleration
in kinematics). Furthermore, this shift not only facilitates a deeper understanding of the
STEM concepts (e.g., Basu et al. 2017; Zhang et al. 2017), but may also support
developing foundational computing skills and knowledge to support the future learning
of advanced computer science (CS) concepts.

Establishing an Educational DSML Design Process

In this section, we discuss the design and deployment of DSMLs for curriculum units in
three different science domains: (1) Kinematics; (2) Marine Biology; and (3) Earth
Sciences. The DSML structures in these domains form a core component of our Collab-
orative, Computational STEM (C2STEM) learning environment (Hutchins et al. 2020).
C2STEM is built on top of the Snap! block-structured programming language. Although
we provide examples from three different topics with respect to our C2STEM environ-
ment, similarities among block-based programming environments (e.g., Alice (Pausch
et al. 1995), App Lab (code.org), App Inventor (Tissenbaum et al. 2019), Scratch
(Brennan and Resnick 2012), NetTango (Olson et al. 2011), and Snap!) makes our DSML
approach generalizable tomany environments.We revisit this issue in the “Discussion and
Conclusions” section.

Fig. 2 Educational DSML design process

548 International Journal of Artificial Intelligence in Education (2020) 30:537–580

http://code.org

Designing Educational DSMLs

The systematic development of educational DSML design leverages our design princi-
ples (Section: "Framing the Design of DSMLs for Learning-by-Modeling Environ-
ments") to develop our four-step educational DSML design process that is illustrated
in Fig. 2. This design process explicitly answers our first research question on the steps
needed to create a proper and transparent mapping from the STEM and CT learning
objectives to the DSML constructs developed to support model building in the STEM
domain.

To demonstrate an application of the educational DSML design process, we will
step through a Physics application. Steps 1 and 2 of the educational DSML design
process involve the application of ECD that provides a comprehensive, integrated
domain analysis, as outlined in the "Evidence-Centered Design" section. The current
DSML for the kinematics domain in Physics covers Newton’s first and second laws of
motion, and is directed toward high school Physics curricula based on Tennessee state
and NGSS standards. Given the target audience and general curriculum goals, our
research team first completed the domain unpacking process, with example Physics,
CT, and computational modeling constructs listed in Table 2. This information provid-
ed the basis for deeper evaluations of student difficulties with the outlined concepts and
practices (e.g., students have difficulties translating mathematical constructs into a
computational form). Given the requirements of a high school Physics curriculum,
the DSML blocks need to support applications of kinematic equations (instead of a
more qualitative representational approach that we have used in middle school class-
rooms (Basu, et al., 2013, 2017)). The students need to apply their understanding of the
kinematic equations to select appropriate DSML constructs to build their model, and

Table 2 Step 1 - Domain analysis considerations for a Physics implementation

Domain Concepts and Practices

Science Disciplinary
Concepts

(NGSS: PS2.A: Forces and Motion)
Relations between velocity, position, and time
Velocity-time and position-time graphs
Relations between acceleration, velocity, position, and time.n. Revisit

velocity-time, and position-time graphs

Computational Thinking
Concepts

(K-12 CS Framework: Algorithms & Programming, Data Analysis)
Initializing and updating variables
Operators and expressions
Control structures: Event handlers, conditionals, iterations (as expressed using a

simulation step which is an implicit loop in the simulation environment)
n. Data collection and visualizations as graphs

Computational Modeling
Practices

(NGSS Practices: Develop & use models; K-12 CS Practices: Creating compu-
tational artifacts, Developing & using abstractions, Testing & refining com-
putational artifacts)

Develop computational models by specifying model elements & representing their
relations and interactions

n. Evaluate, test, and debug computational models by determining why the model
does or does not appropriately explain or predict the phenomenon

International Journal of Artificial Intelligence in Education (2020) 30:537–580 549

then simulate the model to check, in a step-by-step manner, the changes in time to
ensure that the modeled objects are generating correct behaviors.

With a comprehensive understanding of the learning boundaries, goals, and content
we then developed integrated domain maps to determine the computational modeling
blocks that would be needed to match the learning goals while tweaking the structures
to take known difficulties into consideration. Fig. 3 illustrates an “Integrated Domain
Map” connecting physics constructs (e.g. position, velocity, acceleration, etc.) to
relevant CT constructs (e.g. the initialization and updating of variables) and computa-
tional modeling practices (e.g., Develop computational models by specifying model
elements & representing their relations & interactions). As previously noted, the initial
two steps of the DSML design process should result in a structured break down of the
STEM and CT concepts and practices targeted, the essential STEM and CT relation-
ships, established levels of abstraction considering the prior knowledge of the target
audience, and an evaluation of known domain and CT difficulties that will impact the
DSML structures. Addressing these factors better supports the grounding of block
semantics, and helps to ensure that although programming applications are simplified,
the language still supports application of the key modeling processes defined in Fig. 1.

Following the integration of the domains, Step 3 targets the creation of the DSML
blocks based on evidence collected in the first two steps. For example, the integrated
domain map in Fig. 3 maps position, velocity, and acceleration to variable initialization
and position and velocity to variable updating. As can be seen in the variables in Fig. 4,
associated set and change blocks have been created for the Physics constructs. It is
important to note that there is currently no block for updating acceleration, but such a
block can be easily added to allow for motion models targeting advanced learners.

A properly designed DSML naturally provides a self-documenting program in which
students can study the simulation results from the developed program to establish its
correctness. We hypothesize that this provides an opportunity to improve student
understanding of computational constructs (e.g., conditional logic) in context. As an
example, a student needs to create a stopping condition for a package dropped from a

Fig. 3 Step 2 - Integrated Physics and CT domain map

550 International Journal of Artificial Intelligence in Education (2020) 30:537–580

drone at a specific height, so that the package stops moving when it hits the ground
(approximation). In order to do so, the student needs to utilize the y-position variable of
the package and ground, compare the values, and stop the motion of the package when
the value of the package’s y-position is less than or equal to the y-position of the
ground. By correctly utilizing a DSML and general-purpose blocks created in the
BBPE (e.g., an “if” block), a student can model the motion of the object, monitor
(observe) its motion, and evaluate if this matches the student’s understanding of the
motion.

The self-documenting nature of the model and the stopping condition implemented
in the model should make this understanding and debugging process easier, thus
providing an additional scaffold for novice learners. This design principle incorporates
the guidelines and processes of DSML design and development outlined in the "What
Are Domain-Specific Modeling Languages?" section while targeting relevant difficul-
ties presented in the "Students' Difficulties with Learning-by-Modeling" section.

The DSML designer may include additional blocks to check if students have
misconceptions about STEM domain principles. In others words, the flexibility in
block creation allows for the instructional decision making warranted in the previous
two design process steps, e.g., how constrained should we make the modeling language
to help students avoid making errors. As system designers, we do not want to over
constrain the DSMLs and take away learning opportunities from students.

In C2STEM, students can create blocks to set and change their own custom
variables for their modeling tasks. However, we hypothesize that misunderstandings
of the STEM domain may interfere with student abilities to create and utilize custom
blocks and may negatively impact DSML usage (as noted in Sengupta et al. 2013). For
example, unless properly trained on programming language consistency, students may
create duplicate programming constructs, especially if they have STEMmisunderstand-
ings. Custom blocks and duplication of blocks can lead to confusion in model building
(e.g., linking domain principles to blocks) and make the debugging process harder
(since the result of executing a block is not clearly specified, or it is based on
misunderstandings the student has). We hypothesize that CT difficulties may exacer-
bate this issue. We demonstrate this in the case studies in a following section.

In the context of creating a DSML using a BPPE, considerations regarding consis-
tency are key. For instance, in Scratch and Snap! users have the ability to create a
custom variable and are given blocks to “set” and “change” variable values arbitrarily.

Fig. 4 Step 3 -Kinematics DSML Implementation

International Journal of Artificial Intelligence in Education (2020) 30:537–580 551

To ensure consistency, variables created for the DSML (e.g., “position in meters” in the
kinematics DSML discussed below) must follow a format that is consistent across the
different variables introduced. This takes into account the design constraints of the
BBPE.

Step 4 involves the implementation of key system structures in the computational
modeling environment that utilize the DSMLs to support modeling sub-processes
identified in Fig. 1. A key actualization of the “Exploratory Learning of Dynamic
Processes” principle lies in the execution semantics of our Simulation Step DSML
blocks (Fig. 4). Combined with an Initialization block that is explicitly used to initialize
variable values to the starting state for the simulation (e.g., the object starts with
velocity = 0 m/s and position = 2 m), these blocks incorporate the step-by-step gener-
ation of simulation behavior, implemented as an infinite loop that updates in a specified
time step, Δt. This helps students evaluate and reason about behavior changes in a
system as a progression of discrete time-steps as they construct their models. We will
discuss this further in the “Putting it all Together” section.

We reiterate the previously described benefits of the DSML approach, noting that it
is important that the visual understanding of the model structure and behavior comes
from the self-documenting property of DSMLs. For example, we include data collec-
tion support and logging (discussed in Fig. 2) in the form of graphing and table tools
that capture the updates in selected DSML variables at each simulation step. The
DSML blocks, the visual structure of the code, the animation of the simulation in a
step-by-step fashion, and the data analysis tools together provide the support that
novice learners need to understand the domain and CT concepts and relations. We
illustrate this in our case studies that follow.

Illustrating Applications of the DSML Design Process in Different Domains

As previously noted, we have implemented this design process for three science
domains: (1) Kinematics, (2) Marine Biology, and (3) Earth Science. We explore
differences in DSML implementations for each domain, by evaluating the choice of
abstraction level based on the target audience and curricular objectives in this section.
Table 3 presents the core domain analysis considerations for the three domains.
Objectives and difficulties included are a few examples found in our design process
and used here for the comparisons.

Continuing our Kinematics DSML implementation from the “Designing Education-
al DSMLs” section, Fig. 5 provides an example task in the C2STEM computational
modeling environment (Section: “Putting it all Together”). In this task (illustrated in
Fig. 5), students simulate the motion of a sloth in the horizontal (x) direction given a
starting position, velocity and constant acceleration values. Students may initialize the
“x-position” variable using the “set x-position to [value/expression] m,” the “x-veloc-
ity” variable using the “set x-velocity to [value/expression] m/s,” and the “x-accelera-
tion” variable using the “set x-acceleration to [value/expression] m/s2.” To model the
motion of the agent, students may use the “change x-position by [expression/value] m”
and the “change x-velocity by [expression/value] m/s” in a loop that implements the
change for each time-step. For the purposes of our kinematics curriculum, students
learn to use the “change x-position” block using the expression: x-velocity × Δt (a
DSML block shown in Fig. 4) implying the update in the x-position per time step

552 International Journal of Artificial Intelligence in Education (2020) 30:537–580

Ta
bl
e
3

D
om

ai
n
an
al
ys
is
co
ns
id
er
at
io
ns

of
ea
ch

do
m
ai
n

Ph
ys
ic
s
(K

in
em

at
ic
s)

M
ar
in
e
B
io
lo
gy

(C
or
al
R
ee
fs
)

E
ar
th

Sc
ie
nc
e

(W
at
er

R
un
of
f)

A
ud
ie
nc
e

H
ig
h
Sc
ho
ol

M
id
dl
e
Sc
ho
ol

U
pp
er

E
le
m
en
ta
ry

/
L
ow

er
M
id
dl
e

C
ur
ri
cu
la
r

O
bj
ec
tiv

es
Le
ar
ni
ng
-b
y-

m
od
el
in
g

N
ew

to
n’
s
fi
rs
t
an
d
se
co
nd

la
w
s
of

m
ot
io
n

Le
ar
ni
ng
-b
y-
m
od
el
in
g
en
vi
ro
nm

en
ta
l
ch
an
ge
s

th
ro
ug
h
th
e
ex
am

in
at
io
n
of

in
cr
ea
si
ng

oc
ea
n

te
m
pe
ra
tu
re
s
on

co
ra
l
re
ef
s

Le
ar
ni
ng
-b
y-
m
od
el
in
g
ap
pl
ie
d
to

en
gi
ne
er
in
g
de
si
gn

by
de
si
gn
in
g
a
pl
ay
gr
ou
nd

co
ns
id
er
in
g
di
ff
er
en
ts
ur
fa
ce

m
at
er
ia
ls
to
m
in
im

iz
e
ru
no
ff
af
te
r
a
he
av
y
ra
in
fa
ll

E
xa
m
pl
e

D
if
fi
cu
lti
es

to
C
on
si
de
r

-
la
ck

of
pr
io
r

pr
og
ra
m
m
in
g

ex
pe
ri
en
ce

-
In
ab
ili
ty

to
di
ff
er
en
tia
te

be
tw
ee
n
ve
lo
ci
ty

an
d

ac
ce
le
ra
tio

n

-
la
ck

of
pr
io
r
pr
og
ra
m
m
in
g
ex
pe
ri
en
ce

-
D
if
fi
cu
lti
es

un
de
rs
ta
nd
in
g
co
m
pl
ex

bi
ol
og
ic
al

pr
oc
es
se
s

-
In
co
m
pl
et
e
m
at
h
kn
ow

le
dg
e
(A

lg
eb
ra

1)

-
la
ck

of
pr
io
r
pr
og
ra
m
m
in
g
ex
pe
ri
en
ce

-
C
on
ce
pt
ua
liz
at
io
n
of

th
e
sc
en
ar
io

-
E
le
m
en
ta
ry

m
at
h
ex
pe
ri
en
ce

(n
o
al
ge
br
a
ex
pe
ri
en
ce

m
ak
es

it
ha
rd

to
in
tr
od
uc
e

va
ri
ab
le
s
w
ith
ou
tp

ro
pe
rl
y
gr
ou
nd
in
g
th
em

to
ex
pl
ic
it
do
m
ai
n
co
nc
ep
ts
th
at

st
ud
en
ts
ca
n
re
la
te
to
)

-
Si
m
ul
at
io
n
in

tim
e
(m

od
el
in
g
dy
na
m
ic
pr
oc
es
se
s)

International Journal of Artificial Intelligence in Education (2020) 30:537–580 553

results in: x-position_new = x-position_prev + x-velocity × Δt. A similar expression
applies to “change x-velocity.” The application of this construct using the DSML block
in multiple instances helps students understand and link the general principle of how
velocity affects position (and, therefore, motion) of an object in a step-by-step manner.

The introduction of complex biological processes in Marine Biology represents a
transition from Kinematics, where the relations between variables are defined by simple
linear relations. In contrast, coral health is impacted by a number of factors that requires
complex mathematical relations (nonlinear and they involve multiple interacting fac-
tors) to model. Unless these relations are abstracted, middle school students would find
it very difficult to understand and model the relations that govern coral bleaching.
Therefore, the DSML process needs to systematically create abstractions that simplify
the coral’s behavioral processes based on changes in environmental factors but still
retain the pertinent science knowledge. Fig. 6 illustrates the integrated domain map we
created for the middle school Marine Biology domain. An important consideration was
the representation of rates. In our implementation, the teacher we worked with
expressed concern about student abilities to model rates, and requested that the

Fig. 5 Step 4 - Physics computational modeling environment

Fig. 6 Marine Biology Integrated Domain Map

554 International Journal of Artificial Intelligence in Education (2020) 30:537–580

curriculum be implemented in multiple steps to help students’ incrementally develop an
understanding of rates. Fig. 8 shows how we elected for students to initially express the
relations qualitatively (Fig. 8, Marine Biology Part 1) and then progress to a quantita-
tive representation of the bleaching and coral health processes in Part 2 of the
curriculum.

The Earth Science DSML is implemented as an NGSS-aligned curriculum unit
covering science and engineering for upper elementary or lower middle school students
(Chiu et al. 2019; Zhang et al. 2019). The overall unit is designed as a Playground
Design Challenge (PDC) with the science focus on the absorption of rainwater and
runoff for different surface materials (e.g., concrete, natural grass, poured rubber).
Meanwhile, the engineering unit applies the science concepts learned to design a
schoolyard with grassy fields, hardtop courts, and play areas that meets cost, runoff,
and accessibility constraints. In more detail, students perform the following classroom
activities (1) scientific investigations that involve physical experiments on the absorp-
tion of different surface materials, (2) build conceptual models to understand the
concepts of water absorption and runoff; (3) build computational models to learn and
implement the water runoff phenomenon; and (4) solve an engineering design chal-
lenge that involves the design of playground models that meet the specified constraints
with student-generated computational models. Fig. 7 illustrates the integrated domain
map for this Earth Science curriculum.

Since this curriculum unit has been designed for upper elementary and lower middle
school students, the computational modeling activity is greatly simplified to match the
math proficiencies of average lower middle school students. Therefore, the designed
DSML (Fig. 8, under Elementary School Earth Science) abstracts away the concept of
rate (e.g., inches/h for the intensity of rainfall), and the notion of step-by-step execution
to represent the dynamics of system behavior. Instead, students update the total amount
of rainfall by a fixed hourly amount × duration of rainfall. Similarly, the absorption of a
material is expressed by an absorption limit for the surface material. If the total rainfall
is less than or equal to the absorption limit, then the total absorption (in inches) will be

Fig. 7 Earth Science Integrated Domain Map

International Journal of Artificial Intelligence in Education (2020) 30:537–580 555

set to the total rainfall (in inches), and runoff (in inches) will be set to 0. Otherwise, the
total absorption will be set to absorption limit (in inches) and runoff (in inches) will be
set to total rainfall (in inches) − total absorption (in inches). To implement the runoff
model, a student first designates the input variables (intensity and duration of the rain)
and chooses the material being studied. In the body of the model, the student computes
the total rainfall, the total absorption by the material, and the runoff, if any. The model
helps students to determine how the absorption and runoff vary for different materials,
and how this also depends on the hourly amount and the duration of the rainfall. The
Earth Science DSML offers an example where the DSML blocks and the simulation
model itself is highly abstracted to match the grade level math and science proficiency
of the students. In future versions, the unit can be easily extended for upper middle
school students by introducing the concept of varying rates, for example, the varying
intensity of rainfall over a period of time and the changing absorption rate as the surface
material becomes saturated.

Fig. 8 presents the final “Delivery” process for each domain. The Kinematics DSML
represents the most detail (least amount of abstraction) with the goal of helping students

Fig. 8 Comparison of DSMLs based on different scaffolding requirements

556 International Journal of Artificial Intelligence in Education (2020) 30:537–580

translate the kinematic equations to a discrete-time computational form, and study the
relations between acceleration, velocity, and position for different scenarios. Our
Marine Biology unit for middle school students, uses abstraction to remove the
functional and temporal complexities of the biological processes linked to coral
bleaching and health. Instead, students focus on the symbiotic relationship between
the coral and zooxanthellae algae. Part 1 of the Marine Biology implementation (Fig.
8), illustrates the initial, qualitative representation of the biological process and Part 2
illustrates the more advanced approach taking into account rates, discussed above. The
complexities of the relations are implemented under the hood, but the results of the
outcome variables, algae levels and amount of bleaching are depicted through anima-
tions that facilitate an understanding of the processes involved. Finally, the Earth
Science application, designed for an upper elementary school curriculum, represents
the highest level of domain and computational abstraction for the reasons discussed
above. These results demonstrate differences in the DSMLs implemented for the
different domains and age levels, with careful consideration of multiple factors for
each step of the DSML process. This section addresses our first research question that
we stated in the “Introduction” of the paper.

Putting it all Together: The C2STEM Environment for Computational Modeling

C2STEM targets the building of simulation models, a specific form of computational
model for expressing the dynamic behavior of a system. We adopted a conventional
approach to scaffold the model-building task as an initialization component (under the
“Green Flag”) and a simulation component (indicated as the “Simulation Step”) (see
Fig. 9) as a means of targeting our “Exploratory Learning of Dynamic Processes”
design principle. When the green flag is clicked (either via the green flag button on the
top-right of Fig. 9 or by double-clicking the “When [green flag] clicked” block), the
C2STEM environment first executes the set blocks under the “When [green flag]
clicked” (Initialization phase) until it reaches the “start simulation” block. Students
are required to utilize the “start simulation” block in order to initiate the execution of
code under the “Simulation Step.” This code generates the dynamic behavior of the
system. We avoid over constraining in C2STEM by making students think about the set
of variables they need for building their models. Operators and expressions supporting
the use of mathematical constructs to represent the relations between variables, and the
expressions associated with conditional control structures, such as the “Green Flag”

Fig. 9 Example model building task in C2STEM

International Journal of Artificial Intelligence in Education (2020) 30:537–580 557

(utilized in most BBPEs) and those listed under “Simulation Step” in Fig. 4 are
applicable across domains. In terms of future DSML development, the use of these
general-purpose blocks (e.g., “Green Flag,” operators, “Simulation Step”) provides
consistency of the format of generic computational constructs in the model building
environment, making it easier for students to transition from one domain to the next.

The block code under the “Simulation Step,” runs in an infinite loop until a stopping
condition is satisfied. All of the instructions under the “Simulation Step” are executed
in one time-step, Δt (if the student does not set a value for Δt, it defaults to a value of
0.03 s). In previous work, we have found this temporal step-by-step approach helps
students map the fundamental laws of the domain to the observed dynamics in the
system behavior (Hutchins et al. 2020).

Along with the animation and variable inspection functionality on the stage, students
have access to multiple representations for observing model behaviors. These include
graphing and table generation tools that are updated dynamically at each simulation
step (Fig. 9). Students can analyze the graphs and tables to understand the relevant
physics concepts and laws, e.g., the relationship between velocity and acceleration, and
make predictions about object behaviors, e.g., how vehicle position changes as it
speeds up, cruises, and slows down. In combination with the self-documenting nature
of DSMLs, students can use these features to assess the correctness of their models.
From the CT perspective, these tools allow for applications of data analysis and
debugging, key CT practices (Grover and Pea 2018; Weintrop et al. 2016). This
directly maps to multiple NGSS standards, such as planning and carrying out investi-
gations, using mathematics and computational thinking, analyzing and interpreting
data, and constructing explanations and solutions. We believe that the NGSS standards
addressed provide additional support for the simultaneous learning of STEM and CT
because students have to represent their conceptual STEM knowledge as computational
constructs to build their models and to interpret and analyze their model behaviors.
Such opportunities are often lacking in traditional science classroom environments.

Finally, we have introduced a “stop simulation” block to provide a mechanism for
the students to explicitly control the end of a simulation run. Students typically use a
conditional statement to express the terminating conditions for the simulation (Hutchins
et al. 2020; Snyder et al. 2019). Overall, this construct also increases the readability and
interpretability of the students’ constructed models.

In summary, applications of our DSML design process in Physics, Marine
Biology, and Earth Science demonstrate how the design process supports the
implementation of language abstractions linked to students’ educational levels
and the significance of our design principle ECD for driving the choice of variables
and computational constructs associated with the DSML programming blocks. As
the Physics example in the “Designing Educational DSMLs” section illustrates, our
design process allows for a systematic approach to define the intersections of the
STEM domain and CT to ensure consideration and applicability of each subject
throughout the development of the DSML. We extend our evaluation of the design
process, including our design principles of ECD, exploratory learning of dynamic
processes, and DSML development using block-based programming languages
with case study analyses for each science domain.

558 International Journal of Artificial Intelligence in Education (2020) 30:537–580

Results and Analysis

We address our second research question, “how do the DSML-created abstractions
support learning of STEM and CT?” by analyzing data from case studies that demon-
strate how DSMLs support key modeling processes, including: (1) translating STEM
knowledge into computational forms, (2) interpreting model behavior using evidence,
and (3) debugging computational models. In addition, we discuss the role of DSMLs in
grounding the semantics of modeling language constructs to support classroom dis-
cussions and STEM learning. To preserve privacy, all participants, whose work is
described in this paper, have been anonymized. We evaluate student learning utilizing
summative and formative assessments (for representative formative assessments and
instructional tasks, please see expert.c2stem.org), analyzing modeling solutions and
screen capture recordings.

Methods and Data Sources

We used data from three different studies to perform qualitative and descriptive
analyses to answer our research question on student learning. Table 4 illustrates the
study parameters for each domain, grade level, number of participants (n), duration,
training period in the environment, and the different forms of data collected in the
environment.

The Physics study used an experimental format with control and experimental
groups. Both groups attended lecture classes. The experimental group worked on
the C2STEM environment as a replacement for typical lab activities, while the
control group performed traditional lab activities. The study ran for a full semester
in a high school honors Physics class and covered topics in kinematics and
mechanics. Students did not use the system every day (per class schedules), and
the study reported here covered three kinematics units (1-D acceleration, 2-D
constant velocity, and 2-D acceleration). The study is described in detail in Hutch-
ins et al. (2020). Training time mainly involved an introduction to core Physics and
CT concepts and practices to be utilized during the study, with little direct training
on the modeling language. The DSML blocks and example modeling tasks are
illustrated in the “Establishing an Educational DSML Design Process” section,
above. The purpose of this analysis is to demonstrate how DSML blocks facilitate
student learning, and also support more detailed understanding of students’ model
building approaches.

Table 4 Overview of study design for different domain implementations

Domain Grade n Duration Training Data Collected

Physics 10 68 1 semester 5 h Summative, formative assessments;
OBS™ screen capture recordings;
Classroom video recordings;

Marine Biology 8 34 1 week 1 h* Summative, formative assessments;
Classroom video recordings; Task files and log data

Earth Science 6 99 1 week 1 h Summative assessments; Task Files and log data

International Journal of Artificial Intelligence in Education (2020) 30:537–580 559

http://expert.c2stem.org

Summative and formative assessments for all studies were generated using the ECD
approach (Mislevy and Haertel 2006). Some assessment items were adapted from other
studies (Basu et al. 2018; Hestenes et al. 1992; Grover 2019, 2020; McElhaney et al.
2019). Representative CT summative assessment items administered across domains
are illustrated in Appendix A. The Physics curriculum was created by our Physics
domain expert in conjunction with our high school teacher in whose classes the study
was run. For Marine Biology, a subject matter expert helped create the curriculum and
the assessments. A Preparation for Future Learning assessment (Schwartz et al. 2005)
was developed and administered at the conclusion of the experimental Physics study to
evaluate student abilities to transfer problem-solving approaches to new domains. This
paper discusses some of the salient results, but a more detailed analysis of student
performance can be found in (Hutchins et al. 2020).

Two sessions of student work were video recorded using the OBS™ screen capture
system to gain a better understanding of their model building approach and the
challenges they faced during model building. For each task, we noted key actions
and conversations that highlighted synergistic learning events. The Physics and Marine
Biology classroom sessions were also video-recorded to examine the teacher’s peda-
gogical methods and to evaluate how our tool supported instruction and learning.

Students’ model building work was captured in log files with timestamps. Each
action (e.g., the adding of a DSML block to the “script” stage or a partially developed
program, see Fig. 9) was logged using (1) an action name, (2) the DSML block name,
(3) the associated block (e.g., inserting a multiplication operator into a “change x-
position by [value/expression] in m” block would add information about the parent
block for the multiplication operator) or change to the value of a block (e.g., changing
the starting value of “set x-position to [value] m” from 10 to 0), and (4) a timestamp.

In the Marine Biology study, upper middle school students worked on model
building activities in two domains. First, they worked on a 1-week Physics curriculum
on 1-D acceleration (a modified subset of the high school curriculum) that utilized the
Physics DSML outlined in the “Illustrating Applications of the DSML Design Process
in Different Domains” section. After a three-month gap, students performed model
building activities for one week in the Marine Biology unit.

The Earth Science Unit, developed by a research team from SRI, University of
Virginia, and Vanderbilt University, was aligned with a set of NGSS performance
expectations (e.g., 5-ESS3–1, 3-5ETS1–1, 305ETS1–2, etc.; NGSS Lead States, 2013).
In the curricular unit, the students worked on resolving an engineering design challenge to
prevent flooding of a school playground during heavy rains. The disciplinary core idea for
the unit focused on the absorption and runoff of water for different surface materials, and
this core idea was then applied to generating and revising designs of the playground. A
total of 99 6th grade students from a middle school in the Southeastern United States
participated in the 4-week study. During the study, the students spent about an hour each
day conducting engineering design activities with the Earth Science DSML for 6 days.

Impact on Student Learning and Performance

To demonstrate the impact of DSMLs on student learning and performance, our
analyses target key modeling subprocesses illustrated in Fig. 1, including the student
difficulties in understanding and modeling these processes (Section: "Students’

560 International Journal of Artificial Intelligence in Education (2020) 30:537–580

Difficulties with Learning-by-Modeling). Table 5 provides an overview of students’
modeling difficulties observed in our analyses, and the hypothesized impact of the
DSML approach in helping students overcome these difficulties. Sections “How
DSMLs Support Conceptual Understanding of the STEM Domain through Modeling”
and “How DSMLs Support Building Models from Behavior Data” focus on students’
model building processes. In the “How DSMLs Support Conceptual Understanding of
the STEM Domain through Modeling” section we show how the DSML constructs
help students map from domain pronciples to the appropriate DSML constructs in
Physics, whereas in the “How DSMLs Support Building Models from Behavior Data”
section we demonstrate how students interpret their understanding of historical data
into relevant DSML constructs to build their models. The section “How DSMLs Can
Support Computational Learning and Problem-Solving at Younger Grade Levels”
demonstrates a simplified DSML to help lower middle school students develop runoff
models for an earth sciences curriculum. Finally, the “How DSMLs Support
Debugging” section targets debugging processes. We use contrasting cases of success-
ful and unsuccessful students to illustrate the effectiveness of the DSML constructs.

As a baseline evaluation, we analyzed student summative performance in each
domain. Overall, the students in each study demonstrated significant learning gains

Table 5 Overview of the impact of DSMLs on student learning and performance

Domain Modeling Difficulties Targeted Hypothesized DSML Benefits

Physics Translating learnt domain knowledge into
computational forms for model building;
Debugging the behaviors (results) gener-
ated by the abstract representations and
interpreting them in terms of scientific
principles and theories

Modularized programming constructs with
automatic animation of behaviors when
running code (Section: “How DSMLs
Support Conceptual Understanding of the
STEM Domain through Modeling”);

Contextualized representations of key
domain and CT constructs (Sections:
“How DSMLs Support Conceptual
Understanding of the STEM Domain
through Modeling”);

Ability to link constructs to observed model
behaviors (Section: “How DSMLs
Support Debugging”)

Marine Biology Translating domain knowledge learned by
interpreting data into computational forms
for model building; Understanding the
mathematical relations between variables
and interpreting graphs in relation to
generated simulation behaviors

Modularized programming costructs with
automatic animation of behavior when
running code (Section: “How DSMLs
Support Building Models from Behavior
Data”);

Contextualized representations of domain
behaviors with CT constructs (Section:
“How DSMLs Support Building Models
from Behavior Data”);

Earth Science Translating learnt domain knowledge into
computational forms for model building

Modularized programming constructs with
automatic visual representation of results;

Contextualized representations of domain
behaviors with CT constructs (Section:
“HowDSMLs Can Support Computational
Learning and Problem-Solving at Younger
Grade Levels”)

International Journal of Artificial Intelligence in Education (2020) 30:537–580 561

in STEM and CT. These results further substantiate previous results derived from
learning-by-modeling systems for STEM education.

& A t-test on the difference in normalized learning gains in both kinematics (p = 0.01,
Cohen’s d = 1.593) and CT (p = 0.008, Cohen’s d = 0.803) was significant between
the experimental (n = 34) and control (n = 34) groups in the high school Physics
study. ANCOVA results indicated a significant effect of group on posttest perfor-
mance controlling for the pre-test scores in kinematics [F(1, 65) = 6.748, p = 0.012]
and in CT [F(1, 65) = 4.801, p = 0.032].

& In the upper middle school Physics + Marine Biology study, pre-post tests con-
ducted during the physics unit showed significant learning gains in Physics (p =
0.009, Cohen’s d = 0.654) and CT (p = 0.0001, Cohen’s d = 0.977). Similarly, the
pre-post test results for the Marine Biology unit produced significant learning gains
in Marine Biology (p = 0.00002, Cohen’s d = 0.969) and CT (p = 0.01, Cohen’s d =
0.616).

& In the lower middle school Earth Science study, students took the pre-post tests that
included science, engineering, and CT items. The average pre-test score for the
science section was 4.56 (SD = 1.03) out of a maximum of 7 points; the average
pre-test score for the engineering section was 8.73 (SD = 2.62) out of a maximum of
16 points; and the average pre-test score for the CT section was 6.23 (SD = 2.60)
out of a maximum of 13 points. Their corresponding post-test scores were 5.13
(SD = 1.04), 10.50 (SD = 2.67), and 8.41 (SD = 2.69) points, respectively. The t-test
results indicated that the learning gains in all three parts were statistically significant
(p < 0.001, p < 0.0001, and p < 0.0001) with Cohen’s d effect sizes of 0.54, 0.67,
and 0.83, respectively.

All three studies clearly indicate that the DSMLs + the C2STEM environment helped
students learn both the science domain and CT content. The high school physics study
further illustrates that working in the C2STEM environment produced better learning
gains than students who learned their physics purely through classroom instruction and
homework exercises. This indirectly provides support for RQ2.

How DSMLs Support Conceptual Understanding of the STEM Domain
through Modeling

To understand how the DSML constructs may or may not have helped students in
building their models, we take a deeper dive and look at the model construction
processes for a few students, and link them to their pre-posttest performance. Two
pre-posttest questions targeted students’ understanding of the impact of gravity on the
motion of an object. One question required students to choose the plot that correctly
depicted the motion of a ball in time during free fall under gravity. This question tested
the students’ understanding of how gravity (constant acceleration) affected the step-by-
step motion of the ball. The second question was adapted from Hestenes et al. (1992)
and tested students’ ability to analyze information about speed and range, and get them
to compare the duration of flight for two cannon balls. StudentA improved from pre to
post on both questions. StudentB did not improve, answering the second question

562 International Journal of Artificial Intelligence in Education (2020) 30:537–580

incorrectly on the post-test. We hypothesize that the model-building task impacted their
understanding of free fall under gravity.

Fig. 10 shows StudentA’s code for a model-building task to generate the trajectory
for an object dropped in mid-air from a drone. The figure shows that StudentA
initialized position (x and y), y-velocity, and y-acceleration, with y-acceleration
hardcoded to the value of the gravitational constant (instead of using the provided y-
gravity DSML block) as part of her free-fall model. Under the simulation step flag, she
used the correct DSML blocks with the correct expressions for updating the y-position
and the y-velocity of the package. Therefore, she demonstrated the correct use of
physics equations of motion in her computational model. On the Physics summative
assessment, she improved from 25 to 34 out of 40.

However, StudentA had issues with the use of CT constructs in her solution. She did
not set a value for the simulation step, Δt, so the system used the default value of
0.03 s). Second, she modeled the stopping condition, i.e., stop motion of the package
when its y-position is less than 1 + the y-position of the Target. It is clear that she could
have expressed her stopping condition more accurately, rather than choosing an
arbitrary expression of 1 + y-position of the target. Third, her model constructs were
written in the order where the y-position of the object was updated before the y-
velocity. Since the initial y-velocity was 0, the package’s y-position did not change till
time step 2, this caused a small error in her solution. These issues were evident in her
post-test. While she did increase from a CT score of 22 to 30.5 out of 37 on the two
summative assessments, she struggled with questions on debugging of a loop and
correctly updating a variable based on a sequence of prior actions.

StudentA also selected the value of the Package’s “y velocity in m/s” to be shown on
the stage (see Fig. 10). She could view the change in y-velocity over time using the data
tools. Overall, this provides circumstantial evidence (pre-post-test gain plus the ability
to build the almost-correct physics model) that the Physics DSML structures helped

Fig. 10 StudentA’s 2D with gravity instructional task solution

International Journal of Artificial Intelligence in Education (2020) 30:537–580 563

StudentA learn the domain concepts of position, velocity, and acceleration, and the
visual structure helped her organize the constructs to generate an almost correct model.
Her viewing of the y-velocity of the package during the simulation also helped her
understand how that velocity changed as time advanced.

Fig. 11 provides the final code for StudentB’s model for the package drop problem.
He elected to use custom blocks for “update velocity in m/s” and “update position in m”
in addition to using the DSML blocks “change y position in m” or “change y velocity in
m/s” as done by StudentA (Fig. 10). Custom blocks are treated as a function, and other
blocks can be inserted and connected together to represent the functionality of the
custom block. When StudentB executed his model, assuming it would work correctly,
he was surprised by the results (saying aloud “I don’t understand this”). He opened the
graphing tool, ran the simulation numerous times, and realized that the position was
decreasing with a negative linear slope (Fig. 11). StudentB was aware what the correct
position-time plot should look like, and even said “we need to get it to where it curves
though,” to a student sitting beside him. At this point, StudentB also asked to plot the “y
velocity in m/s,” and saw the velocity-time plot was horizontal. He then opened the
“update velocity in m/s” custom block and made a correction to the incorrect expression
for the update y velocity, but he set his corrected updated equation to Δt times y-
velocity (and not y-acceleration).

Therefore, his model was still incorrect, and he was unable to make further correc-
tions though he understood what the final behavior should be. In this case, we hypoth-
esize that, if he had used the DSML blocks directly instead of the custom blocks, the

Fig. 11 StudentB’s 2D with gravity instructional task solution

564 International Journal of Artificial Intelligence in Education (2020) 30:537–580

self-documenting nature of the DSML blocks would have made it easier for him to
overcome his difficulties in understanding his domain errors, and correcting the com-
putational expression for update velocity variable. As hypothesized above, the lack of
simplicity in the custom block implementation made it difficult to identify the location
of the error. Moreover, the incorrect use of the DSML blocks may have exacerbated the
common Physics misunderstanding between velocity and acceleration, described in the
“Evidence-Centered Design” section. The DSML blocks would have provided a direct
mapping between DSML constructs “change y velocity by [expression] m/s” and
“change y position by [expression] m” (in each case, the expression term would
correspond to a relevant equation of motion) and the step-by-step change in y-velocity
and y-position as observed in the graph. StudentB eventually dragged the “change y
velocity by [value] m/s” block into his model code, but did not replace his custom code
with the update velocity expression using the block. The inability to use the DSML
blocks affected the students’ ability to correctly model the physics and CT constructs
and generate the correct model even though he realized where he was making errors.

The difficulties StudentB experienced in the modeling task are also reflected in his
pre-test and post-test performance. In Physics, StudentB went from a score of 26 to 36
out of 40 (above experimental group average on both), demonstrating gains in Physics;
in this case as he knew how the object should be moving. However, on the summative
assessment questions described above, his scores decreased. We hypothesize this was
due to his inability to interpret and use the appropriate DSML blocks, thus resulting in
confusion about the correct form of the equations of motion. In CT, StudentB had a
lower than average score on the pre- and post-tests (22.5 and 25 out of 37,
respectively).

How DSMLs Support Building Models from Behavior Data

This case study illustrates how DSMLs support the advancing of students’ skills in data
analysis and reasoning. In order to analyze students understanding of DSML structures
and the ability to link the DSML constructs to evidence in the data tools, we evaluated:

1. Pre-post results along with students’ performance on a Marine Biology modeling
task. Modeling task performance includes logged action data indicating if data tools
were utilized during the modeling task (see Section: “Methods and Data Sources”).

2. Student answers to a word problem targeting their understanding of conditional
logic structures in the summative assessment. The summative assessment question
on growth rate asked students: “Marine biologists are collecting data on brain coral
in the Caribbean, a region, where we have been having abnormally high ocean
temperatures in the summer. The table below shows the year and the average width
of the coral for that year. Coral width is a measure of coral health. We have data
from 2008 to 2017. In which years did the coral most likely experience temperatures
that were too high for a healthy growth rate? Explain.” The table listed three years
in which the coral’s growth was 1 cm, whereas the remaining years showed a
growth of 2 cm per year. This task was scored out of 3 points.

3. Student responses to an embedded assessment that focused on their knowledge of
the growth rate of corals under different environmental conditions (primarily ocean
temperatures). The embedded assessment question: “A marine biologist

International Journal of Artificial Intelligence in Education (2020) 30:537–580 565

hypothesizes that a brain coral has been impacted by high temperatures. From
2010-2015, the coral grew by 2 cm a year and now had a width of 152 cm. In
2018, she measured the coral’s width and it was 156 cm. Do you agree or disagree
with the marine biologist’s measured width? Why or why not?” asked students to
answer a question and provide an explanation.

For the modeling task, the students were tasked to study the cumulative effect on coral
health in a region where the ocean temperatures (provided in a data set) went above the
bleaching threshold for periods of time. Students constructed a computational model of
coral health, using the ocean temperature at each time step of the simulation to
determine if the coral would expel or absorb zooxanthellae algae (these algae give
the corals their colors). They programmed the coral survival based on the zooxanthellae
population percentage present in the coral as a function of time. The ocean temperatures
came from data collected by a research station along the Great Barrier Reef during a
major bleaching event that happened in 2016–17.

Results indicate that students who received high scores on the post-test, both overall
and the individual growth rate question, (1) were able to generate a correct model for
the modeling task, (2) utilized the data tools to support model building and problem
solving, and (3) correctly answered the embedded assessment question, referencing
provided data (with correct variable naming) to do so. For instance, StudentD scored a
0 out of 3 on the pretest growth rate question and improved to a 3 out of 3. StudentD’s
modeling task solution (shown in Fig. 12a) correctly initialized the needed variables,
and she set the coral’s growth rate after checking the ocean temperature at each
simulation step by comparing against the coral’s bleaching threshold. The simulation
changed the width of the coral using the newly set growth value. StudentD’s action data
also indicated data tool use and she answered the task question correctly. For the
embedded assessment following Task B, StudentD answered the Marine Biologist
word problem with “I agree with the marine biologist that a piece of brain coral has
been impacted by high temperatures because between the years of 2010-2015 the piece
of brain coral grew at a constant rate of 2cm per year, but between the years of 2015-
2018 the brain of the coral only grew at 1.3cm per year.” This detailed response
demonstrates an understanding of rates, correct identification of the time intervals in

Fig. 12 StudentD (a) and StudentE (b) solutions for the Marine Biology Tasks

566 International Journal of Artificial Intelligence in Education (2020) 30:537–580

which the growth of the coral showed abnormal values, and the ability to utilize data to
generate answers to questions and provide explanations. StudentD’s model building
actions in the Marine Biology unit indicates a positive benefit of DSMLs that helped
her focus on the relevant relations between temperature and bleaching, thus creating a
bridge for her to link the data provided to the visualization of the coral bleaching. This
understanding also translated to her being able to explain the processes involved in a
clear and concise manner.

Students who did not perform well on the post-test were either unable to generate the
correct model code (e.g., incorrectly updating the coral growth and width variables or
creating a separate custom block that was improperly initialized) or, if they were able to
do so, did not utilize the data tools to help visualize and interpret the results. For
example, StudentE’s solution for the modeling task is provided in Fig. 12b. StudentE
initialized the required variables correctly, using the appropriate DSML blocks. In
addition, he included the change block to correctly update the ocean temperature values
in each simulation step, as specified in the data set. He correctly set the coral growth
rate by checking whether the current ocean temperature data was above or below the
coral’s bleaching threshold. Each of these steps indicated an understanding of STEM
domain concepts. However, StudentE did not include the block to change the width of
the coral, and answered “year 8” for the task prompt, indicating a random or unin-
formed guess as neither the visualization nor the data needed to make the decisions
updated correctly. It is important to note that in looking at his action data, StudentE did
not understand the modeling task, and did not utilize the data tools for either task. He
did not seem to comprehend the step-by-step update approach for the simulation.
Therefore, his inability to understand the DSML blocks and the simulation step
constructs affected his model building abilities. Finally, in the embedded assessment
following task B, which asked whether the student agreed with the marine biologist’s
hypothesis about the effect of rising ocean temperatures on corals, StudentE’s answer
“No because it is a consistent rate and the pattern doesn’t follow it” again showed his
lack of understanding. This response was hard to interpret (the rate was not consistent),
and he did not refer to the data to support his explanation. His inability to use the
correct DSML constructs to build his model and observe the model results, also
indicates that he did not learn from the intervention, which contributed to his lack of
understanding. On the posttest, StudentE was unable to answer the question about coral
reef data correctly. StudentE did improve on the use of constructs, such as the impact of
increasing ocean temperatures on the relationship between corals and the zooxanthellae
algae (a topic covered in Task 1 when a growth rate variable was given to the students).
We hypothesize that additional support in the use of the DSML blocks, the simulation
step construct, and the data tools may have helped StudentE learn in similar ways that
StudentD was able to learn her Marine Biology and CT constructs.

Finally, of the students that improved from a 0 to 3 out of 3 on the growth rate
summative assessment question, one student did indicate difficulties on the modeling
task, primarily with conditional logic. This student utilized the appropriate set and
change blocks, but appeared to have difficulties in implementing the conditional
statements. The student wrote the condition as “if (ocean temperature in deg F =
bleaching threshold) → set coral growth”. Since the equality condition may not have
ever been satisfied (students needed to use a > or < operator), the model did not produce
the correct behaviors. This student seemed to struggle with debugging this block using

International Journal of Artificial Intelligence in Education (2020) 30:537–580 567

the visual feedback provided by the C2STEM environment. She had difficulties with
conditional logic on the CT post-test as well. In such cases, where students have
difficulties with their CT constructs, as opposed to their domain concepts, we will
have to determine appropriate CT feedback to support these students’ model building
processes. For instance, a suggestion could be given to evaluate data or advice on
methods of data evaluation if a student attempts to run the simulation more than 1 time
without opening a data tool. In addition, multiple attempts to run a simulation without
the use of the “change coral width” block could be an indication that feedback is
needed on possible reasons why the coral width is not changing. This type of feedback
supports Step 4 of the DSML design process, including the development of system
structures based on DSML usage to support model building processes.

How DSMLs Can Support Computational Learning and Problem-Solving at Younger
Grade Levels

As discussed in the “Illustrating Applications of the DSML Design Process in
Different Domains” section, our DSML approach instantiated in the Earth
Science unit supported the implementation of a curricular unit designed for
upper elementary and lower middle school students (Chiu et al. 2019; Zhang
et al. 2019, Zhang et al., 2020). The computational modeling activity is
simplified to match the math proficiencies of average lower middle school
students (absorption and runoff related to different surface materials). In a
recent classroom implementation, 59% of the 99 sixth-grade students created
a correct computational model of the runoff system before the answer was
shown to them (Zhang et al., 2020). In addition, students’ modeling perfor-
mance using the DSML significantly contributed to their performance in the
succeeding learning activity where they designed playground models that meet
specified engineering criteria of minimizing runoff while maintaining the cost
and the accessibility requirements. Our recent findings showed that those who
build better computational models ended up creating more satisfying playground
designs that caused less runoff to the neighboring area of the school (Zhang
et al. 2020). More specifically, we found that the students’ performances in
computational model building and engineering design had a moderate but
statistically significant correlation (Pearson’s r = 0.29).

How DSMLs Support Debugging

Debugging represents an important overlapping practice between science model-
ing and CT, especially because students are required to translate their under-
standing of physics into computational constructs to build their models. As an
analysis question: how do the DSMLs support computational modeling tasks in
STEM? we hypothesized that the DSML constructs would support the
debugging process. Again, we present a contrasting example, where StudentC
was successful, and StudentB (the same student from the last set of Physics
examples) was not successful in combining the use of DSML constructs and
data analysis tools to correct errors in their models. In this case, the students

568 International Journal of Artificial Intelligence in Education (2020) 30:537–580

Fig. 13 StudentC’s correct use of table tool

Fig. 14 Incorrect use of graph tool

International Journal of Artificial Intelligence in Education (2020) 30:537–580 569

were working on modeling a package drop from a moving drone, and the
challenge was to land the package at a specific location on the ground.

In the first scenario, StudentC programmed the stopping condition as stop simulation
when y-position of the package is equal to 0 (i.e., the package is at the target). The
student executed her model multiple times, and each time, the package did not stop
when it hit the ground (y = 0), but continued to move downward. The student then
opened the table and ran the program (see Part A of Fig. 13). As can be seen in the
figure, the student’s cursor is located around the y-position data. The table shows that
the y-position of the package is never equal to 0. The student then proceeded to change
the condition so that the simulation stopped as soon as the y-position of the target was
less than 0 (Part B of Fig. 13). StudentC recognized that her conditional logic was not
working as expected, and was able to debug the issue utilizing Physics data generated
by her simulation to correct her code and make the model work correctly. The 1–1
correspondence between the DSML blocks and step-by-step execution made it easier
for her to detect and correct her problem.

On the other hand, StudentB’s example (see the “How DSMLs Support
Conceptual Understanding of the STEM Domain through Modeling” section
for the description for the first time point shown in Fig. 11; and a later time
point is shown in Fig. 14) represents a case where the use of custom blocks in
addition to DSML constructs affected his ability to correct his model, even
though he realized his error, and its possible cause.

DSMLs Support Learning-by-Modeling in STEM Classrooms

An important contribution of DSMLs to STEM classrooms is how the modeling
representations, the behavior generation, and the visualization of behaviors support
instruction and classroom learning. We target the previously described difficulty of
developing a shared understanding of the modeling language used to support commu-
nication of model behavior or bugs through a case study on how the classroom teacher
used the DSMLs to communicate the underlying STEM domain principles to his class.
In this case study, the classroom instructor specifically utilized the DSMLs along with
the system tools to link the step-by-step modeling approach and the kinematic equa-
tions in a 1-D acceleration module. The students modeled a truck speeding up from
rest, then cruising at the speed limit, and finally coming to rest at a stop sign. Students
were having difficulties in linking the traditional kinematics equations to the DSML
model constructs for step-by-step modeling.

Fig. 15 Teacher promoting inquiry through class discussion

570 International Journal of Artificial Intelligence in Education (2020) 30:537–580

Fig. 15 shows that the teacher reviewed the overall motion of the truck by invoking
parts that the students have already modeled (the speed up and cruise phases of the
motion). Referring back to discussions from the previous class, he noted while also
drawing perpendicular green color lines on the position-time plot to delineate the
different phases of motion:

“Notice somewhere right around here it goes from that curving up (the plot),
where it is speeding up, to a linear plot. We want to see that you are actually able
to do that. Now clearly this isn’t achieving the goal of actually making it stop and
so if you actually have the [plot] do this (drawing the curve seen at the time point
of Fig. 15), then you’re in better shape than I am.”

At this point, the teacher had linked the DSML blocks that the students used to
create the speeding up and cruise behaviors with a plot of the distance-time graph. The

Fig. 16 Class discussion utilizing the DSMLs and simulation to problem-solve with the kinematic equations

Fig. 17 Pseudocode given by teacher for using the lookahead distance

International Journal of Artificial Intelligence in Education (2020) 30:537–580 571

primary purpose was to help students review and understand the behaviors generated
by the step-by-step execution of their DSML constructs.

Using the graphs from the previous phases, the teacher also clarified that the current
model would not generate the stopping behavior of the truck. So, he went back to the
kinematics equations he had written on the whiteboard earlier (see Fig. 16), and began a
discussion on how students could calculate the time at which to start decelerating, so
the truck’s x-velocity = 0 at the position of the STOP sign. The teacher went through
the solution steps and showed students the process for deriving the lookahead distance
(see the bottom image of Fig. 16).

As a next step, the teacher guided students to pick the appropriate DSML block for
modeling deceleration, and the conditional constructs needed to initiate the decelera-
tion. Fig. 17 demonstrates the conditional logic developed through classroom discus-
sion (in text form), but then the teacher left it to the students to add the slowdown and
stopping phase to the model. However, the teacher also provided additional hints, “on
the speed up, update velocity, if it is not at the speed limit. If it is at the speed limit, then
I just keep moving (with constant velocity). This is going to become a problem, because
as soon as it starts to slow down [given the newly calculated lookahead distance and
written conditional logic], it will actually try to speed up here (pointing to the DSML
blocks in the first conditional statement).” The idea was to make students rethink their
logic of the initial statements, and to take into account the period for which the truck
needed to slow down in a step-by-step manner until it came to a stop. This example
demonstrates how the DSMLs, when coordinated with system tools, supports the
teacher in classroom discussion.

Discussion and Conclusions

We summarize the primary contributions of our work below.

A Framework for the Integrated Design and Development of DSMLs Supporting
Learning-by-Modeling in STEM Domains

The integration of computational modeling concepts and practices into STEM class-
rooms can provide opportunities for the simultaneous learning and application of CT
and STEM concepts and practices. While research has demonstrated the significant
benefits of this integration, difficulties in implementation may impact the introduction
of learning-by-modeling paradigms into K-12 STEM classrooms. As a means of
addressing some of these limitations, this paper presents a novel approach to designing
age-appropriate K-12 modeling environments, inspired by applications in software
engineering and integrated knowledge representation schemes (i.e., representation
and accompanying reasoning mechanisms) in AI. To establish this, we analyzed the
following research question: What are the design steps necessary for the developing
abstractions and mapping the DSML constructs created to ensure curriculum learning
objectives are met? We adopted a theoretical framing for DSML design that included
the necessary science concepts and relations expressed in computational form at a level
of abstraction that made computational modeling feasible for different levels of K-12
science classrooms. The DSML design framework was supported by an ECD process

572 International Journal of Artificial Intelligence in Education (2020) 30:537–580

that was used to generate and combine science and CT concepts and practices to define
the curricular objectives. The result is that our proposed framework:

1. Adopts a set of design principles, that includes evidence-centered design, explor-
atory learning of dynamic processes, and the utilization of block-based program-
ming languages, to scaffold a learning by modeling approach framework that
supports students and their teachers.

2. Provides a systematic approach to developing a visual block-structured program-
ming language that maps designated curriculum standards, including curriculum-
specific concepts and practices in multiple science domains to computational
modeling languages.

In addition to outlining the theory and design framework, we also provide example
applications of the DSML design framework for three separate science domains: two of
them focused on learning domain concepts and principles by building computational
models, and the third focused on using science models to support engineering design.
We compared DSML implementations across these domains, and demonstrated how
our design principles supported systematic development of the corresponding modeling
languages across these domains. Using case studies, we showed that correct interpre-
tation and use of the DSML structures improved students’ model building and learning
performance in the science domain and CT.

Although we describe the application of our DSML design approach using one
block-based programming environment (an extension of Snap!) our approach is gen-
eralizable in that it can be applied to multiple STEM domains, and multiple modeling
environments. For example, we have implemented DSMLs in CTSiM (Basu et al.
2016a and b; Zhang et al. 2017), which incorporates the NetLogo modeling
environment.

Interpretive Summary of Our Case Study Findings

To demonstrate the impact of DSMLs in each domain, i.e., to provide answers to
research question 2, we performed case study analyses demonstrating how the choice of
modeling constructs and the level of abstraction support the synergistic learning of
science and CT. Our analyses primarily focused on how DSML use related to student
performance. In addition, we provided examples of how a teacher exploited the DSML
constructs to help his students understand the nuances of science concepts and how
they could be combined with computational constructs to build and test computational
models. Overall, we used pre-posttest learning gains as a measure of science learning
by students in the three different domains. In addition, we demonstrated a unique and
successful approach to integrating science and engineering learning in lower middle
school classrooms.

In previous work (e.g., Hutchins, et al. (2018, 2020) and Snyder, et al. (2019)), we
have analyzed students discourse and model building work in much greater detail to
demonstrate how they combine their domain and CT knowledge of concepts and
practices in a synergistic manner to build their science models. Discourse analysis
further illustrates how students go back and forth between the domain and CT
constructs integrated into DSML structures to analyze errors in their models and correct

International Journal of Artificial Intelligence in Education (2020) 30:537–580 573

them. To keep this paper to a reasonable length, and to keep the focus on DSML design
and development, we have not brought in results from past work into this paper, but we
believe that they provide additional justification in supporting the effectiveness of our
DSML structures.

Our case studies further demonstrated the advantages of these benefits, especially
among students who used the DSML structures effectively. It has been shown that
students using general purpose, block-based programming languages (e.g., Scratch,
Snap!) face difficulties in applications of key CT constructs such as loops, variables,
and expressions (Grover and Basu 2017). Similar issues have been reported in trans-
lating mathematical equations into simplified systems dynamics models (Wetzel et al.
2017) and not understanding how to generate qualitative constraints when building
constraint-based (causal) models (e.g., Bredeweg et al. 2013). Through our case
studies, we demonstrate that the DSML structures provide the context (by combining
domain and CT concepts) to help students overcome these difficulties. In our work, the
step-by-step execution approach, as well as the linked animations and plotting functions
provided students with additional help to overcome these grounding issues. We
demonstrated this through our contrasting case studies in the “Impact on Student
Learning and Performance” section.

In recent work on the integration of computational modeling with STEM disciplines,
additional difficulties that students experienced were outlined in the “Students' Diffi-
culties with Learning-by-Modeling” section. In this paper, we have demonstrated that
DSMLs provide a representational structure that explicitly targets STEM domain
concepts, which, in turn support learning by computational modeling (Fig. 1). In this
manner, they seem to directly target difficulties students have experienced in previous
work. Through our case studies we have shown where DSMLs helped students
overcome difficulties in understanding the nature of variables and their relations. For
instance, the debugging of a stopping condition for the package drop task in Physics
allowed the student to use the data table generated by the motion of the package to
come up with the correct logical expression for stopping the package when it hit the
ground. In all examples where students correctly implemented the dynamic, step-by-
step change in the model’s behavior (StudentA, StudentC, and StudentD), the students
also demonstrate proficiency in translating a mathematical equation into computational
form to update the position of the object (Physics) or the width of a coral using a
growth rate (StudentD, Marine Biology). Students demonstrated abilities to qualitative-
ly reason about models and data (e.g., describing agreement with a marine biologist
given a set of data). However, issues regarding proper application of the simulation step
and the use of custom blocks do highlight the need for additional scaffolding on these
concepts to help students benefit even more in their learning-by-modeling processes.

From the classroom perspective, DSMLs added two key benefits. The first is in the
grounding of modeling language definitions to help the teacher link domain principles
to model constructs and then to model behavior and results. The systematic design and
implementation of the blocks supported a uniform approach to classroom learning-by-
modeling that was directly connected to the classroom teacher’s curriculum. The
second is the reduction in necessary training time for all students as compared to
previous literature based on integrating text-based STEM modeling approaches (some-
times requiring multiple weeks of training (Hashem and Mioduser 2011) or major
variations in training required based on prior knowledge (VanLehn et al. 2016)). It is

574 International Journal of Artificial Intelligence in Education (2020) 30:537–580

important to note that our training focused on key STEM and CT constructs imple-
mented (e.g., what is a conditional statement) and not specifically on the modeling
language. While the semester-long high school study did require 5 class hours of initial
training, this time included the introductions to key Kinematics concepts (the start of
C2STEM was the start of the kinematics unit in their class) and CT concepts. A brief
review of studies conducted with general purpose, block-based languages appeared to
indicate similar requirements to our approach.

A consistent theme apparent in each of our examples is the use of multiple linked
representations (Basu et al. 2017) and a seamless way to transition between represen-
tations. Visual, numerical, and tabular data representations of models and modeling
behavior, and as the teacher demonstrated in his Physics classroom, it also brings out
the advantages of the self-documenting nature of DSMLs. Furthermore, students can
compare the narrative of code they generate as their computational models to a step-by-
step execution of the simulations, and they can also observe the results in the data tables
and plots generated. When blocks are used appropriately, this process can be seen to
support key learning opportunities.

We also have some evidence of the impact of the DSML-centered learning-by-
modeling approach on the transfer of problem-solving skills to new domains. We
implemented a Preparation for Future Learning (PFL) assessment (Schwartz et al.
2005) that was designed to utilize evidence from students’ learning trajectories and
current understanding to see how they may apply this knowledge to solve new
problems (Hutchins et al. 2020). Results from the PFL assessment conducted at the
end of the Physics unit showed that students who used the DSML-based modeling
environment were more likely to apply general problem-solving strategies, especially
the step-by-step simulation approach in a new physics context than students in a
traditional physics classroom. A detailed analysis of our Preparation for Future Learn-
ing results is outlined in Hutchins et al. (2020). Given the differences in the transfer of
problem-solving approaches between students who utilized our learning-by-modeling
approach versus those that did not, further research on the effect of DSMLs in near and
far transfer situations need to be conducted.

Future Directions

Our DSML framework implemented in the C2STEM environment provides a system-
atic approach for designing domain-specific languages using visual programming
constructs that focus science learning in multiple domains across multiple age levels.
As we run studies with our existing DSML constructs, we will continue to analyze
student difficulties in using our DSML constructs, and how they may be re-designed to
facilitate better learning of STEM and CT concepts and practices.

Our case study analysis demonstrated the potential benefits of providing feedback
based on DSML use (for instance, providing feedback to StudentB that they were
updating position and velocity using the same equation). There have been efforts to
analyze students’ learning behaviors from their logged activity data, including the use
of machine learning techniques to deepen insights about self-regulated learning
(Gasevic et al., 2017; Biswas et al. 2018) and collaborative learning (Järvelä et al.
2020) strategies by analyzing sequences of learning activities. Additional exploratory
data-driven approaches have targeted the design partial solution feedback (Piech et al.

International Journal of Artificial Intelligence in Education (2020) 30:537–580 575

2015), the identification of program states and the likelihood of reaching a solution
state or facing a “sink” state in which a student was likely to get stuck (Blikstein et al.
2014), and applications of analytics measures to determine tinkering versus planning
strategies in program and model development (Berland et al. 2013). Basu et al. (2016a),
described students’ modeling progressions by calculating the distance to expert model
at each model revision. DSMLs provide a unique opportunity in analyzing students’
activities. The domain-specific name of each block provides a context in which to
better understand students’ reasoning processes associated with their model building
actions. Tracking their use of DSML blocks over time helps us develop a fine-grained
analysis of students’ CT and STEM learning and difficulties using approaches such as
differential sequence mining (Kinnebrew et al. 2013; Dong et al. 2016) and clustering
(Segedy et al. 2015; Zhang et al. 2017). A deeper understanding of students’ reasoning
processes also provides opportunities for adaptive scaffolding that can help them get
past their difficulties and advance their domain and CT learning.

Acknowledgements We thank Shuchi Grover, Brian Broll, Satabdi Basu, Kevin McElhaney, Justin
Montenegro, Beth Sanzenbacher, Naveed Mohammed, Kristen Pilner Blair, Doris Chin, Rachel Wolf and
all of our C2STEM and SPICE project contributors for their assistance on this project.
Availability of Data and Material Data available on request from the authors.

Code Availability Available at https://github.com/c2stem

Funding This project was supported under National Science Foundation Award DRL-1640199 and Na-
tional Science Foundation Award DRL-1742195.

Compliance with Ethical Standards

Conflicts of Interest/Competing Interests No conflicts of interest to declare.

References

Araujo, I., Veit, E., & Moreira, M. (2008). Physics students' performance using computational modelling
activities to improve kinematics graphs interpretation. Computers and Education, 50(4), 1128–1140.

Basu, S., Biswas, G., & Kinnebrew, J. S. (2016a). Using multiple representations to simultaneously learn
computational thinking and middle school science. In Proceedings of the thirtieth AAAI conference on
artificial intelligence (pp. 3705–3711). Arizona, USA: Phoenix.

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding in a computational
thinking-based science learning environment. User Modeling and User-Adapted Interaction, 27(1), 5–53.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016b). Identifying middle
school students’ challenges in computational thinking-based science learning. Research and Practice in
Technology Enhanced Learning, 11(1), 1–35.

Basu, S., Dickes, A., Kinnebrew, J. S., Sengupta, P., & Biswas, G. (2013). CTSiM: A computational thinking
environment for learning science through simulation and modeling. In Proceedings of the 5th interna-
tional conference on computer supported education (pp. 369–378). Germany: Aachen.

Basu, S., McElhaney, K., Grover, S., Harris, C., & Biswas, G. (2018). A principled approach to designing
assessments that integrate science and computational thinking. In Proceedings of the 13th international
conference of the learning sciences (pp. 384–391). London, England.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and beyond.
Communications of the ACM, 60(6), 72–80.

Berland, M., Martin, T., Benton, T., Smith, C. P., & Davis, D. (2013). Using learning analytics to understand
the learning pathways of novice programmers. Journal of the Learning Sciences., 22(4), 564–599.

576 International Journal of Artificial Intelligence in Education (2020) 30:537–580

https://github.com/c2stem

Biswas, G., Baker, R. S., & Paquette, L. (2018). Data mining methods for assessing self-regulated learning. In
D. H. Schunk & J. A. Greene (Eds.), Educational psychology handbook series. Handbook of self-
regulation of learning and performance (p. 388–403). Routledge/Taylor & Francis Group.

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming pluralism:
Using learning analytics to detect patterns in the learning of computer programming. Journal of the
Learning Sciences, 23(4), 561–599.

Bredeweg, B., Liem, J., Beek, W., Linnebank, F., Gracia, J., Lozano, E., Wißner, M., Bühling, R., Salles, P.,
Noble, R., Zitek, A., Borisova, P., & Mioduser, D. (2013). DynaLearn – An intelligent learning
environment for learning conceptual knowledge. AI Magazine, 34(4), 46–65. https://doi.org/10.1609
/aimag.v34i4.2489.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Paper presented at annual American Educational Research Association meeting.
BC, Canada: Vancouver.

Brodie, M. L., Mylopoulos, J., & Schmidt J. W. (Eds.). (2012). On conceptual modelling: Perspectives from
artificial intelligence, databases, and programming languages. Springer Science & Business Media.

Brown, N. C., Mönig, J., Bau, A., & Weintrop, D. (2016, February). Panel: Future directions of block-based
programming. In Proceedings of the 47th ACM technical symposium on computing science education
(pp. 315–316).

CCSSO. (2011). The common core state standards for mathematics. Retrieved February 1, 2020, from
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf

Chi, M. T. H. (2005). Common sense conceptions of emergent processes: Why some misconceptions are
robust. Journal of the Learning Sciences, 14, 161–199.

Chiu, J., McElhaney, K. W., Zhang, N., Biswas, G., Fried, R., Basu, S., & Alozie, N. (2019). A principled
approach to NGSS-aligned curriculum development integrating science, engineering, and computation: A
pilot study. In Paper presented at the 2019 NARST annual international conference.

Clark, D., Nelson, B., Sengupta, P., & D’Angelo, C. (2009). Rethinking science learning through digital
games and simulations: Genres, examples, and evidence. In Learning science: Computer games, simu-
lations, and education workshop sponsored by the National Academy of Sciences. Washington DC.

Dede, C. (2010). Technological supports for acquiring 21st century skills. In P. Peterson, E. Baker, & B.
McGaw (Eds.), International encyclopedia of education (pp. 158–166). Oxford, England: Elsevier.

van Deursen, A. (1997). Domain-specific languages versus object-oriented frameworks: A financial engineer-
ing case study. In Smalltalk and Java in industry and academia, STJA’97 (pp. 35–39). Ilmenau Technical
University.

van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: An annotated bibliography.
SIGPLAN Notices, 35, 26–36.

DiSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. Mit Press.
Dong, Y., Kinnebrew, J., & Biswas, G. (2016). Comparison of selection criteria for multi-feature hierarchical

activity Mining in Open-Ended Learning Environments. In Proceedings of the 9th international confer-
ence on educational data mining (pp. 591–592). North Carolina: Raleigh.

Gasevic, D., Jovanovic, J., Pardo, A., & Dawson, S. (2017). Detecting learning strategies with analytics: Links
with self-reported measures and academic performance. Journal of Learning Analytics, 4(2), 113–128.
https://doi.org/10.18608/jla.2017.42.10.

Grover, S. (2019). An Assessment for Introductory Programming Concepts in Middle School Computer
Science. Presented at the 2019. In Annual meeting of the National Council on measurement in education
(NCME). Toronto: CA.

Grover, S. (2020). Designing an Assessment for Introductory Programming Concepts in Middle School
Computer Science. In Proceedings of the 51st ACM Technical Symposium on Computing Science
Education (SIGCSE’20), Portland, OR

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming:
Examining misconceptions of loops, variables, and Boolean logic. In Proceedings of the 2017 ACM
SIGCSE technical symposium on computer science education (pp. 267–272). ACM.

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E.
Barendsen, & S. Carsten (Eds.), Computer Science Education: Perspectives on teaching and learning.
Bloomsbury.

Harvey, B., Garcia, D. D., Barnes, T., Titterton, N., Armendariz, D., Segars, L., Lemon, E., Morris, S., &
Paley, J. (2013). SNAP! (build your own blocks). In Proceedings of the 44th ACM technical symposium
on computer science education, SIGCSE '13 (p. 759).

International Journal of Artificial Intelligence in Education (2020) 30:537–580 577

https://doi.org/10.1609/aimag.v34i4.2489
https://doi.org/10.1609/aimag.v34i4.2489
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
https://doi.org/10.18608/jla.2017.42.10

Hashem, K., & Mioduser, D. (2011). The contribution of learning by modeling (LbM) to students’ under-
standing of complexity concepts. International Journal of e-Education, e-Business, e-Management and e-
Learning, 1(2), 151–157.

Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–
166.

Hilton, M. (2010). Exploring the intersection of science education and 21st century skills: A workshop
summary. National Academies Press.

Hudak, P. (1996). Building domain-specific embedded languages. ACM Computing Surveys (CSUR), 28(4),
196–1es.

Hutchins, N., Biswas, G., Conlin, L., Emara, M., Grover, S., Basu, S., & McElhaney, K. (2018). Studying
synergistic learning of physics and computational thinking in a learning by modeling environment. In J.
C. Yang et al. (Eds.), In proceedings of the 26th international conference on computers in education (pp.
153–162). Philippines: Manila.

Hutchins, N., Biswas, G., Maróti, M., Lédeczi, A., Grover, S., Wolf, R., Blair, K. P., Chin, D. B., Conlin, L.,
Basu, S., & McElhaney, K. (2020). C2STEM: A system for synergistic learning of physics and
computational thinking. Journal of Science Education and Technology (JOST), 29, 83–100. https://doi.
org/10.1007/s10956-019-09804-9.

Järvelä, S., Gašević, D., Seppänen, T., Pechenizkiy, M., & Kirschner, P. A. (2020). Bridging learning
sciences, machine learning and affective computing for understanding cognition and affect in collabora-
tive learning. British Journal of Educational Technology. https://doi.org/10.1111/bjet.12917.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014). Embedding
computational thinking in science, technology, engineering, and math (CT-STEM). In future directions in
computer science education summit meeting. FL: Orlando.

Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning
Environments, 13(1–2), 15–37.

van Joolingen, W. R., De Jong, T., Lazonder, A., Savelsbergh, E. R., & Manlove, S. (2005). Co-lab: Research
and development of an online learning environment for collaborative scientific discovery learning.
Computers in Human Behavior, 21, 671–688.

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., & Völkel, S. (2014). Design guidelines for
domain specific languages. ArXiv, abs/1409.2378.

Keating, T., Barnett, M., Barab, S. A., & Hay, K. E. (2002). The virtual solar system project: Developing
conceptual understanding of astronomical concepts through building three-dimensional computational
models. Journal of Science Education and Technology, 11(3), 261–275.

Kelly, S. & Tolvanen, J. (2008). Domain-specific modeling : Enabling full code generation. Retrieved from
https://ebookcentral.proquest.com

Kinnebrew, J. S., Loretz, K. M., & Biswas, G. (2013). A contextualized, differential sequence mining method
to derive students' learning behavior patterns. Journal of Educational Data Mining, 5(1), 190–219.

Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the automatic recognition of
computational thinking for adaptive visual language learning. In Proceedings of the 2010 IEEE sympo-
sium on visual languages and human-centric computing (pp. 59–66). Leganes.

Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).
Composing domain-specific design environments. Computer, 34(11), 44–51.

Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: The Betty’s brain system.
International Journal of Artificial Intelligence in Education, 18(3), 181–208.

Lehrer, R., & Schauble, L. (2015). The development of scientific thinking. In R. M. Lerner, L.S. Liben, & U.
Mueller (Eds.), Handbook of child psychology and developmental science, 2(7), 671–714.

Levesque, H. J. (1986). Knowledge representation and reasoning. Annual review of computer science, 1(1),
255–287.

McElhaney, K. W., Basu, S., Wetzel, T., & Boyce, J. (2019). Three-dimensional assessment of NGSS upper
elementary engineering design performance expectations. In NARST Annual International Conference.

Metcalf, S. J., Krajcik, J., & Soloway, E. (2000). Model-it: A design retrospective. In M. J. Jacobson & R. B.
Kozma (Eds.), Innovations in science and mathematics education: Advanced designs for technologies of
learning (pp. 77–115). Mahwah, NJ: Lawrence Erlbaum Associates.

Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence-centered design for educational testing.
Educational Measurement: Issues and Practice, 25(4), 6–20.

Mislevy, R. J., & Riconscente, M. (2005). Evidence-centered assessment design: Layers, structures, and
terminology (PADI technical report 9). Menlo Park, CA: SRI International.

N. G. S. S. Lead States (2013). Next generation science standards: For States, by States. Washington, DC:
The National Academies Press.

578 International Journal of Artificial Intelligence in Education (2020) 30:537–580

https://doi.org/10.1007/s10956-019-09804-9
https://doi.org/10.1007/s10956-019-09804-9
https://doi.org/10.1111/bjet.12917
https://ebookcentral.proquest.com

Nikolai, C., & Madey, G. (2009). Tools of the trade: A survey of various agent based modeling platforms.
Journal of Artificial Societies and Social Simulation, 12(2), 2.

Niwa, K., Sasaki, K., & Ihara, H. (1984). An experimental comparison of knowledge representation schemes.
AI Magazine, 5(2), 29–29.

Olson, I. C., Horn, M., & Wilensky, U. (2011). Modeling on the table: Agent-based modeling in elementary
school with NetTango. In Proceedings of 10th international conference on interaction design and
children. Ann Arbor: MI.

Paige, R. F., Ostroff, J. S., & Brooke, P. J. (2000). Principles for modeling language design. Information and
Software Technology, 42, 665–675.

Pausch, R., Burnette, T., Capeheart, A. C., Conway, M., Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R.,
Koga, S., & White, J. (1995). Alice: Rapid prototyping system for virtual reality. IEEE Computer
Graphics and Applications, 15(3), 8–11.

Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., & Guibas, L. (2015). Learning program
embeddings to propagate feedback on student code. In Proceedings of the 32nd international conference
on machine learning (pp. 1093–1102). France: Lille.

Redish, E. F., & Wilson, J. M. (1993). Student programming in the introductory physics course: M.U.P.P.E.T.
American Journal of Physics, 61, 222–232.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of a checklist
for getting computational thinking into public schools. In Proceedings of the 41st ACM technical
symposium on computer science education (SIGCSE). Milwaukee: ACM Press.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all.
Communications of the ACM, 52(11), 60–67.

Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. Mestre (Ed.),
Transfer of learning: Research and perspectives (pp. 1–52). Greenwich, CT: Information Age Publishing.

Schwarz, C. V., & White, B. Y. (2005). Metamodelling knowledge: Developing students’ understanding of
scientific modelling. Cognition and Instruction, 23(2), 165–205.

Segedy, J. R., Kinnebrew, J. S., & Biswas, G. (2015). Using coherence analysis to characterize self-regulated
learning Behaviours in open-ended learning environments. Journal of Learning Analytics, 2(1), 13–48.

Selic, B. (2007). A systematic approach to domain-specific language design using UML. In Proceedings of the
10th IEEE international symposium on object and component-oriented real-time distributed computing
(pp. 2–9). Santorini Island.

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in STEM
education. In M. Khine (Ed.), Computational thinking in the STEM disciplines. Cham: Springer.

Sengupta, P., Dickes, A., Farris, A. V., Karan, A., Martin, D., & Wright, M. (2015). Programming in K-12
science classrooms. Communications of the ACM, 58(11), 33–35.

Sengupta, P., & Farris, A. V. (2012). Learning kinematics in elementary grades using agent-based computa-
tional modeling: A visual programming based approach. In Proceedings of the 11th international
conference on Interaction Design & Children (pp. 78–87).

Sengupta, P., Farris, A. V., & Wright, M. (2012). From agents to continuous change via aesthetics: Learning
mechanics with visual agent-based computational modeling. Technology, Knowledge and Learning,
17(1–2), 23–42.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking
with k-12 science education using agent-based computation: A theoretical framework. Education and
Information Technologies, 18(2), 351–380.

Shen, J., Lei, J., Chang, H. Y., & Namdar, B. (2014). Technology-enhanced, modeling-based instruction
(TMBI) in science education. In In Handbook of Research on Educational Communications and
Technology (Fourth ed., pp. 529–540). New York: Springer. https://doi.org/10.1007/978-1-4614-3185-
5_41.

Sherin, B. L. (2001a). A comparison of programming languages and algebraic notation as expressive
languages for physics. International Journal of Computers for Mathematical Learning, 6(1), 1–61.

Sherin, B. L. (2001b). How students understand physics equations. Cognition and Instruction, 19(4), 479–
541.

Sherin, B., diSessa, A. A., & Hammer, D. M. (1993). Dynaturtle revisited: Learning physics through
collaborative design of a computer model. Interactive Learning Environments, 3(2), 91–118.

Snyder, C., Hutchins, N., Biswas, G., Emara, M., Grover, S., & Conlin, L. (2019). Analyzing students’
synergistic learning processes in physics and CT by collaborative discourse analysis. In Proceedings of
the international conference on computer supported collaborative learning (pp. 360–367). Lyon, France.

International Journal of Artificial Intelligence in Education (2020) 30:537–580 579

https://doi.org/10.1007/978-1-4614-3185-5_41
https://doi.org/10.1007/978-1-4614-3185-5_41

Sun, D., & Looi, C.K (2013). Designing a web-based science learning environment for model-based
collaborative inquiry. Journal of Science Education and Technology, 22(1), 73–89.

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to computational action.
Communications of the ACM, 62(3), 34–36.

Tisue, S., & Wilensky, U. (2004). NetLogo: Design and Implementation of a Multi-Agent Modeling
Environment. Paper presented at the Agent2004 Conference. Chicago, IL.

Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of the concept of
acceleration in one dimension. American Journal of Physics, 49(3), 242–253.

VanLehn, K. (2013). Model construction as a learning activity: A design space and review. Interactive
Learning Environments, 21(4), 371–413. https://doi.org/10.1080/10494820.2013.803125.

VanLehn, K., Chung, G., Grover, S., Madni, A., & Wetzel, J. (2016). Learning science by constructing
models: Can dragoon increase learning without increasing the time required? International Journal of
Artificial Intelligence in Education, 26(4), 1033–1068. https://doi.org/10.1007/s40593-015-0093-5.

VanLehn, K., Wetzel, J., Grover, S., & van de Sande, B. (2015). Learning how to construct models of
dynamic systems: An initial evaluation of the dragoon intelligent tutoring system. IEEE Transactions on
Educational Technology, 10(2), 154–167. https://doi.org/10.1109/TLT.2016.2514422.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25(1), 127–147.

Werner, L., McDowell, C., & Denner, J. (2013). A first step in learning analytics: Pre-processing low-level
Alice logging data of middle school students. Journal of Educational Data Mining, 5(2), 11–37.

Wetzel, J., VanLehn, K., Chaudhari, P., Desai, A., Feng, J., Grover, S., Joiner, R., Kong-Silvert, M., Patade,
V., Samala, R., Tiwari, M., & van de Sande, B. (2017). The design and development of the dragoon
intelligent tutoring system for model construction: Lessons learned. Interactive Learning Environments,
25(3), 361–381. https://doi.org/10.1080/10494820.2015.1131167.

Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET research: Simulations that enhance learning.
Science, 322, 682–683.

Wilensky, U., Brady, C. E., & Horn, M. S. (2014). Fostering computational literacy in science classrooms.
Communications of the ACM, 57(8), 24–28.

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through
constructing and testing computational theories—An embodied modeling approach. Cognition and
Instruction, 24(2), 171–209.

Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems perspective to making sense of
the world. Journal of Science Education and Technology, 8(1), 3–19.

Wing, J. (2011). Research notebook: Computational thinking—What and why. The Link Magazine, 20–23.
Zhang, N., Biswas, G., Chiu, J. L., & McElhaney, K. W. (2019). Analyzing students’ design solutions in an

NGSS-aligned earth sciences curriculum. In Proceedings of the 20th international conference on artificial
intelligence in education (pp. 532–543). Chicago.

Zhang, N., Biswas, G., & Dong, Y. (2017). Characterizing students’ learning behaviors using unsupervised
learning methods. In E. André, R. Baker, X. Hu, M. Rodrigo, & B. du Boulay (Eds.), Artificial
intelligence in education (pp. 430–441). Wuhan, China: Lecture notes in computer science (Vol.
10331). Cham: Springer.

Zhang, N., Biswas, G., McElhaney, K. W., Basu, S., McBride, E., & Chiu, J. L. (2020). Studying the
Interactions Between Science, Engineering, and Computational Thinking in a Learning-by-Modeling
Environment. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Artificial
Intelligence in Education. AIED 2020. Lecture notes in computer science (Vol. 12163). Cham: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

580 International Journal of Artificial Intelligence in Education (2020) 30:537–580

https://doi.org/10.1080/10494820.2013.803125
https://doi.org/10.1007/s40593-015-0093-5
https://doi.org/10.1109/TLT.2016.2514422
https://doi.org/10.1080/10494820.2015.1131167

	Domain-Specific...
	Abstract
	Introduction
	Background
	Learning-by-Modeling
	Students’ Difficulties with Learning-by-Modeling

	What Are Domain-Specific Modeling Languages?
	Framing the Design of DSMLs for Learning-by-Modeling Environments
	Evidence-Centered Design
	Exploratory Learning of Dynamic Processes
	DSML Development Utilizing a Block-Based Programming Environment

	Establishing an Educational DSML Design Process
	Designing Educational DSMLs
	Illustrating Applications of the DSML Design Process in Different Domains
	Putting it all Together: The C2STEM Environment for Computational Modeling

	Results and Analysis
	Methods and Data Sources
	Impact on Student Learning and Performance
	How DSMLs Support Conceptual Understanding of the STEM Domain through Modeling
	How DSMLs Support Building Models from Behavior Data
	How DSMLs Can Support Computational Learning and Problem-Solving at Younger Grade Levels
	How DSMLs Support Debugging

	DSMLs Support Learning-by-Modeling in STEM Classrooms

	Discussion and Conclusions
	A Framework for the Integrated Design and Development of DSMLs Supporting Learning-by-Modeling in STEM Domains
	Interpretive Summary of Our Case Study Findings
	Future Directions

	References

