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I. Preface

In this paper we will investigate the properties of geodesics in the case of

some special Riemannian manifolds with interesting features. }T/ < - }
\ [ « -

The sets of points of our Riemannian manifolds are the spaces IRS X IRl

parametrized on the natural way. The metric is given by the following equality

U aa) (56), (51))=<zy>+En-U|al?,

where U:R—R 1is a smooth mapping, < .,.> is the canonical inner product
of le L oa,ry € IRB and a,f,7 are arbitrary numbers in the space of real
numbers. As we will show out, the most interesting peculiar feature in this space
is the following one: the projection of geodesics onto iRg along [R1 1s a trajectory
of a moving particle in a central symmetric force field with potential

hfU|a |2) , where h is a suitable constant.

We turn to the details in three cases:

1)  U(z)= constant ( trivial case )
] Wel=vos ( ¢ constant )

1) U &) = ez ( ¢ constant ).
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As a result of the considerations it will be turned out that the equations of
the geodesics are integrable in all the three cases. We have calculated equations of
the geodesics in an explicit form. By the help of these expressions we have given
necessary and sufficient conditions for the purpose to determine the shape of

n

projection of geodesics onto ERO along Rl For the end we have constructed some

pictures with the aid of computer program PHASER to illustrate our results.
I would like to thank Dr.Nagy Péter for proposing this problem on geodesics

and making valuable suggestions on the form and content of this dissertation. I

also thank his colleagues for their decisive help.
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II. Preliminaries

In this section we are going to give a brief introduction to the concepts
belonging to the theory of Riemannian manifolds which are considerable
importance in our further investigations. We deal only with treat of the most
necessary objects as manifold, tangent space, connection, Riemannian metric,
Levi-Civita connection and geodesics. The aim of this chapter is to make our

terminology quite clear.

During the preparation of these introductory sections we follow the treatment
of the basic chapters of Helgason's excellent book [22]. However, in some details
we apply ideas differ from Helgason's ones as e.g. in proving the minimality

property of geodesics.



2.1. Riemannian manifolds

DEFINITION. A Hausdorff space is said to be n—dimensional topological manifold
if 1t has countable base and all the points of it have a neighborhood

. . n
homeomorphic to an open subset in R".

Let ' denote an n—dimensional topological manifold and # CH' be a
neighborhood of it. The mapping ¢: % —R" is a homeomorphism. This
homeomorphism ¢ ( coordinate—mapping ) with # { coordinate—neighborhood ) is

called an n—dimensional chart.

The system of the charts are named by coordinate—atlas.

DEFINITION. An n—dimensional topological manifold M' is said to be a
differentiable manifold of class Ck if for any two coordinate—mappings
2 and P9 of it the function pyo gogl is of class C'k ( on an appropriate

neighborhood ).

A map f: }fl-—*ﬁk between two differentiable manifolds is said to be
differentiable if for any coordinate—mappings Py of #* and Py of ,b‘k the function

pjvofo 50;{1 1s differentiable ( on a suitable coordinate neighborhood ). Such a



2.1. Riemannian manifolds

mapping 1s called diffeornorphism 1if 1t 1s bijective on the one hand, and its inverse

18 also differentiable, on the other hand.

Let T be the space of the differentiable functions on #'. The map D:F —R

is said to be a derivative at the point P € M if it satisfies the following

conditions for all a,f €R and fg€ F:

D(Caf+f-g)=aD(f)+8-D(yg)

D(fg)=D(f)g+fD(g)

The set of all derivatives forms a space denoted by Tp(!fl) . This set 1s called
the tangent space of # at the point P. Easy to see that the dimension of it is n.
All these facts are straightforward consequences of the Taylor expansion of the

function fo ga-_l , where p 1s a coordinate—mapping on a neighborhood of the

point P:
n @
fe ‘0—1 ( *p¥n )= AP)+ 2 [Xi h 50‘1“)) ] Mﬂg—b +
=l 1

n

Y [F-n® ] [H -] e gy

i)

where ¢(P) = [gal(P), p1(P), ..., an(P)] = (%% ), and gis the remainder

term. This gives, by the properties of derivative D that



2.1. Riemannian manifolds
1) =
Dm=20wﬂ%éhm]
1=l

D(N)=Y D(x)g
i=1 :

The notion of the Lie bracket is very important. It is defined by

[ X,Y] = XoY - YoX

for any two elements of Tp(K") . The tangent space Tp(H') is a Lie algebra
‘this Lie bracket.

- The union of the tangent spaces Tp(l{n) for all points P of ' is called the °
gent bundle of the manifold and denoted by T(4").

The map X : £ — T(#") is named by vector field if X(P) € Tp(#?) for all
points P on w. -

;'Tji";EFINITION. The map g:[ab]— K" is said to be curve in the manifold H* if
L»i" 1t 1s differentiable and injective. A derivative D at point P = g( t) is

the tangent vector of the curve g at point P and denoted by g ( t) if

p=dile(t)

=1



2.1. Riemannian manifolds

r all function f: M'—R. ( It is clear that 'g(t)ETg(t)(.‘(n)

ince it is a derivative. )

fferentiable manifold #* is said to be a Riemannian one if there is an

uct gp on TP( i ) at each points P € ' which is differentiable and

definite. This tensor field g is called by Riemannian metric.

ION. In a Riemannian manifold #' the length of a curve 5 :[ab ] — K
1s defined by

b
L= [Veq(040) @

e
)

a the language of tensors this means that ds2 = dy' dy', where ds is the
:": element of the curve 7 and 7' is it's convolution with the i~th

' inate—mapping.

- One speaks about indefinite Riemannian space if the inner product g is

finite. In our spaces to be investigating this property depends on the sign of

" fconstant cin U so we can not calculate the length of our geodesics ( at least in

the above sense ).

et




2.2. Connections

denote the set of differentiable vector fields on the differentiable

."1‘ ION. The differentiable map v :XxX— X s called connection or
covariant derivative if it has the following three properties:
) V(e Y+8.Z) = a-Vy Y + §-9¢ 7,
i11) v (fY)= JogY + X(f)-Y,
where a,f €R, XY, Z €, fg€eF and X( f) € F defined by
X()(P)=X(P)(f)

for all P € M

3 n
lﬂJ , where 3-1 = &—3 and 1<i,j<n since { (?i ]i:l 1s base in TP(}{]) at

h points P € 4.

T T



2.2 Connections

obvious that we can expand the vector field Vc’?-aj in the base
1

, but this expansion gives us a very important object to the theory of

N. The function coefficients ['li{ . € F of the expansion

il

It
N ok

are the so—called Christoffel symbols.

1s trivial that the Christoffel symbols also determine the connection since

termine the vector fields va. 5J- . More precisely the properties 1)—111) of
1

variant derivative (listed in the definition) and some easy straightforward -

on umply

_ n n
i x.—.Zxk-ak,Y:ZYk-ak and XY, €F (1<k<n).
ﬁ k=1 k=1

iy

_"hjs allows us to define the covariant derivative of a vector field X € X with
ect to a fixed vector v € TP(}P).

il

B
I 7
E




2.2 Connections

N. Using the above introduced notations the covariant derivative of
€4 with respect to the vector v € TP(}(H) 18

n

VVX=2v(——-15+ Zrk

1, el

where v = 2 vk~5k and all the functions and vector fields are taken

at the point P ¢ #*.

means that VVX 1s a vector 1n the tangent space at point P. From this
efine the important notion of the derivative of a vector field X € & along

ve 7 on such a way that the derivated vector field X' is a vector field along

ION. The derivative of a vector field X e€X along a curve
y:[ab]— M"
s
X'ifab] =R (L— v, X (1)) )

vector field X € 4 is said to be parallel along the curve 7 if v, X =0

¥

ondition 1s formulated according to the analogous concept of parallel vector

on the surfaces.




2.2 (Connections

lowing differential equation for parallel vector fields along the curve

can be easily obtain from the previously exhibited formulas by some

d(X;07)

n
i -
S +k2 ‘yk-onw/-l“k'j- 70
»J=1

his implies the existence of a unique parallel vector field X € A for any

'y:[a,b]—-oMn and any vector Vv ET,’(a)(.ﬂn) which satisfies the

jon v=X(a).

s makes the introduction of parallel translation possible and shows the

ive meaning of the connection. In this sense the following theorem is very

REM. Let TZt denote the parallel translation along the above curve
y:[abl]l— MDY from 4(t+a) to 4(t) . If X €4 then the following

relation holds

E T (X)=X( 1t
CwX(an) = Lin R XO)

A— 0 A

We do not prove this result since it 1s quite clear from the above mentioned



2.2 Connections

wo fundamental tensors given by the covariant derivative:

torsion tensor: T(X,Y)zvawVYX—[X,Y],

lan curvature tensor: R(X,Y)Z:VXVYZ—-VYVXZwV[X Y]

the following fact : the torsion is zero if and only if the Christoffel
symmetric in their lower indices. This statement is elementary, so

1 be omitted.

most 1mportant fundamental theorem about the connection on a
manifold is the following. It expresses the uniqueness of the

1 satisfying some condition.

' On a Riemannian manifold (M'g) there exists a unique

 connection ¥V which is torsion free and satisfies

Xg(Y,Z)=g( VY Z)+ o Y952 )

for arbitrary vector fields X, Y, Z € & .

P. From the conditions 1t is immediately that




2.2 Connections

WY,Z)=Xe(Y.Z)+ Yo( ZX) = Zg( XY )
+ o( X,[Y,Z)) + g Y,[2.X]) + o( Z,[X,Y] ).

> know the right hand side of this equality for all vector fields Z € ¥

ite we can determine VXY exactly which was to be proved. M

i

The unique connection determined in the above theorem 1s called

—Clivita or Riemannian connection.

i



2.3. Geodesics

esic line if

1
<

v

gent vector field is parallel along the curve 7.

uments in the previous section imply, on an easy way, the following

ation

n

d Lo

@Ht X N0 r=0
Jsk=1

n
i
TOED IO

Picard—Lindeldf theorem we can conclude that for any point P € A’
.

ctor v ETP(!P) there exists a unique geodesic passing through the

* with direction v € TP(J{I) ( with the speed v ).

12



2.3 Geodesics

Christoffel symbols are differentiable functions, there is a
| U of the origin in TP(}P) , where the so—called exponential map
B i . then S expymmtial wep Brp bidbes i poink of
geodesic through the point P € TP(}(H) with the speed v € TP(.‘P) ;
ized by 1. For example, if y(0)=P and #%(0)=v then
Ba(1) .

all calculate this exponential map in our special spaces in the following

s chapter we shall prove another important peculiarity of geodesics.

Riemannian metric on H#* and v be the Levi—Civita connection.

et 7:[0,d] — K beacurve.

A differentiable function

v:[——E,E]X[O,d]-—'ﬂn

called the variation of the curve v if

v(s,0)=1(0), v(s,d)=9(d), v(0,t)=7(t).

sly, the curve v (t) = v(st) joins the points 7(0) and 7(d). Let

he length of the curve vs(t) then we have the following theorem.

13
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2.3. Geodesics

ve between two points is extremal with respect to its length if

ly if it is a geodesic line.

ugh to see that L' ( 0 ) = 0 for any variation v if and only if

vV 4=0.
¥

of simplicity let 7 be parametrised by its arclength. Then

g==(]

{9, (i ¥4(8) 35 (0)) e

R 4 d d 4
97(1;)( v 0t), gpr(t) ) dt —f 97.(t)( v 0t), ;i—t?z"l'(t) ) dt

14




2.8. Geodesics

Since the function agv( 0,. ) can be arbitrarily choosen, L'( 0 ) =0 implies

that v y=0. At the same time Vv y=0 implies obviously that
¥ ¥
L'(0) = 0 ,which was to be proved.

15



I11. Geodesics on R(j » Rl equipped a special metric

In the following we investigate the geodesics in some special Riemannian
manifolds defined on [Rg «R! , where !Rg =R"~ {0}, whose metric is defined

by the following properties:

1)  The projection onto IRE)1 along R of this Riemannian scalar product 1s

the canonical Euclidean one.

i) R is orthogonal to IRS :

11)  The projection R along IRS of the scalar product at ( a,a ) € mlol « R}

is the canonical one multiplied by U ( | «a |2 ), where U: |R+ -——-+[R+

18 smooth.

These properties determine uniquely the scalar product of vectors

p n 1
(X6), (Y €T g0 (B <R)

and it can be written in the form

(1) 9 aa) (XENYM)) =< XY >+ En-U(1al?),

16



Geodesics on Rh x [Rl equipped a specral metric
0

where < X\)Y > =

n
X-l -Yi . For the sake of simplicity we shall write

1=l
< ( Xié ))( Y»’I ) >*: g( a,a )( ( X,ﬁ )a( Yv” ) ) ]
which simplification will not make any confusion since we know every time which

point the tangent vector belongs to. We will regard a in ( a,a) like the

( n+1 )—th coordinate.



3.1. General results about the geodesics, first case

One of our basic results is formulated in the following theorem.

THEOREM. The Levi—Civita connection of the Riemannian metric (1)

introduced above has the following Christoffel symbols:

0 if 1,},k<n
0 if  1,)<n, k=n+1
0 if  1,k<n, j=n+1
Fli{,j( a,a ) ={ 0 if ) k<n, 1=n+1 5
~—~f)k( U(r))/2 if k<o, 1,j=n+1

o.(U(r))/20(r) »  if  jk=ni4l
BJ.(U(r))/zU(r) i ik=n+l

0 if i k=nt1

where 1<1,3k<n+l, r=<aae> and (98 1s the derivative with

respect to the s—th coordinate.

13



3.1. General vesults about the geodesics, fivst case

PROOF. The Levi—Civita connection is torsion free thus we have I‘fj = Ffi
(the symmetry of Christoffel symbols ). The other defining equation for this

connection 1s
(T»T) [g(a’a)( (X»é‘))(YJ}) )] - <V(T,T)(X,f),(Y,7})>*+<(X,£'),V(T‘T)(Y,?'])>*,

where (T,7) is a tangent vector. Let { 108 }?zl be an orthonormal base in the

tangent space, and

5 (Ei,O ) .if 151511}‘
Y leo,1) if i=nel

We obtain that

n+l
TUNCEREDY [f?,j((a,a))-<(?S,@k>*+F?,k((a,a))-<(9j,55>*] ,
s=1
where 1<1,jk <n+1. The simple way on which this system can be solved is
presented in the pattern below.

In the first column we have written the delimited cases according to values of
indices which were just investigating. In the second column are the equations
corresponding to the indices in the first column.

In the third column can be founded the solution of the respected equation in
the second column. The solutions of the equations in the third and fourth rows are

obtained as a solution of a system of linear ( for the I' —=s ) equations.

19



3.1. General results about the geodesics, first case

CASE EQUATION RESOLUTION
d. U(r)
L T —9), wn‘+‘1 LT \U"*"l ______1 -
; d. U(r)
Gt ; n+1 SRR \ i
i=k=n+1, j<n Fj ,n+1" Uir)= {nv~§»~1,n+1 [r1+1,n+1_'__—?
- 1 ] an+ 1
k=n+1, 1,}<n I‘I:_t'J . C/’(r)z—F{ ntl Iiil“fhj::O
- : k P J _
i=n+1, jksn Fn+1,j‘ Ir1+1,k Fi,n—}—l“O
f k . .
[ \ . \J 2% SR
r,],k_<_n [ I,J-— [l,k Ik,J.—O

These resolutions show the statments in theorem. &

COROLLARY 2. The differential equation systemn of geodesics 1s
b=k Ulx)
_ . - o
i, = a, h® UMx) / U7 (x) 1<j<n

where h Is a suitable constant , r = < w,a >, and ( a(s),a(s) ) is the

geodesic whose coordinates are { o }’;__1 and a .

20



3.1. (General results about the geodesics, first case

1BOOF. The general differential equation for geodesics is

n+l _
; e v T3 (%) =
. %, + Z X X rs,i(x) =i,
s,1=1
jhere x(s) = (xl(s),...,xn+1(s)) i1s a geodesic. In our case, we get the
fllowing
) ! 0.(U(r))
a + 2(1 ai'——g-m)— = O .
fel

| sy = (U() |
i B ¥ (a) —1 0 (1<j¢n),

;where (a(s),a(s) ) = ( a,(s),ag(s),...,a (s),a(s) ) is a geodesic. Since
| LAl y

21 b~ = (U0 V)

1=

ie obtain from the first equation that

U(x)-a+ 38 ( Ur))-a=0,

which implies the existence of a constant h satisfying
a U(r) =h.

This and a simple calculation give from our second differential equation that

2t
a—a..ﬁ—giﬁzo (1<j<n). M

IU%()

21




3.1. General results about the geodesics, first case

REMARK. It is easy to realize in the last differential equation obtained that

2
aj + aj [?U}ll’ﬂ] =0 (1<)

We know from the theoretical mechanic that this equation represent the
motion of a particle ,in the central force field with potential b2 ] Ulx) .

This shows that the projection of geodesics has to be a conic section. M
We will deal in the following three cases. The first case, when the function U

is constant, is trivial, because at this time we have only changed the unmit 1n R

Thus the geodesics are straight lines. The further cases are

(2) U(x) =

(3) U(x) = c-{x,

where c #0 .

22



3.2. Second case

In this case the determining function of the metric is U(r) = c¢/r . We have

the following description of geodesics.

THEOREM 3. Let ( a(s),a(s) ) be a geodesic in IRS «R' with respect to the

Riemannian metric (1) . Then the geodesics are

i) when ¢>0 and h#0
aj(s) :—Céx—lsin[s-x/—?—-wj] ,

i) when ¢ < 0 and h#0

#1)  when h=0

23



3.2. Second case

where h}-, vj, wj, wj ( 1<j<n ) are constant. The a(s) can be obtained

from

oz

2 a?(s) |

=1

a=

PROOF. The last statement of the theorem can be shown on substituting

U(r) :% into the first equation of the Corollary 2. The second equation of

Corollary 2. gives

where hj is a constant. As it is well known, the general solution of this is that is

stated in the theorem. ™

COROLLARY 4. We denote the initial values at s =0 of geodesic ( a,a) by
a5 = a(0) , ay = a(0), T =a(0) and 7= a(0). Then we get the

following description of geodesics for ¢ = 1:

i) if =0 then the geodesic 1s the line

a8

a(s) = T-s + a a(s) = aq

24



3.2. Second case

) if 7#0 and T =0, then the projection of geodesics onto
1R8 is the half segment ( 0.00] , the point 0 is a singular

point.

m) if 7#0 and T#0, then, assuming |T |=1, the
projection of geodesics onto IRS 1s an ellipse with focal—point

0 1in the 2—-plane W spanned by the vectors a, and T . Let

0
By, Ey be orthogonal unit vectors in W such that

ay = a(lj-E1 . T == cos‘y-E1 4 sin7-E2 .
The equation of this projected ellipse is

2 B
T +(.,082 'yQ & XQ—Xy — 'allz ’
sin“y

where x,y are coordinates in W assigned to {EL'EQ}'

Especially, if 7= 0, then the projection is the half segment

2
T 41
(0,13

4y ] and the point 0 is singular.

PROOF. Let { El ,‘. - ’En } be an orthonormal base in R" such that

a4y = a(l)oEl L = cos’y-E1 -+ sin‘y-E2 :
and En+1 1s a base vector of [Rl . Then the Picard=Lindel&f theorem and our
Corollary 2. give that, o =0 for 3<j<n since ('lj =1 and o = 0. Also

Corollary 2. gives that if 7=0 then h=0 and so aJ = 0, which proves our

first statement.



3.2. Second case

If 740, then h=7‘/ag and so

0
a
alz\/ Hl —}f sin[s-—{j-wl} ;
a
1
0
| . T
022\/ Hg"—}' . SlIl[S';U—U/Q] )
1
ag = ay = :an:O

This shows our second statement.

Now on we assume T #0. In this case we immediately get from initial

conditions that

0
°1
] + cosy - — - sin[s-

a —aO-cos S ]
| 0 0}
a a
1 1
0
a
A TR T .
g = siny - — sm[s 75],
A
1
a3:a4:...:an:O.

These equations are the parametric representations of the ellipse stated in

26



3.2. Second case

w) . If 7= 0, these equations imply

sIfo

%

J 241 sin[s.ggw] and 0,20,
1

where cosd =1/ 7“4+1 . This gives our last statement in the corollary. ™

COROLLARY 5. If T#0 and 7#0, then the projection of geodesic ( a,a) is

an ellipse inscribed into the rectangle with vertices

[:i: i r°+cos Bk -sin7]‘

The tangent points of the ellipse and this rectangle are

sl Fo
e

aO ao
+ —l'cos ——l—-sin
T i - T
and
aO aO ;
+ {—}—_\/ T +4cos 7,—_1; p sitb et ] ] .

V 7"+cos i

PROOF; Using the equation (4) we get for the tangent point with x#0 and
y=0 the coordinates

a

- cosy and yg=%—5 ' siny.

=

&

-qlrfo

XO'-:

27



3.2. Second case

These give the points with tangent line parallel to the x—axis. Similarly the

- conditions x =0,y #0 give the coordinates

S1n<y +cos

\/ TQ—}-cos:'y

~ of the points having tangent lines parallel to the y—axis. M

sl o
sl e

==

*0

v +cos?7 and Yo=*

28



3.3. Third case

In this case the determining function of the metric is U(r) = c-yf . We have

the following description of the geodesics.

THEOREM 6. Let { a(s),a(s) ) be a geodesic in [RB <Rl with respect to the
Riemannian metric (1) . We denote its initial values at s =0 by

2=0a(0), ag=0a(0), T=a(0), r=0a(0). Let E,,E,eR]

be orthogonal unit vectors in W which is spanned by a4 and T .

Choose E, , Eqy satisfying the following relation:
ay = al-E1 . T= TI'EI + TQ-E2 ‘
If T2 # 0 we get the following description of geodesics:

The geodesics do not leave the space spanned by » and RY
Furthermore, if we denote the projection of T to Rt along !RS by

T3 , there are three possibilities:

1) af I(T,T)lQZT?-}-T%-FC-!a?|'T§<O, then the

projection of the geodesic onto W is ellipse,

29



8.3. Third case

. , 2 2 2 0 2

i) If I(T,T)|*=T1+T2+c'|a1|-T3=O, then the
projection of the geodesic onto ¥ is parabola,

; 2 2 2 0 2

i) if {(T,'r)|*=T1+T2+c-]all~T3>0, then the

projection of the geodesic onto ¥ is hyperbola.

The equation of the projected geodesic in polar—coordinate is

G553 re
2-|a1| ~T2

p(p)= ,
—-c-T%]a?[S + v cos(p-w)

where

2 m2 4 2 2 2 2
v=sgale)+ #-T3Ta« laj] + (T3 |d}| o T3 a3 1%),

2 -T1~a? -sgn(c) }

w:arcsin[ 7

and p= |a|, cosp= <K, >/|al.

PROOF. Let { El e ’En } be orthonormal base in R™  such that

0 -
ay = al'El , L= Tl'r’l - T,2~E2

and En+1 be unit vector in {Rl. From Corollary 2. we get the following
differential equation for the geodesic ( a(s),a(s) |
12

5) | .

g =0 (1¢i¢n)
J o 2-c-|a1l

30




3.83. Third case

(6) C"-‘—‘C—,!a—lr,

where h = T'C'laol . In our coordinate system a}-(O) = aj(O) =0 for 35i<n
hence by the Picard—Lindeldf theorem we conclude, that aJ-(O) =0. So 1t 1s

enough to investigate the case if n=2.

Let p(s) = | a(s) | and take the polar coordinate system in le , l.e.

0)(5) = p(s) -cos( p(s) ) , agfs) = p(s)-sin( 4(s) ).

From the differential equations (5) we have
, 2 . L 9 IR
(5" 2-cp”-(pPrcosp—2-p-p-sing—p-p -cosp—p-P-sing ) = h-cosp,
" 2 ra oo ol - " 2 .
(5") 2.c-p”-( p-sinp—2-p-p-cosp—p-p esing—p-P-cosp ) = h”-smyp.

Take the linear combination of these equations by ( sinp,—cosp ) and

( cosp,sinp ) to obtain the following ones.
2:pp+pp=0
2c-p?-(H—p-pt)=h
After multiplying the first one by p , a simple integration gives
(7) prp=aq,

where q is a suitable constant. On substituting this into the second equation and
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3.8. Third case

dividing 1t by p2 , multiplying 1t by p we can integrate 1it, that yields to

2 2
(8) ; C-E‘J2+c-9§+h—=
P p

q,

where q' 1s constant.

Using the equations (7), (8) it is easy to get, that

2

) )
dp _ ,p. p-q'—p-h"-c-qg
a?'*q\/ c

On substituting p = 1/¢ into this equation it appears in the following

integrable form

hence

where k 1s constant given by the integration of the previous equation.

It must be noted here, that q is zero if and only 1f g'o-p2 =0 & p=0 1e ¢
is constant. Hence the geodesic is a straight line passing through the orgin and
the equatioﬁ (9) is not true. Easy calculation shows, that ¢ = TQ/la(ll' and
#(0) =0 . Thus q = 0 if and only if T2 = 0, 1.e. the projection of geodesic onto
RS along R' is straight line if and only if its starting speed T is parallel to
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3.3. Third case

6y - In this case (8) shows that p= /q‘/c— hz/cp . This equation together
with (6) gives

B e

There are three possibilities now:

i) if c.q' >0, then

9 :
sa(p)=q"+---}3-—-1n p-—h—+\/p2—h2'p/q' :
Ve q 2-q'

u) if c-q' <0, then

129 112
99(P)=qu+—h—-a:csin[ 4:p-q h42q h ]’

) if c-qgd=0&4q =0, Since c-p2 5= —112/p , ¢ has to be negative, and
so dp/dy¢ = y=c-p , which leads to

p(p) = (a-v= + q" )%/4

he most interesting case is the second one, where p is bounded and the

2 4 2 4
geodesic vibrates in the interval - i -+ h

3 . We will not deal
Qq? 4q3 2ql 4q|

2

with these cases further.

From the border conditions one can show by a straightforward but tedious

calculation that
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3.3. Third case

2
| a5 |-T
(10 p(p) = Al :

u=vecos{ p — )

where

—‘—-7'2°‘a | or
o 0l'g

2 2
v=—sgn(c)y T2 T3+ (Ty+ 7 Jagl $)°

Tl'Tz }

) &= arcsin[
—sgn(c)-v

It is well know, that this equation defines conic sections. To determine its

 shape we have to investigate its eccentricity

2 i 2 2 2
o VTET A (T5 + eyl g)
(11) ET—E: P
T [a1l°2
A quick calculation shows, that
2 4T 2, 2 2
T P
1

which implies on easy way, that € more than, less than or equal to 1 according

to the sign of |(T,T)IQ=T§+T3+C'|a0|-T§, which was to be

| proved. M




3.8. Third case

COROLLARY 7. If ¢ > 0, all the projections of geodesics are hyperbolas which
have two asymptotic straight lines through the origin with the direction
w—arccos (1/¢) and w+ arccos (1/e) . The nearest point of these
asymptotic lines to the origin is (w, | e | -Tg / (u—=v)). Thus the

origin is not contained by inside of the hyperbola.

PROOF. If ¢ > 0, then | (T,7) ]2 > 0 andso € > 1. Thus the equation of the

projection of geodesics is

) | ag 115
~(—v)-cos(pw) - (—u)’

p(p)

where —v,—u > 0 and & = E—E > 1. It 1s clear that p(yp) is minimal if cos(p—w)
s maximal. This proves the second statement of the Corollary.
On the other hand the denominator can not be zero, and p(p) tends to

nfinite if ¢ tends to w—arccos(u /v) or w+ arccos(u /v) . This completes

she proof. M

COROLLARY 8. The projection of geodesic is a circle if and only if ¢ < 0 , T is

perpendicular to ay and | T |2 + | (T,7) IQ = 0. The radius of this
b3

crcleis 2+ T |‘2 / (——C"TQ) . Its center is the origin.

PROOF. The projection is a circle if and only if v = 0. Since ¢ # 0, this gives

2 2
T;-Ty=0 and T2+%-r-|aol=0, M
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3.83. Third case

COROLLARY. If the projection of geodesic is ellipse, and for its eccentricity

2-] aq |-T3-u
€ # 0, then its long axis has direction w and length —— . It
u - v
2| aq |- T3
has two focal points: the origin and [w ; R ] . Its short
u? - v

axis has length 2+| ag | -T2 .

PROOF. It 1s clear that the nearest and the most far point of projection are on
the long axis. We can get these points and their distances from the origin, when
cos(p—w) = #1 . The length of long axis is the sum of their distances. The
difference of these distances gives the distance of second focal points from the

origin. If x is the half of short axis, the Pythagoras theory gives

1

o 24 2

l aO |'T2'U= Iaol 'TQ'V +\(2 ?
T2 (- 2 )2

u =YV

The solution of this equation completes the proof.

COROLLARY 9. If the projection of geodesic is parabola, then it is open In
direction w . Its nearest point is ( w4+ 1, —Tg/ ( . ) ) and its focal

point is the origin.

PROOF. This corollary can be easily obtained on substituting v =e-u=u into

(10).
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3.3. Third case

COROLLARY 10. If the projection of geodesic is hyperbola and ¢ < 0, then its
focal point is the origin. It has two asymptotic straight lines with

direction

w + arccos(l/e) and w— arccos(l/e).

PROOF. The proof of our first corollary shows the way on which we can get this

one. N

THEOREM 11. If 7> (< )0 then a strictly increasing (decreasing) and a

depends on p = | a | according to the following differential equation

sgnsin(p-w)-7+| ay |-T
0' "2

(12)

&

= v
2: 2 2 2 2 il

/(v ) o2 ag Tyru-pelag |2 Ty -

where we have used the notations of our first theorem.

PROOF. On 1nvestigating (7) at the startpoint, we get q = TQ-l a, | . From

(10) we conclude

: . 2 T4
p-v-sin(p—u) = sgusin(p—s) -/ p*(v'=u")+2|ay| Ty-u-p—|ag|*- T

Let a(t) = a[p( p(t))} . The theorem will be implicated by (6),(7),(10) on the
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3.3. Third case

following way:

_da __dadpd
rlagl = =g T

da —p-v-sin(p—
_da —p-v sm(so—d).p,_g.p

—dt 2
ol T2 p
B JpQ(v?-uZ)+2|aO1Tg.u-p-;a0|9.Tg
= aﬁ-sgnsm(g)—w) . T, .

The monotonicity of a follows from (6) directly, since

T
Sgn[m] =sgnrt . KW

COROLLARY 12. If the projection of geadesic is ellipse, then

2 2
C-an-T |an] v 2 2
pla) = 0 s 0 ?-Sin[ ‘/ITI +_T — const| ,
(Tn I, W(TLnI 7 lag| - sgn(sin(p—v))

where const is such a number, that p(a) = | aO[ :

PROOF. Since the projection is ellipse, Ve - o < 0. We can rewrite (12) in the

form
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3.3. Third case

Ty-7-]ay| -sgn(sin(p-v))

, |a0|2-T§.v2 [ |y -Tgvu] 2 %
v uz—v ‘ = | B - =S
(u2-v2)2 u“-v

S1Ey

The integration of this formula implies the Corollary. N

COROLLARY 13. If the projection of geodesic is parabola, then
g7
p(a) = S7( ag-a) + [ag) -

PROOF. In this case, v2 = u? thus (12) appears in the form

= sgnsin(p—w}-laol-r

b el
J 2 fagl -u-p — Jagl*-13

5

51
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3.3. Third case

PROOQF. Since . > o , we have from (12) , that

Tg-r-lao| -sgn(sin( g-w))

;a0|9-T§§.v2 ;a0|.T§-u 2 %
vi—-us . =+ [ £ 1 ]
i N o g
-v7) vo=u

S

The integration gives a like a function of p, from which the corollary

follows. N
REMARK. All the above give the result, that we would be able to write down the

geodesics completely in the cylindrical coordinate system ( p,p,a ) if we

choose a for the parameter.
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3.4. Pictures about the third case made by computer

We have used to make pictures the program PHASER . Since it can solve ( of
course, only numerically ), only first order differential equations, we had to
modify our differential equation system by growing it dimension as follows.

Qur original system is

2 2
) T ~c~[aol
alzal-w

2 2
i T -c-laol
QQZGQ'W

. |a0|
G—T—m.

On substituting X| = ap, Xg= 0y, Xqg =@, %, = ay, Xg = iy we obtain

the five dimensional system.

)xi=x4;xé=x5;x§=7|a0| [V x1+x' -
. 5 3
xile'c’72|aol2/2\/ x21+zzc22 ;

4]



3.4. Pictures about the third case made by computer

~ 3
xé: xQ-c-'rQ]aO]?/Q\/ x] + x2:

The initial conditions are
x1(0) = b, xo(0) = d, xg(D) =0,%(0)=T, x5(0) =T,.

Hence the geodesic will start at ( b,d,0) with speed ( T g7 )

In the realization of these equations on the computer program PHASER we
have taken —10 for the value of parameter ¢, 1/2 for c¢; and 3/2 for Cq -

All the figures were made by printing the results of PHASER from the screen
directly, which has caused some torsion of the picture appeared as a contraction
along the y—axis.

In the following the figures are presented in the sort according to the

corollaries at the middle of the previous section.
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3.4. Pictures about the third case made by computer

FIGURE 1.a : The projection of geodesic is circle.

The datas printed on this figure are the measures in

Corollary 8. The role of the scalar 7 Is played here by a . As

it can be easily seen, the conditions of Corollary 8 are satisfied

by the parameters a,b,c,d .
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3.4. Pictures about the third case made by computer
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FIGURE 1.b : The projection of geodesic is circle.

On this figure one can see the projection of the geodesic in
the case determined in Corollary 8. As it can be easily
computed from the datas of figure l.a, the radius of this circle

is as it was determined in the Corollary 8.
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3.4. Pictures about the third case made by computer

FIGURE l.c . The projection of geodesic 1s circle.

We can see on this figure the image of the geodesic in the
three dimension space. As it can be easily seen the third
coordinate a grows strictrly monotonuously as it was

determined in the Theorem 11.
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8.4. Pictures about the third case made by computer

FIGURE 2.a : The projection of geodesic is ellipse.

The datas printed on this figure are the measures in
corollary following Corollary 8. The role of the scalar 7 is
played here by a. As it can be easily seen, the conditions of

Cbro]]ary § are satisfied by the parameters a,b,c,d .
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3.4. Pictures about the third case made by computer
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FIGURE-2.b : The projection of geodesic is ellipse.

On this figure one can see the projection of the geodesic in
the case determined in corollary following Corollary 8. As it
can be easily computed from the datas of figure 2.a, the long
ax'is of this ellipse is as it was determined in that corollary and

the origin is just a focal point.
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FIGURE 2.c : The projection of geodesic is ellipse.

We can see on this figure the image of the geodesic in the
three dimension space. As it can be easily seen the third
coordinate a grows strictrly monotonuously as it was

determined in the Theorem 11.
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3.4. Pictures about the third case made by computer

FIGURE 3.a : The projection of geodesic is parabola.

The datas printed on this figure are the measures In
Corollary 9. The role of the scalar 7 is played here by a . As
1t can be easily seen, the conditions of Corollary ¢ are satisfied

bf the parameters a,b,c,d .
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3.4. Pictures about the third case made by computer

o,
i

FIGURE 3.b : The projection of geodesic is parabola.

On this figure one can see the projection of the geodesic in
the case determined in Corollary 9. As it can be easily
computed from the datas of figure 3.a, the distance of the
nearest point of this parabola to the origin is as it was

determined in the Corollary 9.
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3.4. Pictures about the third case made by computer
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FIGURE 3.c : The projection of geodesic Is parabola.

We can see on this figure the image of the geodesic in the
three dimension space. As it can be easily seen the third
coordinate a grows strictrly monotonuously as 1t was

determined in the Theorem 11.

51



figg

Uit

3.4. Pictures about the third case made by computer

”mln" Wi it

i

B

FIGURE 4.a : The projection of geodesic is hyperbola.

The datas printed on this figure are the measures In
Corollary 10. The role of the scalar T 1s played here by a.
As it can be easily seen, the conditions of Corollary 10 are

satisfied by the parameters a,b,c,d .

52



3.4. Pictures about the third case made by computer
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FIGURE 4.b : The projection of geodesic is hyperbola.

On this figure one can see the projection of the geodesic in
the case determined in Corollary 10. As it can be easily
computed from the datas of figure 4.a, the focal point of this
hyperbola 1s the origin as it was determined In the

Corollary 10.
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FIGURE 4.c : The projection of geodesic is hyperbola.

We can see on this figure the image of the geodesic in the
three dimension space. As it can be easily seen the third
coordinate a grows strictrly monotonuously as it was

determined in the Theorem 11.
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