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SUPPORT THEOREMS
FOR FUNK-TYPE ISODISTANT RADON TRANSFORMS

ON CONSTANT CURVATURE SPACES

ÁRPÁD KURUSA

Abstract. A connected maximal submanifold in a constant curvature space
is called isodistant if its points are in equal distances from a totally geodesic
of codimension 1. The isodistant Radon transform of a suitable real function
f on a constant curvature space is the function on the set of the isodistants
that gives the integrals of f over the isodistants using the canonical measure.
Inverting the isodistant Radon transform is severely overdetermined because
the totally geodesic Radon transform, which is a restriction of the isodistant
Radon transform, is invertible on some large classes of functions. This raises
the admissibility problem that is about finding reasonably small subsets of
the set of the isodistants such that the associated restrictions of the isodistant
Radon transform are injective on a reasonably large set of functions. One of
the main results of this paper is that the Funk-type sets of isodistants are
admissible, because the associated restrictions of the isodistant Radon trans-
form, we call them Funk-type isodistant Radon transforms, satisfy appropriate
support theorems on a large set of functions. This unifies and sharpens several
earlier results for the sphere, and brings to light new results for every constant
curvature space.

1. Introduction

Given a totally geodesic G of codimension 1 in a constant curvature space Knκ
of dimension n ∈ N2≤ and of curvature κ ∈ {1, 0,−1}, a connected maximal
submanifold D whose points have a fix distance % ≥ 0 from G, the axis, is called
an isodistant of radius %. In the constant curvature planes the isodistants are well-
known, they are the straight lines in the plane, the circles in the sphere, and the
hypercycles in the hyperbolic plane [40].

We denote the set of the isodistants by Eκ, and its subset, the set of the totally
geodesics of codimension 1, by Gκ.

The isodistant Radon transform RE
κ of a suitable function f on Knκ is defined as

the function RE
κf on Eκ that gives the integral of f over every isodistant using the

natural measure. The totally geodesic Radon transform RG
κ of a suitable function f

on Knκ is defined as the function RG
κf on Gκ that gives the integral of f over every

totally geodesic using the natural measure.
The isodistant Radon transform RE

κ is injective on a large class of functions,
because the totally geodesic Radon transform RG

κ , which is a restriction of the
isodistant Radon transform, is injective by [24, Theorem 3.2]. This shows that the
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inversion problem of the isodistant Radon transform is severely overdetermined,
hence the admissibility problem [15, 17] arises:

What are the reasonably small submanifolds of Eκ for which the
restricted isodistant Radon transform is injective on a reasonably
large space of functions?

(1.1)

We call such a submanifold of Eκ admissible1 [15, 17]. For instance Gκ is an
admissible submanifold of Eκ [24, Theorem 3.2].

Let the hypersurface Knκ ⊂ Rn+1 of points p = (p1, . . . , pn, pn+1) satisfying

κ(p21 + · · ·+ p2n) + p2n+1 = 1

be equipped with the Riemannian metric

gκ;p : TpKnκ × TpKnκ 3 (x,y) 7→ x1y1 + · · ·+ xnyn + κxn+1yn+1 (1.2) 〈5, 10, 12〉

at every point p ∈ Knκ . Then one gets the so-called projective model K̄nκ of the
constant curvature space Knκ [10], and also the canonical correspondence

χκ : Knκ 3 E → {E,−E} ∈ K̄nκ ∼= Knκ (1.3) 〈21, 24〉

by identifying the points of Knκ ⊂ Rn+1 that are symmetric in the origin.
It is very well known that every 1-codimensional totally geodesic of Knκ is the

intersection of K̄nκ with a 1-codimensional subspace of Rn+1 [24]. It is less known
(see Lemma 3.1) that every isodistant of Knκ corresponds to a slice, i.e. a hyperplane
section of Knκ .

The slice transform Sκ of a suitable real function f on Knκ is defined as the func-
tion Sκf on the set of slices that gives the integral of f over every slice using the
canonical measure. After giving explicit formulas for Sκ in Section 4, we prove in-
tertwining relations between the slice transforms and the classical Euclidean Radon
transform in Section 5.

We call a set of slices rotational if it contains all of its rotations about the
(n+1)th axis. The set of the hyperplanes of the slices in a rotational set of slices is
clearly rotation invariant, so they pass through a common point P = (0, . . . , 0, p)
of the (n+ 1)th axis, hence they are determined by the tangent q = tanα ∈ [0,∞]
of the angle α the hyperplanes closes with the (n+ 1)th axis. The pairs (p, q) form
a subset of the upper half plane extended with ideal points. So, the admissibility
problem for the rotational slice transform can be formulated as to

determine the curves C in the (p, q) plane (equipped with ideal ele-
ments) such that the slice transform associated with the rotational set
of slices given by C is injective on a reasonably large set of functions.

(1.4) 〈30〉

We call these curves admissible. Some curves are known to be admissible or inad-
missible. For κ = −1, the straight line q = 1 belongs to the horocyclic Radon
transform [8, 9, 19, 22, 29], and so it is admissible. For κ = 1, the hyperbola

1We specify the space of the applicable functions only when it is important for some reason.
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r2(1 + q2) = p2q2 (r ∈ (0, 1)) belongs to the Radon transform associated to
the subspheres of radius

√
1− r2, and so, by [36], it is admissible if and only if

r is not a root of any Gegenbauer polynomial of the weight (1 − x2)
n−3
2 . For

κ = 1, the curve 1 = p2 − q2 cosh2 λ (λ ∈ [0,∞]) belongs to the Radon trans-
form associated to the subspheres whose hyperplanes are tangent to the spheroid
1 = (x21 + · · ·+ x2n) cosh2 λ+ x2n+1, so, by [35], it is admissible.

If C is a ray with fixed p ∈ R∪{±∞}, then we call the associated restrictions of
the slice transform p-shifted Funk transform2 and denote it by Fκp . For the sphere
(κ = 1) this was recently quite intensively investigated [3, 4, 6, 7, 18, 20, 25, 26, 30,
32–34, 38], but there are also sporadic earlier results [1, 16] as well. Surprisingly
enough there seems to be no general results for κ = 0,−1.

The most important examples of the p-shifted Funk transforms are the Funk
transform F1

0 [13] and the spherical slice transforms3 F1
±1 [1, 18, 32, 34], and their

hyperbolic counterparts F−10 and F−1±1, the hyperbolic Funk transform and hyperbolic
slice transforms, that are introduced here.

We prove sharp support theorems and explicit kernel descriptions for every Fκp
for each κ ∈ {0,±1} in Section 6, where the main tool is the intertwining relations,
(5.4) and (5.5), of the slice transform and the Euclidean Radon transform. It is
interesting, that, depending on p, different speeds of decay on the functions are
necessary to employ for the support theorems.

We define the Funk-type isodistant Radon transform R̂κp of a suitable function
h on Knκ as the shifted Funk transform of ĥ :=  · h ◦ χκ, where  is the indicator
function of the open upper half space of Rn+1. It is considered in Section 7, where
again sharp support theorems and complete kernel descriptions are proved. These
results considerably generalize the author’s earlier support theorems [24] for the
totally geodesic Radon transform.

In Knκ every 1-codimensional totally geodesic has exactly two isodistants for
every % > 0. We call the union of such a pair of isodistants a duplex isodistant, and
define the duplex Funk-type isodistant Radon transform Rκp of a suitable function h
on Knκ as the shifted Funk transform of h̃ := h ◦ χκ. It is considered in Section 8,
where again sharp support theorems and complete kernel descriptions are proved.
When κ = 1, these results give geometric reasoning for [5, 6]. For κ = 0 we do not
get too much new, but we observe a new kind of problem that is discussed and
solved in a special case in Section 9.

The presented support theorems and kernel descriptions are new for both curved
constant curvature spaces. Further, these results bring to light new problems for
all constant curvature spaces, that we discuss in the last Section 9 where some
possible generalizations, consequences and worthy details are also outlined.

2This term follows the phrasing used by [5].
3We use this term of [18] and even use the analogous phrase for the hyperbolic case although it
breaks our terminology a little bit.
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2. Notations and preliminaries

Points of Rn are denoted as A,B, . . . or a, b, . . . , and vectors are given as
−−→
AB

or a, b, . . . . The straight line through A and B is AB, and the closed segment with
endpoints A and B is AB.

We denote the Euclidean scalar product by 〈·, ·〉, Bn is the n-dimensional closed
unit ball centered at the origin, and its boundary is Sn−1 = ∂Bn. If n = 2, then
we use the notation uα = (cosα, sinα) for the elements of S1.

We parameterize the manifold of the hyperplanes, the 1-codimensional totally
geodesics in Rn+1, on Sn×R, so that P(w, r) = {x : r = 〈w,x〉}. This is a double
covering, but it will not cause trouble. Then we have

P(w, r) =
{ r

〈w,u〉
u : u ∈ Sn, 〈w,u〉 > 0

}
if r 6= 0, (2.1) 〈9, 12〉

so the classical Euclidean Radon transform R [18,28] on the set of suitable functions
on Rn is defined [24, (2.4)], for r>0, by

Rf(w, r) = RG
0 f(P(w, r)) =

1

r

∫
Sn−1
w,0

f
( r

〈w,u〉
u
)( r

〈w,u〉

)n
du, (2.2) 〈13, 14, 20〉

where w ∈ Sn−1, and Sn−1w,s = {u ∈ Sn−1 : 〈w,u〉 > s} (s ∈ R). Let C∞(Rn) be
the space of all continuous functions f on Rn such that f(x)|x|k is bounded for
each k > 0 (this is a special case of (6.6)). Then we have the following Support
Theorem of Helgason that is crucial for our results.

Theorem 2.1 ([18, Theorem 2.6 of Chapter I]). If f ∈ C∞(Rn), and there exists
a constant A > 0 such that Rf(P) vanishes for every hyperplane farther from the
origin than A, then f(x) = 0 for |x| > A.

Notice that counter examples show that the decay condition in this theorem can
not be dropped (see [18, Remark 2.9 of Chapter I] and also [28, pp. 233–235].).

We fix the vectors bi = (δi,1, . . . , δi,n, δi,n+1), where δi,j is the Kronecker-delta
and i, j = 1, . . . , n+1, and denote the hyperplane of equation xn+1 = p ∈ R by Anp .

http://www.math.u-szeged.hu/tagok/kurusa


Annali di Matematica Pura ed Applicata, ?(2021), ?–? c© Á. Kurusa http://www.math.u-szeged.hu/tagok/kurusa

SUPPORT THEOREMS FOR FUNK-TYPE ISODISTANT RADON TRANSFORMS 5

We define the projections Πp from Rn+1 \ Anp by

Πp(x1, . . . , xn, xn+1) =

{(
x1

xn+1−p , . . . ,
xn

xn+1−p , p+ 1
)

if p ∈ R,
(x1, . . . , xn,±∞) if p = ±∞,

and introduce O = (0, . . . , 0), O+ = (0, . . . , 0, 1), O− = (0, . . . , 0,−1),

K̂nκ=Knκ∩{p : 〈p, bn+1〉>0}, Ǩnκ=Knκ \ K̂nκ , and K̃nκ=

{
Kn1 if κ = 1,

K̂nκ otherwise.

Ǩn0

Ǩn−1

O K̂n1

K̂n0
An1 O+

K̂n−1

Sn=Kn1

Π0
Restricting Π0 to Knκ essentially gives the so-called
gnomonic projection that results in the so-called
projective models, i.e. the Cayley–Klein models of
the constant curvature spaces.
The domain M̄n

κ;1 of such a Cayley–Klein model,
is An1 with the ideal hyperplane if κ = 1, 0, and
it is the interior of the unit ball centered to O+

in An1 if κ = −1. The geodesics are the chords of
M̄n

κ;1, the totally geodesics are the n-dimensional
slices (hyperplanes) of Bn ⊂ An1 [10], hence every
totally geodesic of K̄nκ is the intersection of K̄nκ with
a 1-codimensional subspace of Rn+1 [24].

The manifold Knκ is a rotational one [21], so it is determined by the size func-
tion σκ giving the radius σκ(r) of the Euclidean sphere that is isometric with the
geodesic sphere of radius r in Knκ . This defines the function ηκ(·) =

√
1− κσ2

κ(·),
while the projector function τκ [24] is defined by Π0(rw) = τκ(r)w.

We often use the polar coordinatization of K̂nκ and Ǩnκ with respect to the appro-
priate point O±: the pair (u, r) means the point ExpO±(ru), where u ∈ Sn−1 ⊂
TO±Knκ is a unit vector, r ∈ R+, and Exp is the usual exponential mapping, hence
dκ(O±,ExpO±(ru)) = r for the metric dκ on Knκ determined by (1.2). The injec-
tivity radius ıκ > 0 is then the upper limit of the second parameter until which
the polar coordinatization keeps injectivity. Finally the supremum ρκ > 0 of the
distances a point can be from a geodesic is called the geodesic injectivity radius.

spaces (type) κ σκ τκ ηκ ρκ ıκ

K̂n−1 (hyperbolic) −1 sinh tanh cosh ∞ ∞
K̂n0 (Euclidean) 0 Id Id 1 ∞ ∞
Kn1 (spherical) +1 sin tan cos π/2 π

Table 1. Properties of constant curvature spaces.
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3. Isodistants and hyperplanes

We parameterize the manifold G̃κ of the totally geodesics of K̃nκ on Sn−1 ×
[0, ρκ) so that the totally geodesic G̃(w, g) is perpendicular to the geodesic t 7→
ExpO+(tw) and contains the point ExpO+(gw) (this leaves out K̃n1 ∩ An0 ), where
w ∈ Sn−1 ⊂ TO+K̃nκ and g ∈ [0, ρκ). This is a double covering at g = 0, but it will
not cause problem. The manifold Ẽκ of the isodistants in K̃nκ is parameterized on
Sn−1 × {(g, %) : g ∈ [0, ρκ) and %+ g ∈ (−ρκ, ρκ)} so that

D̃(w, g; %) is the %-isodistant of the axis Ĝ(w, g) ∈ Ĝκ
that passes the point ExpO+(w, g + %).

The following lemma shows that the isodistants are plane sections of K̃nκ .

Lemma 3.1. For any w = (w1, . . . , wn−1, 0) ∈ Sn ∩ An0 we have

D̃(w, g; %) = K̃nκ ∩ P
(w − τκ(g)bn+1√

1 + τ2κ(g)
,

σκ(%)√
η2κ(g) + σ2

κ(g)

)
. (3.1) 〈6, 8〉

Proof. Formula (3.1) clearly holds for κ ∈ {0, 1} so we assume κ = −1.
Firstly we determine the pointD of K̃n−1∩P

(w−tanh gbn+1√
1+tanh2 g

, r
)
, closest to pointO+,

where r ∈ R. Due to the rotational invariance of K̃nκ , D is in the 2-dimensional
plane spanned by w and bn+1. Let G be the point in K̃n−1∩P

(w−tanh gbn+1√
1+tanh2 g

, 0
)

closest to point O+. As G,D ∈ K̃n−1 we have G = sinh gw + cosh gbn+1 and
D = sinh(g+%)w+cosh(g+%)bn+1 for some g, % ≥ 0. Let ` be the line passing O+

in direction w, and let D⊥ be the orthogonal projection of D on `. Let O⊥ be the
orthogonal projection of O on P

(w−tanh gbn+1√
1+tanh2 g

, r
)
. Let X = ` ∩ OG, Y = ` ∩ OD,

Z = ` ∩O⊥D. Figure 3.1 shows what we have.

P

r
−w

tanh g

g

%

O
(0, 0)

O+

(0, 1)

O⊥

G

D

X Y Z

(s
in
h
(g

+
%
),
1
)

D⊥

P

r

w

tanh g

gg + %

O
(0, 0)

O+

(0, 1)
O⊥

GD

XY

Z

(s
in
h
(g

+
%
),
1
)

D⊥

Figure 3.1. Depiction of the plane spanned by w and bn+1 shows
d(D,D⊥) = cosh(g + %) for isodistants of positive and negative radius
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We clearly have

d(O+, X) = tanh g, d(O+, Y ) = tanh(g + %), d(O+, D⊥) = sinh(g + %).

Triangles 4(OXY ) and 4(DZY ) are similar and the ratio of the similarity is
DD⊥

OO+ = cosh(g + %)− 1, so d(Y,Z) = d(X,Y )(cosh(g + %)− 1). Thus

d(X,Z) = d(X,Y ) + d(Y,Z) = d(X,Y ) cosh(g + %).

Further, d(X,Y ) = sign(%)(tanh(g + %)− tanh g), hence

r =
tanh(g + %)− tanh g√

1− tanh2(g + %)
√

1 + tanh2 g
= sinh %

√
1− tanh2 g√
1 + tanh2 g

. (3.2) 〈8〉

Now we determine the slice C := K̃n−1 ∩ P
(w−tanh gbn+1√

1+tanh2 g
, r
)
.

For any unit vector w every point of Rn+1 can be uniquely written in the form
xw + yw⊥ + zbn+1, where w⊥ is a unit vector in the orthogonal complement of
the plane spanned by w and bn+1.

In this form a point is in C := K̃n−1 if and only if

x2 + y2 + 1 = z2 and z tanh g = x− r
√

1 + tanh2 g

Since the stereographic projection Π−1 into the subspace An0 is

Π−1 : xw + yw⊥ + zbn+1 7→
x

1 + z
w +

y

1 + z
w⊥ =: sw + tw⊥,

we get {
1 + z = 1 + s(1 + z) coth g − r

√
1 + coth2 g if g 6= 0,

z2 = 1 + r2 + y2 = 1 + r2 + t2(1 + z)2 if g = 0.

for the points of C. So we can express 1 + z as

1 + z =


r
√

1+coth2 g−1
s coth g−1 =

r
√

1+tanh2 g−tanh g
s−tanh g if g 6= 0,

1+
√

1+r2(1−t2)
1−t2 if g = 0,

hence Π−1(C) is the solution of the equation

s2 + t2 =
z − 1

z + 1
=


r
√

1+tanh2 g+tanh g

r
√

1+tanh2 g−tanh g
− 2s

r
√

1+tanh2 g−tanh g
if g 6= 0,

2t2−(1−
√

1+r2(1−t2))
1+
√

1+r2(1−t2)
if g = 0.

Thus the equation of Π−1(C) is(
s+

1

r
√

1 + tanh2 g − tanh g

)2
+ t2 =

r2(1 + tanh2 g)− tanh2 g + 1

(r
√

1 + tanh2 g − tanh g)2
.
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This means that Π−1(C) is a sphere, hence, because Π−1
(
K̃n−1

)
is the Poincaré

model, C belongs to an isodistant, so the Lemma is proved. �

Let p ∈ R be such that pbn+1 ∈ P
(w−τκ(g)bn+1√

1+τ2
κ(g)

, σκ(%)√
η2κ(g)+σ

2
κ(g)

)
if g > 0, and let

p be ∞ if g = 0. Then (3.1) and (3.2) immediately give that

p =

{
−σκ(%)/ σκ(g) if g > 0,

− sign(%)∞ if g = 0,
and r =

|σκ(%)|√
η2κ(g) + σ2

κ(g)
. (3.3) 〈24〉

It is worth noting that g > 0 if and only if p ∈ R, g = 0 if and only if p = ±∞,
and p = 0 if % = 0 and g > 0.

4. The slice transform

Lemma 3.1 gives rise to consider the slice transform Sκ. We call the intersections
of Knκ with hyperplanes slices. The slice transform Sκ sends every suitable (not
necessarily even) function h on Knκ to the function Sκh on the set of slices so that
Sκh gives for every slice the integral of h over that slice.

To determine Sκ, firstly we define some special slice transforms Sκ±, for which
we need the “inverses” Πκ;±

p of the mappings Πp from Πp(Knκ) into Knκ .
Define the embedding Γ: Rn → An0 ⊂ Rn+1 by Γ(x1, . . . , xn) = (x1, . . . , xn, 0).

Then it is easy to see that

M̄n
κ;p+1 := Πp(Knκ) = (p+ 1)bn+1 + Γ(Mn

κ;p), (4.1) 〈9, 12, 13〉

where

Mn
κ;p =



1√
1−p2
Bn, if κ = −1 and |p| < 1,

Rn, if κ = −1 and |p| ≥ 1 or p = ±∞,

Rn, if κ = 0 and p ∈ R or p = ±∞,

Rn, if κ = 1 and |p| ≤ 1,
1√
p2−1
Bn, if κ = 1 and |p| > 1,

Bn, if κ = 1 and p = ±∞.

(4.2) 〈14, 16, 17, 18, 19, 21, 28〉

From now on

we do not differentiate between the vectors corresponding through Γ.

Fix a unit vector u ∈ Sn∩An0 . Then every point of M̄n
κ;p+1 can be uniquely (pbn+1

is an exception) written in the form pbn+1 + eu, where e ∈ [0,∞). So there are
functions ν : R+ → R such that the point pbn+1 + ν(e)

(
bn+1 + eu

)
is in Knκ . (See

Figure 4.1.)
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u

1√
p2−1
Bnp+1

d
1 (O +

, E 1;+p
)

O
(0, 0)

O+

(0, 1)

E1;+
p

E1;−
p

(sin(d1(O
+, E1;+

p )), 1)

(0, p)

(0, p+ 1)

e

Πp(E1;±
p )

u

Bnp+1

d−
1
(O

+ ,
E
−
1;
+

p

)

O
(0, 0)

O+

(0, 1)

E−1;+p
(sin

h
(d
−

1
(O

+
,
E
−

1
;+

p
)),

1
)

(0, p)

(0, p+ 1)

e

Πp(E−1;−p )

Figure 4.1. Depiction of the plane spanned by u and bn+1 shows the
case g > 0, i.e. p = −σκ(%)/σκ(g), for spaces of κ = 1 and κ = −1

Thus κν2(e)e2 + (p+ ν(e))2 = 1, hence we obtain

νκ;±p (e) =
−p±

√
1− κe2(p2 − 1)

1 + κe2
. (4.3) 〈10, 13, 15, 26, 27〉

This and (4.1) allow us to define the mapping

Πκ;±
p : M̄n

κ;p+1 3 xu + (p+ 1)bn+1 7→ pbn+1 + νκ;±p (x)
(
bn+1 + xu

)
∈ Knκ . (4.4) 〈10, 13〉

Observe that νκ;±±1 vanishes, so Πκ;±
±1 (xv + (±1 + 1)bn+1) = ±bn+1. Further, the

mapping Π−1;+p is the inverse of Πp�K̂n−1
if p ≤ 0, the mapping Π0;+

p is the inverse
of Πp�K̂n0 if p ∈ R \ {1}, but the mapping Π1;±

p is the inverse of Πp�Kn1 if and only
if p = ∓1.

We define the special slice transforms Sκ± for suitable functions h in C(Knκ) by

Sκ±h(p;w, q) =

∫
Sn−1
w,q

h
(

Πκ;±
p

(
eq(〈w,u〉)u + (p+ 1)bn+1

))
ωκ;±p;q (w,u) du, (4.5) 〈13, 14〉

where p ∈ R, q > 0, w ∈ Sn−1, eq(x) = q/x for x ∈ (0, 1] (recall (2.1)),
Sn−1w,q =

{
u ∈ Sn−1 : eq(〈u,w〉)u ∈ Mn

κ;p

}
, du is the standard surface mea-

sure of Sn−1, and ωκ;±p;q is the density pulled back by Πp from the hypersurface
Knκ ∩ P

(w−qbn+1√
1+q2

, q|p|√
1+q2

)
. with metric gκ.

Theorem 4.1. With e = eq(〈w,u〉) we have

ωκ;±p;q (w,u) =

√
1 + κq2(1− p2)

q

|νκ;±p (e)|n−1en√
1− κe2(p2 − 1)

. (4.6) 〈11, 14〉
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Proof. Firstly assume n = 2 and let uϕ = (cosϕ, sinϕ, 0). Then the isodistant’s
point in the direction uϕ is Eκ;±p (eq(cosϕ)uϕ) = Πκ;±

p

(
eq(cosϕ)uϕ+(p+1)bn+1

)
,

so (4.4) gives

Eκ;±p (eq(cosϕ)uϕ) = pbn+1 + νκ;±p (eq(cosϕ))
(
bn+1 + eq(cosϕ)uϕ

)
, (4.7) 〈15〉

where νκ;±p is given by (4.3). Since uϕ =
(

q
eq(cosϕ)

,
√

1− q2

e2q(cosϕ)
, 0
)
, this gives

Eκ;±p (eq(cosϕ)uϕ)

=
(
νκ;±p (eq(cosϕ))q, νκ;±p (eq(cosϕ))

√
e2q(cosϕ)− q2, p+ νκ;±p (eq(cosϕ))

)
.

This shows that Eκ;±p depends only on eq, hence we can take

dEκ;±p
de

=
(
ν̇κ;±p (e)q, ν̇κ;±p (e)

√
e2 − q2 + νκ;±p (e)

e√
e2 − q2

, ν̇κ;±p (e)
)
, (4.8) 〈10〉

so we obtain

ωκ;±p;q (u) =
∣∣∣dEκ;±p

de
(eq(〈w,u〉))

∣∣∣
κ

∣∣∣d(eq ◦ cos)

dϕ
(arccos(〈w,u〉))

∣∣∣.
Here d(eq◦cos)

dϕ = q sinϕ
cos2 ϕ , and, from (4.8) with respect to (1.2), we get∣∣∣dEκ;±p

de

∣∣∣2
κ

=(ν̇κ;±p (e))2q2+

(
ν̇κ;±p (e)(e2−q2)+νκ;±p (e)e

)2
e2 − q2

+κ(ν̇κ;±p (e))2. (4.9) 〈10〉

From (4.3) we obtain

ν̇κ;±p (e) =
± −κe(p2−1)√

1−κe2(p2−1)

1 + κe2
−

(−p±
√

1− κe2(p2 − 1))2κe

(1 + κe2)2
=
∓κe(νκ;±p (e))2√
1− κe2(p2 − 1)

=
−κe(νκ;±p (e))2

p+ (1 + κe2)νκ;±p (e)

which, by substitution into (4.9), leads to∣∣∣dEκ;±p
de

∣∣∣2
κ

=
e2(νκ;±p (e))2

(p+ (1 + κe2)νκ;±p (e))2
×

×
(
κ(1 + κq2)(νκ;±p (e))2 +

(
p+ (1 + κe2)νκ;±p (e)− κ(e2 − q2)νκ;±p (e)

)2
e2 − e2

)
=

e2(νκ;±p (e))2

1− κe2(p2 − 1)

(
κ(1 + κq2)(νκ;±p (e))2 +

(
p+ (1 + κq2)νκ;±p (e)

)2
e2 − q2

)
.
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So letting e = eq(〈w,u〉), we conclude that

ωκ;±p;q (u) = |νκ;±p (e)|e2

√
κ(1 + κq2)(νκ;±p (e))2(e2 − q2) +

(
p+ (1 + κq2)νκ;±p (e)

)2
q
√

1− κe2(p2 − 1)
,

where the expression (‡) under the square root sign can be simplified as follows:

‡ = κ(1 + κq2)(νκ;±p (e))2(e2 − q2) +
(
p+ (1 + κq2)νκ;±p (e)

)2
= (1 + κq2)(νκ;±p (e))2(1 + κe2) + p2 + 2p(1 + κq2)νκ;±p (e)

= p2 +
1 + κq2

1 + κe2
(1 + κe2)uκ;±p (e)(uκ;±p (e)(1 + κe2) + 2p)

= p2 +
1 + κq2

1 + κe2
(−p±

√
1− κe2(p2 − 1))(p±

√
1− κe2(p2 − 1))

= p2 +
1 + κq2

1 + κe2
(1− κe2(p2 − 1)− p2) = p2 + (1 + κq2)(1− p2)

= 1 + κq2(1− p2).

To get ωκ;±p;q for higher dimension n, we only have to multiply its 2-dimensional
version with σn−2κ

(
dκ(O+, Eκ;±p (eq(〈w,u〉)))

)
, because Knκ is the rotational mani-

fold with size function σκ. As σκ
(
dκ(O+, Eκ;±p (eq))

)
= |〈uϕ, Eκ;±p (eq)〉|= |νκ;±p (eq)|eq,

we arrive at (4.6). �

Fix a unit vector u ∈ Sn ∩ An0 . Then every point of Π∞(Knκ) in the plane
spanned by u and bn+1 can be uniquely written in the form ∞bn+1 + eu, where
e ∈ R. So there are functions ν : R+ → R such that the point ν(e)bn+1 + ν(e)u is
in Knκ . (See Figure 4.2.)

u

Bn−∞

d
1 (O +

, E 1;+∞
)

O
(0, 0)

O+

(0, 1)

E1;+
∞

E1;−
∞

(sin(d1(O
+, E1;+

∞ )), 1)

(0,−∞) e Π−∞(E1;±
∞ )

u

An−∞

d−1
(O

+ , E
−1;+

∞

)

O
(0, 0)

O+

(0, 1)

E−1;+∞

(sin
h
(d
−

1
(O

+
,
E
−

1
;+

∞
)),

1
)

(0,−∞) e Π−∞(E−1;±∞ )

Figure 4.2. Depiction of the plane spanned by u and bn+1 shows the
case g = 0, i.e. p = − sign(%)∞, for the spaces of κ = 1 and κ = −1
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Thus κν2(e) + ν2(e) = 1, hence we obtain νκ;±±∞(e) = ±
√

1− κe2. This and (4.1)
allow us to define the mapping

Πκ;±
∞ : M̄n

κ;∞ 3 xv +∞bn+1 7→ ±
√

1− κx2bn+1 + xv ∈ Knκ . (4.10) 〈12, 13〉

We define the special slice transforms Sκ± for suitable functions h in C(Knκ) by

Sκ±h(∞;w, q) =

∫
Sn−1
w,q

h
(

Πκ;±
∞
(
eq(〈w,u〉)u +∞bn+1

))
ωκ;±∞;q(w,u) du, (4.11) 〈13, 14〉

where q > 0, w ∈ Sn−1, eq(x) = q/x for x ∈ (0, 1] (recall (2.1)), Sn−1w,q =
{
u ∈

Sn ∩ An0 : eq(〈u,w〉)u ∈Mn
κ;∞
}
, du is the standard surface measure on Sn ∩ An0 ,

and ωκ;±∞;q is the density pulled back by Π∞ from the hypersurface Knκ;∞;±∩P(w, q).

Theorem 4.2. We have

ωκ;±∞;q(w,u) =
enq (〈w,u〉)

√
1− κq2

q
√

1− κe2q(〈w,u〉)
. (4.12) 〈13, 14〉

Proof. Firstly assume n = 2 and let uϕ = (cosϕ, sinϕ, 0). Then the isodistant’s
point in the direction uϕ is Eκ;±p (eq(cosϕ)uϕ) = Πκ;±

∞
(
eq(cosϕ)uϕ +∞bn+1

)
, so

(4.10) gives

Eκ;±∞ (eq(cosϕ)uϕ) = eq(cosϕ)uϕ ±
√

1− κe2q(cosϕ)bn+1. (4.13) 〈12, 15〉

Since uϕ =
(

q
eq(cosϕ)

,
√

1− q2

e2q(cosϕ)
, 0
)
, we get from (4.13) that

Eκ;±∞ (eq(cosϕ)uϕ) =
(
q,
√
e2q(cosϕ)− q2,±

√
1− κe2q(cosϕ)

)
.

This shows that Eκ;±∞ depends only on eq, hence we can take

dEκ;±∞
de

=
(

0,
e√

e2 − q2
,
∓κe√

1− κe2
)
,

and obtain

ωκ;±∞;q(u) =
∣∣∣dEκ;±∞

de
(eq(〈w,u〉))

∣∣∣
κ

∣∣∣d(eq ◦ cos)

dϕ
(arccos(〈w,u〉))

∣∣∣.
Here d(eq◦cos)

dϕ = q sinϕ
cos2 ϕ , and, by (1.2), we get∣∣∣dEκ;±∞
de

∣∣∣2
κ

=
e2

e2 − q2
+ κ

e2

1− κe2
=

e2(1− κq2)

(e2 − q2)(1− κe2)
.

So letting e = eq(〈w,u〉), we conclude that

ωκ;±∞;q(u) = e2
√

1− κq2

q
√

1− κe2
.
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To get ωκ;±∞;q for higher dimension n, we only have to multiply the 2-dimensional
version with σn−2κ

(
dκ(O+, Eκ;±∞ (eq(〈w,u〉)))

)
, because Knκ is a rotational manifold.

Since σκ
(
dκ(O+, Eκ;±∞ )

)
= |〈uϕ, Eκ;±∞ (eq(cosϕ))〉|= eq(cosϕ), we arrive at (4.12).

�

To make their later use easier, we extend definitions (4.5) and (4.11) of the
special slice transforms Sκ± by setting Sκ±h(p;w, q) := 0 for p ∈ R and q > 0 if the
hyperplane

P
(w − qbn+1√

1 + q2
,

q|p|√
1 + q2

)
= span

[
pbn+1 ; (p+ 1)bn+1 +

{ q

〈u,w〉
u : u ∈ Sn−1, 〈u,w〉 > 0

}] (4.14)

does not intersect Knκ , and by setting Sκ±h(∞;w, q) := 0 for q > 0 if the hyperplane
P
(
w, q

)
does not intersect Knκ . With this understanding, the slice transform is

Sκh(p;w, q) =


Sκ+h(p;w, q) + Sκ−h(p;w, q) if |p| 6= 1,

S−1+ h(p;w, q) + S−1− h(p;w, q) if p = ±1 and κ = −1,

S0∓h(p;w, q) + S0±h(−p;w, 0) if p = ±1 and κ = 0,

S1∓h(p;w, q) if p = ±1 and κ = 1,

(4.15) 〈16, 17, 18, 19, 21, 28〉

where p ∈ R ∪ {±∞}, w ∈ Sn−1, and q ≥ 0.

5. Intertwining relations between the slice transforms

Following (4.1), we define the mappings Ψκ;±
p : Mn

κ;p → Knκ by

Ψκ;±
p (x) =

{
Πκ;±
p

(
x + (p+ 1)bn+1

)
if p ∈ R,

Πκ;±
∞
(
x +∞bn+1

)
if p =∞,

(5.1) 〈19, 22, 28, 31〉

where Πκ;±
p and Πκ;±

∞ are given by (4.4) and (4.10), respectively. Further, let Ψ̄κ;±
p

be the inverse of Ψκ;±
p , and define the spaces

Kκ;±p := Im Ψκ;±
p , and Kκ;±∞ := Im Ψκ;±

∞ . (5.2) 〈15, 18, 22, 28〉

Define also the operators Nκ;±p : C(Mn
κ;p) 3 f 7→ Nκ;±p f so that

Nκ;±p f : Mn
κ;p 3 x 7→ Nκ;±p f(x)=


f(x)|νκ;±p (|x|)|n−1

√
1−κx2(p2−1)

if p ∈ R,

f(x)√
1−κx2

if p =∞,
(5.3) 〈19, 26, 27, 28〉

where νκ;±p is given by (4.3), and let N̄κ;±p be the inverse of Nκ;±p .
We use the classical Euclidean Radon transform R (recall (2.2)) to formulate the

following intertwining relations that are generalizations of [24, Theorem 2.1].
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Theorem 5.1. Let κ ∈ {0,±1}, p ∈ R, and f ∈ C(Mn
κ;p) be such that Rf exists.

Define h± : Kκ;±p → R by h± ◦Ψκ;±
p = N̄κ;±p f . Then, for q 6= 0, we have

Sκ±h
±(p;w, q) =

√
1 + κq2(1− p2)Rf(w, q). (5.4) 〈3, 14, 16, 17, 18, 19, 28〉

Proof. By (4.5) we have

Sκ±h
±(p;w, q) =

∫
Sn−1
w,0

f
(
e(u)u

)√1− κe2(u)(p2 − 1)

|νκ;±p (e(u))|n−1
ωκ;±p;q (w,u) du,

where e(u) = eq(〈w,u〉) = q
〈w,u〉 , and ω

κ;±
p;q is given by (4.6). Substitution of (4.6)

results in

Sκ±h
±(p;w, q) =

√
1 + κq2(1− p2)

q

∫
Sn−1
w,0

f
(
e(u)u

)
en(u) du,

which proves the theorem by (2.2). �

Theorem 5.2. Let κ ∈ {0,±1} and f ∈ C(Mn
κ;∞) be such that Rf exists. Define

h± : Kκ;±p → R by h± ◦Ψκ;±
∞ = N̄κ;±∞ f . Then for q 6= 0 we have

Sκ±h
±(∞;w, q) =

√
1− κq2Rf(w, q). (5.5) 〈3, 14, 16, 18, 28〉

Proof. By (4.11) we have

Sκ±h
±(∞;w, q) =

∫
Sn−1
w,0

f
(
e(u)u

)√
1− κe2(u)ωκ;±∞;q(u) du,

where e(u) = eq(〈w,u〉) = q
〈w,u〉 , and ωκ;±∞;q is given by (4.12). Substitution of

(4.12) results in

Sκ±h
±(∞;w, q) =

√
1− κq2
q

∫
Sn−1
w,0

f
(
e(u)u

)
en(u) du,

which proves the theorem by (2.2). �

6. Shifted Funk transforms: support theorems and kernels

The p-shifted Funk transform (p ∈ R∪ {±∞}) of a suitable function h on Knκ is

Fκph : Sn−1 × R>0 3 (w, q) 7→ Sκh(p;w, q). (6.1) 〈16, 17, 18, 19, 21, 28〉

The proofs of the following support theorems in this section follow the method used
in the proof of [24, Theorem 3.2]: we pull the Support Theorem 2.1 back to Knκ
through the adequate intertwining relation of (5.4) and (5.5).

Following (4.2), let

`p =

{
∞ if κp2 ≤ κ,
1/
√
|p2 − 1| if κp2 > κ,

(p ∈ R) and `∞ =

{
1 if κ = 1,

∞ if κ ≤ 0.
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Then, since Knκ is a rotational manifold, we can define the non-negative functions

δκ;±p : [0, `p)→ R+ such that δκ;±p (|x|) = dκ(O±,Ψκ;±
p (x)). (6.2) 〈22〉

Since σκ is the size function of Knκ , and so we have

σκ
(
dκ(O±,Ψκ;±

p (x)
)

=

{
νκ;±p (|x|)|x| if p ∈ R by (4.7),
|x| if p =∞ by (4.13),

ηκ
(
dκ(O±,Ψκ;±

p (x)
)

=

{
p+ νκ;±p (|x|) if p ∈ R by (4.7),√

1− κ|x|2 if p =∞ by (4.13),

(6.3) 〈16, 17, 18〉

we deduce that

σκ(δκ;±p (e)) = νκ;±p (e)e, ηκ(δκ;±p (e)) = p+ νκ;±p (e), (6.4) 〈15, 16, 17, 18〉

for p ∈ R, and
σκ(δκ;±∞ (e)) = e, ηκ(δκ;±∞ (e)) =

√
1− κe2. (6.5) 〈15〉

Substituting νκ;±p from (4.3) into (6.4), it is easy to see that δκ;±p is strictly
monotone increasing for κ ≥ 0, and if κ = −1, then it is strictly monotone increas-
ing in [0, 1) and decreasing in (1,∞). It is clear from (6.5) that δκ;±∞ is strictly
monotone increasing.

Let L ⊂ Knκ be a non-empty, open domain, and define the set Cm(Knκ ,L) (m ∈ N)
of all continuous functions h on Knκ that satisfy

h(E) =

{
O(1)σ−mκ (dκ(E,P )) if dκ(E,P )→ ıκ,

O(1)σ−mκ (dκ(E, ∂L)) if E → ∂L,
(6.6) 〈4, 22〉

where P ∈ Knκ is any fixed point, and the usual big-O notation is in use. We use the
abbreviations Cm(Knκ) := Cm(Knκ , ∅), and Cm(Knκ , p) := Cm(Knκ ,Kκ;±p ) (see (5.2)).

6.1. Support theorems. We start with the elliptic case.

Theorem 6.1. Support theorems for shifted Funk transform on the sphere Kn1 .
‹se1› If h∈C∞(Kn1 ,±1) and F1

±1h(w, q) = 0 for every q > s> 0 and w ∈Sn−1,
then h(ExpO∓(eu)) vanishes for every e > 2 arctan(s) and u∈Sn−1.

‹se2› If |p| < 1, h∈C∞(Kn1 , p) vanishes on K1;∓
p , and F1

ph(w, q) = 0 for every
q>s>0 and w∈Sn−1, then h(ExpO±(eu)) vanishes for every e > δ1;±p (s)

and u∈Sn−1.
‹se3› If |p| > 1, h ∈ C(Kn1 ) vanishes on K1;∓

p , and F1
ph(w, q) = 0 for every

q>s>0 and w∈Sn−1, then h(ExpO±(eu)) vanishes for every e > δ1;±p (s)

and u∈Sn−1.
‹se4› If h ∈ C(Kn1 ) vanishes on K1;∓

∞ , and F1
∞h(w, q) = 0 for every q > s > 0

and w ∈ Sn−1, then h(ExpO±(eu)) vanishes for every e > arcsin(s) and
u∈Sn−1.
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Proof. We prove the statements one after the other.
‹se1› As |p| = 1, (4.2) gives thatMn

1;±1 =Rn. By symmetry, it is enough to prove
for p = −1. So, according to (6.1) and (4.15), we have F1

−1h(w, q) = S1+h(−1;w, q).
Let f = N1;+

−1 (h ◦Ψ1;+
−1 ). Then f ∈ C∞(Rn) as h∈C∞(Kn1 ,−1). Further, by (5.4),

f satisfies S1+h(−1;w, q) = Rf(w, q), hence Rf vanishes for q > s > 0. So, by the
Support Theorem 2.1, f vanishes for |x| > s > 0. Thus h vanishes for Ψ1;+

−1 (x) if
|x| > s, so the statement follows from (6.3) and (6.4).

‹se2› As |p| < 1, (4.2) gives that Mn
1;p = Rn. By symmetry, it is enough to

prove in the case when h vanishes on K1;−
p . So, by (6.1) and (4.15), we have

F1
ph(w, q) = S1+h(p;w, q). Let f = N1;+

p (h ◦ Ψ1;+
p ). Then f ∈ C∞(Rn), as h ∈

C∞(Kn1 , p). Further, by (5.4), f satisfies S1+h(p;w, q) =
√

1 + q2(1− p2)Rf(w, q),
hence Rf vanishes for q > s > 0. So, by the Support Theorem 2.1, f vanishes for
|x| > s > 0. Thus h vanishes for Ψ1;+

p (x) if |x| > s, hence the statement follows
from (6.3) and (6.4).

‹se3› As |p| > 1, (4.2) gives thatMn
1;p= 1√

p2−1
Bn. By symmetry, it is enough

to prove under the assumption that h vanishes on K1;−
p . So, according to (6.1) and

(4.15), we have F1
ph(w, q) = S1+h(p;w, q). Let f = N1;+

p (h ◦ Ψ1;+
p ). Then f has

compact support. Further, f satisfies S1+h(p;w, q) =
√

1 + q2(1− p2)Rf(w, q) by
(5.4), hence Rf vanishes for q > s > 0. So, by the Support Theorem 2.1, f vanishes
for |x| > s > 0. Thus h vanishes for Ψ1;+

p (x) if |x| > s, hence the statement follows
from (6.3) and (6.4).

‹se4› As p = ±∞, (4.2) gives that Mn
1;p = Bn. By symmetry, it is enough to

prove under the assumption that h vanishes on K1;−
1 . So, according to (6.1) and

(4.15), we have F1
∞h(w, q) = S1+h(∞;w, q). Let f = N1;+

∞ (h ◦ Ψ1;+
∞ ). Then f has

compact support. Further, f satisfies S1+h(∞;w, q) =
√

1− q2Rf(w, q) by (5.5),
hence Rf vanishes for q > s > 0. So, by the Support Theorem 2.1, f vanishes for
|x| > s > 0. Thus h vanishes for Ψ1;+

∞ (x) if |x| > s, hence the statement follows
from (6.3) and (6.4). �

Statement ‹se1› is a slight sharpening of [18, Corollary 1.27 in Chapter III]
about the spherical slice transform.

We continue with the Euclidean case.

Theorem 6.2. Support theorems for shifted Funk transforms on the hyperplane Kn0 .
‹sp1› If h∈C∞(Kn0 ,±1) and F0

±1h(w, q) = 0 for every q > s> 0 and w ∈Sn−1,
then h(eu) vanishes for every e > 2s and u∈Sn−1.

‹sp2› If |p| 6= 1, h∈C∞(Kn0 , p) vanishes on K0;∓
p , and F0

ph(w, q) = 0 for every
q >s> 0 and w∈Sn−1, then h(eu) vanishes for every e > | − p ± 1|q and
u∈Sn−1.

‹sp3› If h ∈C∞(Kn0 ) vanishes on K0;∓
∞ , and F0

∞h(w, q) = 0 for every q > s > 0
and w∈Sn−1, then h(eu) vanishes for every e > s and u∈Sn−1.
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Theorem 6.2 is a direct application of the Support Theorem 2.1, so we only
notice that in statement ‹sp1› we can also deduce that S0±h(±1;w, 0) = 0.

Finally, we deal with the hyperbolic case. Observe that for p = ±1 there can
not exist support theorem in the usual sense. The reason behind this is that if,
say, p = −1, then Ψ̄−1;−−1 maps the lower sheet Ǩn−1 of the hyperboloid Kn−1 onto
the complement of the unit ball in An0 in such a way that the points of “infinity” in
Ǩn−1 are sent to the unit sphere in An0 . In the same way, if p = 1, then Ψ̄1;+

−1 maps
the upper sheet K̂n−1 of the hyperboloid Kn−1 onto the complement of the unit ball
in An2 in such a way that the points of “infinity” in K̂n−1 are sent to the unit sphere
in An2 .

Theorem 6.3. Support theorems for shifted Funk transforms on the hyperboloid Kn−1.

‹sh1› If h∈C∞(Kn−1,±1) and F−1±1h(w, q) = 0 for every q >s>1 and w∈Sn−1,
then h(ExpO±(eu)) vanishes for every e < 2 artanh(1/s) and u∈Sn−1.

‹sh2› If h∈Cn(Kn−1, 0) vanishes either on Ǩn−1 or on K̂n−1, and F−10 h(w, q) = 0
for every q>s∈(0, 1) and w∈Sn−1, then h(ExpO±(eu)) vanishes for every
e > 2 artanh(s) and u∈Sn−1.

‹sh3› If |p| 6= 0, and h ∈ Cn−1(Kn−1, p) vanishes on Ǩn−1 or on K̂n−1 according
to p < 0 or p > 0, respectively, and F−1p h(w, q) = 0 for every q > s > 0

and w ∈ Sn−1, then h(ExpO±(eu)) vanishes for every e > δ−1;±p (s) and
u∈Sn−1.

‹sh4› If h ∈ C∞(Kn−1) vanishes either on Ǩn−1 or on K̂n−1 and F−1∞ h(w, q) = 0,
for every q > s > 0 and w ∈ Sn−1, then h(ExpO±(eu)) vanishes for every
e > arsinh(s) and u∈Sn−1.

Proof. We prove the statements one after the other.
‹sh1› From (4.2) we have Mn

−1;±1 = Rn. By symmetry, it is enough to prove
for p = −1. So, according to (6.1) and (4.15), for q > 1 we have F−1−1h(w, q) =

S−1− h(−1;w, q). Let f = N−1;−−1 (h◦Ψ−1;−−1 ). Then f ∈ C∞(Rn) as h∈C∞(Kn−1,−1).
Further, by (5.4), f satisfies S−1− h(−1;w, q) = Rf(w, q), hence Rf vanishes for
q > s (s > 1). So, by the Support Theorem 2.1, f vanishes for |x| > s > 1. Thus h
vanishes for Ψ−1;−−1 (x) if |x| > s, hence the statement follows from (6.3) and (6.4).

‹sh2› Firstly, we observe thatMn
1;p=Bn by (4.2). We assume that h vanishes on

Ǩn−1. So, according to (6.1) and (4.15), we have F−10 h(w, q) = S−1+ h(0;w, q). Let
f = N−1;+0 (h ◦ Ψ−1;+0 ). Then f(x) = 1√

1−x2n
h(Ψ−1;+0 (x)), hence f ∈ C0(Bn) be-

cause h∈Cn(Kn−1, 0). Further, by (5.4), f satisfies S−1+ h(0;w, q) =
√

1− q2Rf(w, q),
hence Rf vanishes for q > s ∈ (0, 1). So, by the Support Theorem 2.1, f vanishes
for |x| > s. Thus h vanishes for Ψ−1;+0 (x) if |x| > s, hence the statement follows
from (6.3) and (6.4).

The case when h vanishes on K̂n−1 can be proved the same way by symmetry.
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‹sh3› Assume p < 0 and that h vanishes on Ǩn−1. So, according to (6.1) and
(4.15), we have F−1p h(w, q) = S−1+ h(p;w, q). Let f = N−1;+p (h ◦ Ψ−1;+p ). Then
f ∈ C0(Bn) because h∈Cn−1(Kn−1, p). Further, by (5.4), f satisfies S−1+ h(p;w, q) =√

1− q2Rf(w, q), hence Rf vanishes for q > s ∈ (0, 1). So, by the Support Theo-
rem 2.1, f vanishes for |x| > s. Thus h vanishes for Ψ−1;+p (x) if |x| > s, hence the
statement follows from (6.3) and (6.4).

The case when p > 0 can be proved the same way by symmetry.
‹sh4› Firstly, we observe thatMn

1;∞=Rn by (4.2). We assume that h vanishes on
Ǩn−1. So, according to (6.1) and (4.15), we have F−1∞ h(w, q) = S−1+ h(∞;w, q). Let
f = N−1;+∞ (h ◦ Ψ−1;+∞ ). Then f ∈ C∞(Rn) because h∈C∞(Kn−1,∞). Further, by
(5.5), f satisfies S−1+ h(p;w, q) =

√
1 + q2Rf(w, q), hence Rf vanishes for q > s > 0.

So, by the Support Theorem 2.1, f vanishes for |x| > s. Thus h vanishes for
Ψ−1;+∞ (x) if |x| > s, hence the statement follows from (6.3) and (6.4).

The case when h vanishes on K̂n−1 can be proved the same way by symmetry. �

Statement ‹sh1›, the first result about the hyperbolic slice transform, is not
valid for s ≤ 1, but ‹sh3› gives appropriate support theorem on a sheet of Kn−1.

Statement ‹sh2› is just a reformulation of [24, (i−) in Theorem 3.2].
Important to know that the decay conditions can not be dropped from any of

these theorems as counter examples show (see [18, Remark 2.9 of Chapter I]).

6.2. Kernel descriptions. Let h be a continuous function on Knκ . Using
(5.2) we define the functions

h±p : Knκ 3 E 7→ h±p (E)=

{
0 if E /∈Kκ;±p ,

h(E) if E∈Kκ;±p ,
(6.7) 〈26, 28〉

for p ∈ (R \ {±1}) ∪ {±∞}. If h ∈ Ck(Knκ , p) for k ∈ N, then, obviously, both
functions h±p are in Ck(Knκ , p).

We start considering the kernels in the elliptic case. This makes a direct gen-
eralization of Funk’s result [13], and leads to kernel descriptions different than the
ones in [7, 15,16,20,26,27,30,31,33,34]. Figure 6.1 shows what is at stake.

1√
1−p2

Bn
Rn

O(0, 0)

1

−1

p

p+ 1
1√

1−p2
Bn

O(0, 0)

1

−1

p

p+ 1

Rn

O(0, 0)

1

−1

Figure 6.1. Mappings Ψ1;±
p if |p| < 1, |p| > 1, and p =∞
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Theorem 6.4. Kernels of some shifted Funk transform on the sphere Kn1 .
‹ks1› If h ∈ C∞(Kn1 ,±1), then F1

±1h vanishes if and only if h ≡ 0.
‹ks2› If |p| < 1 and h ∈ C∞(Kn1 , p), then F1

ph vanishes if and only if there is a
function f ∈ C∞(Mn

1;p) such that ±h±p ◦Ψ1;±
p = N̄1;±

p f .
‹ks3› If |p| > 1 and h ∈ C(Kn1 , p), then F1

ph vanishes if and only if there is a
function f ∈ C(Mn

1;p) such that ±h±p ◦Ψ1;±
p = N̄1;±

p f .
‹ks4› If h ∈ C(Kn1 ,∞), then F1

∞h vanishes if and only if there is a function
f ∈ C(Mn

1;∞) such that ±h±∞ ◦Ψ1;±
∞ = f .

Proof. Statement ‹ks1› comes immediately from ‹se1›.
‹ks2›: As |p| < 1, we have Mn

1;p = Rn by (4.2). Let f ∈ C∞(Mn
1;p) and

h± ◦Ψ1;±
p = N̄1;±

p f . Define the function

h : Kn1 3 E 7→

{
h+(E) if E∈Kκ;+p ,

−h−(E) if E∈Kκ;−p .
(6.8) 〈19, 25, 28〉

Then h ∈ C∞(Kn1 , p) by (5.1) and (5.3), and F1
ph = 0 by (5.4), (6.8), (6.1) and

(4.15). Further, ±h±p ◦Ψ1;±
p = ±h± ◦Ψ1;±

p = N̄1;±
p f .

If h ∈ C∞(Kn1 , p) and F1
ph vanishes, then h±p ∈ C∞(Kn1 , p), and F1

ph
−
p = −F1

ph
+
p

because 0 = F1
ph = F1

ph
+
p + F1

ph
−
p . So, by Theorem 5.1, we have 0 = R`+ + R`− for

the functions `± = N1;±
p (h±p ◦Ψ1;±

p ). As the functions `± are in C(Rn), the Support
Theorem 2.1 implies `− = −`+. Then for f = `+ we have ±f± = h±p ◦Ψ1;±

p , hence
the statement.

‹ks3› and ‹ks4›: By (4.2) we haveMn
1;p= 1√

p2−1
Bn for |p| > 1, andMn

1;∞=Bn.
Since these are compact sets, the reasoning given for ‹ks2› works very well for these
statements too, without the condition of infinite decay, so we leave the details to
the interested reader. �

Notice that ‹ks1› states the injectivity of the spherical slice transform under
a mild condition, while the next statements describes the kernels of the spherical
shifted Funk transform by a kind of parity condition in accordance with the results
of [3, 4, 6, 7, 20, 26, 30, 33, 34, 38]. Since ‹ks2› served as a prototype for the next
statements of the theorem, it is certainly not the sharpest possible version, so we
return to it in Section 9, where the sharp version ‹ks2’› is proved by applying our
intertwining relations (5.4) and Funk’s theorem about the Funk transform [13].

Although the result does not add very much new to the theory, we continue with
the parabolic case for the sake of completeness.

Theorem 6.5. Kernels of some shifted Funk transforms on Kn0 :
‹kp1› If h ∈ C∞(Kn0 ), then F0

±1h vanishes if and only if h vanishes on K0;∓
±1 , and

the integrals of h over hyperplanes through O± in K0;∓
∓1 vanish.

http://www.math.u-szeged.hu/tagok/kurusa


Annali di Matematica Pura ed Applicata, ?(2021), ?–? c© Á. Kurusa http://www.math.u-szeged.hu/tagok/kurusa

20 Á. KURUSA

‹kp2› If |p| 6= 1 and h ∈ C∞(Kn0 ), then F0
ph vanishes if and only if there is a

function f ∈ C∞(Mn
0;p) such that ±h±p ◦Ψ0;±

p = N̄0;±
p f .

‹kp3› If h ∈ C∞(Kn0 ), then F0
∞h vanishes if and only if there is a function f ∈

C(Mn
0;∞) such that ±h±∞ ◦Ψ0;±

∞ = f .

Proof.
‹kp1›: It is clear that F0

ph vanishes if h vanishes on K0;∓
p , and the integrals of h

over hyperplanes through O± in K0;∓
−p vanish.

For the “only if” part of the statement we only need to prove for p = −1 by the
symmetry.

Let Hu be the 1-co-dimensional subspace of An−1 orthogonal to u ∈ Sn ∩ An−1.
Let g(u) be the integral of h overHu. Then Rh+(u, r)+g(u) ≡ 0 by (2.2). However,
by (2.2), Rh+(u, r) → 0 if r → ∞, so we deduce g(u) ≡ 0. Then Rh+(u, r) ≡ 0
follows from which the Support Theorem 2.1 implies the statement.

We do not give the proof of ‹kp2› and ‹kp3› here, because the procedures are
very much analogous to the proof given for the elliptic case. �

We finish this section with the hyperbolic case. There seems to be no previous
results in the literature about the shifted Funk transform for the hyperbolic case.
However, for the hyperbolic Funk transform and for the hyperbolic slice transforms,
the results seems greatly analogues to the spherical case. Figure 6.2 shows what
the next theorem is about.

Bn
1√

1−p2
Bn

O(0, 0)

1

−1

p

p+ 1

RnBn
O(0, 0)

1

−1

p

p+ 1

Rn

O(0, 0)

1

−1

Figure 6.2. Mappings Ψ−1;±
p if |p| < 1, |p| > 1, and p =∞

Theorem 6.6. Kernels of some shifted Funk transform on the hyperboloid Kn−1.
‹kh1› If h ∈ C∞(Kn−1,±1), then F−1±1h vanishes if and only if h ≡ 0.
‹kh2› If h ∈ Cn(Kn−1), then F−10 h vanishes if and only if there is a function

f ∈ C(Mn
−1;0) such that ±h±0 ◦Ψ−1;±0 = N̄−1;±0 f .

‹kh3› If |p| ∈ (0, 1) and h ∈ Cn−1(Kn−1, p), then F−1p h vanishes if and only if there
is a function f ∈ C0(Mn

−1;p)∩C0(Mn
−1;0) such that ±h±p ◦Ψ−1;±p = N̄−1;±p f .
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‹kh4› If |p| > 1 and h ∈ C∞(Kn−1, p), then F−1p h vanishes if and only if there is
a function f ∈ C(Mn

−1;p) such that ±h±p ◦Ψ−1;±p = N̄−1;±p f .
‹kh5› If h ∈ C∞(Kn−1), then F−1∞ h vanishes if and only if there is a function

f ∈ C(Mn
−1;∞) such that ±h±∞ ◦Ψ−1;±∞ = f .

Proof. We prove the statements one after the other.
‹kh1›: From ‹sh1› we get that h(ExpO±(eu)) vanishes for every e < 2 artanh(1) =

∞ and u∈Sn−1, i.e. h vanishes on K̂n−1. From ‹sh3› we obtain that h vanishes on
Ǩn−1 if F−11 is under consideration, or on K̂n−1 if F−1−1 is under consideration.

‹kh2›: We have Mn
−1;0 = Bn by (4.2). Let f ∈ C0(Mn

−1;0) and define the
function

h : Kn−1 3 E 7→

{
h+(E) if E∈Ψ−1;+0 (Mn

−1;0)

−h−(E) if E∈Ψ−1;−0 (Mn
−1;0)

(6.9)

where h± ◦ Ψ−1;±0 = N̄−1;±0 f , i.e. h±(Ψ−1;±0 (x)) = f(x)
√

1− x2
n
. Then h ∈

Cn(Kn−1, 0), and F−10 h = 0 by (6.1), (4.15), and Theorem 5.1. Further, ±h±0 ◦
Ψ−1;±0 = h± ◦Ψ−1;±0 = N̄−1;±0 f .

If h ∈ Cn(Kn−1, 0) and F−10 h vanishes, then h±0 ∈ Cn(Kn−1, 0), and F−10 h−0 =

−F−10 h+0 because 0 = F−10 h = F−10 h+0 + F−10 h−0 . So, by Theorem 5.1, we have
0 = Rg++Rg− for the functions g± = N−1;±0 h±0 ◦Ψ

−1;±
0 which are in C(Bn), because

g±(x) = 1√
1−x2n

h±0 (Ψ−1;±0 (x)). So the Support Theorem 2.1 implies g− = −g+.
Let f = g+. Then we get ±N̄−;±0 f = h±0 ◦Ψ−1;±0 , hence the statement.

‹kh3›: Equation (4.2) gives Mn
−1;p = 1√

1−p2
Bn for |p| ∈ (0, 1). Since this is a

compact set, the reasoning given for ‹kh2› works very well for this statements too,
but needs only a decay of order n− 1, so we leave the details to the reader.

‹kh4› and ‹kh5›: Equation (4.2) givesMn
−1;p=Rn for |p| > 1 andMn

−1;∞=Rn.
It is clear that the reasoning given for ‹kh2› works very well in these cases too, but
with infinite decay condition, so we leave the details to the interested reader. �

According to ‹kh1› the hyperbolic slice transform is injective on C∞(Kn−1,±1),
while the kernel of the hyperbolic Funk transform is the set of odd functions in
Cn(Kn−1) by ‹kh2›. These results are totally analogous to the case of the sphere.

7. Funk-type isodistant Radon transforms

The double covering of Knκ given by (1.3) can be reduced by considering the
identifying mapping χ̂κ : K̂nκ 3 E → (E,−E) ∈ K̄nκ ∼= Knκ. Then χ̂κ is bijective for
κ ≤ 0 as well as for κ = 1 if the totally geodesic corresponding to Kn1 ∩ An0 is left
out. If h ∈ C(Knκ), then the corresponding function on Knκ is

ĥ : Knκ 3 E → ĥ(E) =

{
h(χ̂κ(E)) if E ∈ K̂nκ ,
0 otherwise.
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We define the Funk-type isodistant Radon transform R̂κp of a suitable function h ∈
C(Knκ) by

R̂κph(w, g) = Fκp ĥ(w, τκ(g)) if p ∈ R,

R̂κ∞h(w, %) = Fκ∞ĥ(w, σκ(%)) if p =∞,

where w ∈ Sn−1, g, % ∈ [0, ρκ). So the Funk-type isodistant Radon transform R̂κp
is essentially the restriction of the shifted Funk transform to the set of hyperplanes
intersecting K̂nκ in isodistants.

For our considerations we will need decay conditions, so we introduce the func-
tion space Cm(Knκ, χ̂κ(L)) so that h ∈ Cm(Knκ, χ̂κ(L)) if h ◦ χ̂κ ∈ Cm(K̂nκ ,L)

(m ∈ N), where L ⊂ K̂nκ is a non-empty, open domain. Further, we define Cm(Knκ)

so that h ∈ Cm(Knκ) if h ◦ χ̂κ ∈ Cm(K̂nκ) (m ∈ N). Additionally, analogously to
the notations after (6.6), we use the notation Cm(Knκ, p) := Cm(Knκ, χ̂κ(Kκ;±p )) too
(see (5.2)). We also need to define the functions

ĥ±p : K̂nκ 3 E 7→ ĥ±p (E)=

{
0 if E /∈Ψκ;±

p (Mn
κ;p),

h(χ̂κ(E)) if E∈Ψκ;±
p (Mn

κ;p)

for every h ∈ Knκ, where p ∈ R ∪ {±∞}, and Ψκ;±
p is given by (5.1). Observe that

if h ∈ Ck(Knκ, p), then both functions ĥ±p are in Ck(K̂nκ , p) for every k ∈ N.
In the elliptic case, every slice of K̂n1 is a part of an isodistant in Kn1 , so the

properties of R̂1
p are essentially similar to that of F1

p. We give these properties
without proof, because they follow directly from theorems 6.1 and 6.4 with the use
of the functions δκ;±p defined in (6.2).

Theorem 7.1. The Funk-type isodistant Radon transform in the elliptic space have
the following properties:

‹ee1› If p < 0, d ∈ [0, arctan(1/p)), h∈C(Kn1 ) and R̂1
ph(w, g) = 0 for every g>d

and w∈Sn−1, then h(ExpO+(eu)) vanishes for every e > δ1;+p (tan(d)) and
u∈Sn−1.

‹ee2› If d ∈ [0, π/2), h ∈ C∞(Kn1 , 0) and R̂1
0h(w, g) = 0 for every g > d and

w∈Sn−1, then h(ExpO+(eu)) vanishes for every e > d and u∈Sn−1.
‹ee3› Let p ∈ (0, 1), and h ∈ C∞(Kn1 , p) is such that h(ExpO+(eu)) vanishes

for every e > arccos p and u ∈ Sn−1. If d ∈ [0, π/2), and R̂1
ph(w, g) = 0

for every g > d and w ∈ Sn−1, then h(ExpO+(eu)) = 0 for every e >
δ1;+p (tan(d)) and u∈Sn−1.

‹ee4› If p ∈ (0, 1), d ∈ [arccos(1/p), π/2), and h∈C∞(Kn1 , p), then R̂1
ph(w, g) = 0

for every g>d and w∈Sn−1 if and only if there is a function f ∈ C∞(Mn
1;p)

such that ±ĥ±p ◦Ψ1;±
p = N̄1;±

p f outside of 1
pB

n.
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‹ee5› If d ∈ [0, π/2), h ∈ C∞(Kn1 , 1) and R̂1
1h(w, g) = 0 for every g > d and

w∈Sn−1, then h(ExpO+(eu)) vanishes for every e < δ1;−1 (tan(d)) = π−2d
and u∈Sn−1.

‹ee6› Let p > 1 and h ∈ C(Kn1 ) is such that h(ExpO+(eu)) vanishes for every
e > arccos(1/p) and u∈Sn−1. If d ∈ [0, arccos(1/p)), and R̂1

ph(w, g) = 0

for every g > d and w ∈ Sn−1, then h(ExpO+(eu)) = 0 for every e >
δ1;+p (tan(d)) and u∈Sn−1.

‹ee7› If p > 1, d ∈ [δ1;+p (1/p), arccos(1/p)), and h∈C(Kn1 ), then R̂1
ph(w, g) = 0

for every g>d and w∈Sn−1 if and only if there is a function f ∈ C(Mn
1;p)

such that ±ĥ±p ◦Ψ1;±
p = N̄1;±

p f outside of 1
pB

n.
‹ee8› If d ∈ [0, π/2), h∈C(Kn1 ) and R̂1

∞h(w, %) = 0 for every %>d and w∈Sn−1,
then h(ExpO+(eu)) vanishes for every e > d and u∈Sn−1.

In the parabolic case, every slice of K̂n0 is an isodistant, so the properties of R̂0
p

are exactly the same as the properties of F0
p (i.e. essentially a reparameterization

the classical Euclidean Radon transform). These properties are given in theorems
6.2, and 6.5.

The hyperbolic case differs significantly. If a normal vector n of a hyperplane P
fulfills 〈n, bn+1〉 > 1/

√
2, then the intersection P∩Kn−1 is not an isodistant, because

there does not exist a totally geodesic of co-dimension 1 whose hyperplane’s normal
vector is parallel with n. These slices of K̂n−1 and the corresponding submanifolds
in Kn−1, that are not isodistant, are called virtual isodistants.4

O O O

Figure 7.1. Virtual and real isodistants (dashed circles vs. continuous arcs) in
the Poincare disc-model of the hyperbolic plane for p ∈ (0, 1), p = 1, p > 1.

Thus the properties of R̂−1p have significant differences from that of F−1p while
they easily follow from the statements of theorems 6.3 and 6.6.

Theorem 7.2. The Funk-type isodistant Radon transforms in the hyperbolic space
have the following properties:

4The virtual isodistants are the horocycles and the circles.
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‹eh1› If p < 0, d ∈ [0,∞), h∈Cn−1(Kn−1, p), and R̂−1p h(w, g) = 0 for every g>d
and w ∈Sn−1, then h(ExpO+(eu)) vanishes for every e > δ−1;+p (tanh(d))

and u∈Sn−1.
‹eh2› If d ∈ [0,∞), h ∈ Cn(Kn−1, 0), and R̂−10 h(w, g) = 0 for every g > d and

w∈Sn−1, then h(ExpO+(eu)) vanishes for every e > d and u∈Sn−1.
‹eh3› Let p ∈ (0, 1) and h ∈ C(Kn−1, p) is such that h(ExpO+(eu)) vanishes for

every e > ln(1/p) and u∈ Sn−1. If d ∈ [0, ln(1/p)), and R̂−1p h(w, g) van-
ishes for every g > d and w ∈ Sn−1, then h(ExpO+(eu)) = 0 for every
e > δ−1;+p (tanh(d)) and u∈Sn−1.

‹eh4› Let p > 1 and h∈C(Kn−1, p) is such that h(ExpO+(eu)) vanishes for every
e> ln p and u∈Sn−1. If d ∈ [0, ln p), and R̂−1p h(w, g) vanishes for every
g>d and w∈Sn−1, then h(ExpO+(eu)) = 0 for every e > δ−1;+p (tanh(d))

and u∈Sn−1.
‹eh5› If d ∈ [0,∞), h ∈ C∞(Kn−1), and R̂−1∞ h(w, %) = 0 for every % > d and

w∈Sn−1, then h(ExpO+(eu)) vanishes for every e > d and u∈Sn−1.

Notice that no statement in this theorem is analogous to statements ‹ee4›, ‹ee5›,
and ‹ee7› of Theorem 7.1. This is due to the fact that no virtual isodistants exist
on the elliptic space.

8. Duplex Funk-type isodistant Radon transforms

Instead of reducing the double covering of Knκ so as we did in the previous
section, we can restrict the function space to the space of even functions on Knκ .
Then the isodistants of Knκ correspond to some of the slices of Knκ .

We define the duplex Funk-type isodistant Radon transforms Rκp for suitable
functions h ∈ C(Knκ) by

Rκph(w, g) = Fκp h̃(w, τκ(g)) if p ∈ R, (8.1)

Rκ∞h(w, %) = Fκ∞h̃(w, σκ(%)) if p =∞, (8.2)

where w ∈ Sn−1, g, % ∈ [0, ρκ), and h̃ : Knκ 3 E 7→ h(χκ(E)) with χκ given in (1.3).
Recall our formula (3.3). It shows that p and g determine the isodistant to integrate
on, more exactly q = τκ(g). The same formula shows that q = σκ(%) if p =∞ (or,
which is the same, g = 0).

Starting from any point y1 = Ψκ;+
p (x0) ∈ K̂nκ (p ∈ R ∪ {±∞}), the recursion

y2i+2 := Ψκ;−
p (xi), y2i+3 := −y2i+2, xi+1 := Ψ̄κ;+

p (y2i+3) ∈Mn
κ;p (8.3) 〈25, 26, 27, 29〉

generates points for every i = 1, 2, . . .. This sequence of points yi is finite if |p| = 1
or p = ±∞. Otherwise we get an infinite sequence, and it is easy to see that the
sequences y2i+1 and y2i tend to the points O±, respectively. (Figure 8.1 depicts
the first points if κ = 1.)
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y2

y3

y4

y5

y6

y7

Figure 8.1. The first points of (8.3) if κ = 1: p =∞, |p| > 1, and |p| < 1.

Theorem 8.1. The duplex Funk-type isodistant Radon transforms in the elliptic
space have the following properties:

‹ie1› If h ∈ C(Kn1 ), then R1
∞h vanishes if and only if there is an odd function

f ∈ C(Mn
1;∞) such that ±h̃±∞ ◦Ψ1;±

∞ = N̄1;±
∞ f , where h̃ = h ◦ χκ.

‹ie2› If |p| = 1, then R1
p is injective on C∞(Kn1 , p).

‹ie3› If |p| > 1, then R1
p is injective on C(Kn1 , p).

‹ie4› If |p| < 1, then R1
p is injective on C∞(Kn1 , p).

Proof. ‹ie1›: Let f ∈ C(Mn
1;∞) be an odd function. Construct the functions h̃± =

±N̄1;±
∞ f ◦ Ψ̄1;±

∞ , and then define h̃ by (6.8). (See the first diagram on Figure 8.1.)
Then h̃ is even, and F1

∞h̃ vanishes by ‹ks4› of Theorem 6.4.
For the reverse direction, if h̃ is an even function and F1

∞h̃ vanishes, then ‹ks4›
of Theorem 6.4 implies that h̃±∞ = ±N̄1;±

∞ f ◦ Ψ̄1;±
∞ , hence

N̄1;±
∞ f(x) = h̃+∞(Ψ1;+

∞ (x)) = h̃−∞(−Ψ1;+
∞ (x))

= −N̄1;±
∞ f(Ψ̄1;−

∞ (−Ψ1;+
∞ (x))) = −N̄1;±

∞ f(x),

so f is odd, hence ‹ie1› is proved.
‹ie2› This statement follows directly from ‹ks1› of Theorem 6.4.
To prove ‹ie3› and ‹ie4›, we chose an arbitrary point y1 = Ψ1;+

p (x0) ∈ K̂n1 , so
we have the sequence of points yi given by recursion (8.3), hence the sequences
y2i+1 and y2i tend to points O±, respectively. (See Figure 8.1.)

‹ie3›: We can assume p < −1 by the symmetry of Sn = Kn1 .
Assume that h ∈ C(Kn1 , p) is in the kernel of R1

p. This means that the even
function h̃ ∈ C(Kn1 , p) is such that F1

ph̃ vanishes. As |p| > 1, ‹ks3› of Theorem 6.4
gives a function f ∈ C(Mn

1;p) such that ±h̃±p ◦Ψ1;±
p = N̄1;±

p f .
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Since h̃ is even, we have h̃(y2i+1) = h̃(y2i) for every i ∈ N. So, by (6.7) and
(5.3), we get

h̃(y2i+2)

h̃(y2i)
=
h̃(y2i+2)

h̃(y2i+1)
=
h̃−p (y2i+2)

h̃+p (y2i+1)
=
−N̄1;−

p f(xi)

N̄1;+
p f(xi)

= −
|ν1;+p (|xi|)|n−1

|ν1;−p (|xi|)|n−1
. (8.4) 〈26〉

Let φp = lime→0

∣∣ ν1;+
p (e)

ν1;−
p (e)

∣∣. Then (4.3) gives

φp = lim
e→0

∣∣∣−p+
√

1− e2(p2 − 1)

−p−
√

1− e2(p2 − 1)

∣∣∣ =
−p+ 1

| − p− 1|
> 1,

and therefore

lim
i→∞

h̃(y2i+4)

h̃(y2i)
= φ2(n−1)p > 1.

Thus h̃(y2) 6= 0 implies that |h̃(O−)| = ∞, a contradiction, hence h̃(y2) vanishes
which, as y2 was chosen arbitrarily, proves ‹ie3›.

‹ie4›: We only need to prove for p ∈ (−1, 0] by the symmetry of Sn = Kn1 .
Assume that h ∈ C∞(Kn1 , p) is in the kernel of R1

p. This means that the even
function h̃ ∈ C∞(Kn1 , p) is such that F1

ph̃ vanishes. As |p| < 1, ‹ks2› of Theorem 6.4
gives a function f ∈ C∞(Mn

1;p) such that ±h̃±p ◦Ψ1;±
p = N̄1;±

p f .
If p = 0, then ±h̃±p ◦ Ψ1;±

p = N̄1;±
p f shows that h̃ is odd, so, being also even, h̃

vanishes which proves ‹ie4›.
Therefore we can assume p ∈ (−1, 0) from now on.
For any point y1 = Ψ1;+

p (x0) ∈ K̂n1 , we can apply recursion (8.3) again to get
the sequence of points. (See Figure 8.1.) This again leads to (8.4), which implies
h̃(y2) ≡ 0 in the same way as in the proof of ‹ie3›. Since y2 was chosen arbitrarily,
‹ie4› follows.

The proof is complete. �

Observe that Theorem 8.1 can be understood also as a result about pairs of
shifted Funk transforms on the sphere [3–6], and ‹ie4› can be considered as a
generalization of [24, (i+) of Theorem 3.2].

We put here the parabolic case only for the sake of a kind of completeness.

Theorem 8.2. The duplex Funk-type isodistant Radon transforms in the parabolic
space have the following properties:
‹ip1› If h ∈ C∞(Kn0 ), then R0

∞h vanishes if and only if h is an odd function.
‹ip2› If p ∈ R, then R0

p is injective on C∞(Kn0 ).

We omit the proof because the reasoning behind ‹ip1› and ‹ip2› is very much
similar to that of ‹ie1› and ‹ie3›, respectively. In the other hand, in Section 9 we
prove Theorem 9.3 that generalizes ‹ip2›, which otherwise can be considered as a
generalization of [24, (i+) of Theorem 3.2].

We turn to the hyperbolic case.
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Theorem 8.3. The duplex Funk-type isodistant Radon transforms in the hyper-
bolic space have the following properties:
‹ih1› R−10 is injective on Cn(Kn−1).
‹ih2› R−1±1 is injective on C∞(K̂n−1,±1).
‹ih3› If h ∈ C∞(Kn−1), then R−1∞ h vanishes if and only if there is an odd function

f ∈ C(Mn
−1;∞) such that ±h̃±∞ ◦Ψ−1;±∞ = N̄−1;±∞ f , where h̃ = h ◦ χκ.

‹ih4› Let |p| > 0, |p| 6= 1, and let h ∈ C(Kn−1, p) be such that h(ExpO+(eu))
vanishes for every e≥ s= | ln |p|| and u ∈ Sn−1.If R−1p h vanishes, then h
vanishes too.

Proof. ‹ih1› Let h ∈ Cn(Kn−1) be in the kernel of R−10 . This means that the even
function h̃ ∈ Cn(Kn−1) is such that F−10 h̃ vanishes. Then ‹kh2› of Theorem 6.6
gives a function f ∈ C(Mn

−1;0) such that ±h̃±0 ◦Ψ−1;±0 = N̄−1;±0 f . This shows that
h̃ is odd, so, being also even, h̃ vanishes that proves ‹ih1›.

‹ih2› This statement follows directly from ‹kh1› of Theorem 6.6.
The proof of ‹ih3› is so much similar to the proof of ‹ie1› that we leave it to

the readers’ consideration.
‹ih4›: Since |p| > 0, the symmetry of Kn−1 allows us to assume p < 0. With

this assumption we also have p 6= −1, and s= | ln(−p)|. Then the even function
h̃ ∈ Cn−1(Kn−1) is such that F−1p h̃ vanishes, hence ‹kh3› and ‹kh4› of Theorem 6.6
gives a function f ∈ C(Mn

−1;p) such that ±h̃±p ◦Ψ−1;±p = N̄−1;±p f .
Choose an arbitrary point y1 = Ψ−1;+p (x0) ∈ K̂n−1 such that d−1(O+,y1) <

| ln(−p)|. Then the sequence of points yi given by recursion (8.3), is such that
sequences y2i+1 and y2i tend to points O+ and O−, respectively.

Since h̃ is even, we have h̃(y2i+1) = h̃(y2i) for every i ∈ N. So (5.3) and (4.3)
lead to

h̃(y2i+2)

h̃(y2i)
=
h̃(y2i+2)

h̃(y2i+1)
=
h̃−p (y2i+2)

h̃+p (y2i+1)
=
−N̄−1;−p f(xi)

N̄−1;+p f(xi)
= −
|ν−1;+p (|xi|)|n−1

|ν−1;−p (|xi|)|n−1
.

Let φp = lime→0

∣∣ ν−1;+
p (e)

ν−1;−
p (e)

∣∣ Then (4.3) gives

φp = lim
e→0

∣∣∣−p+
√

1 + e2(p2 − 1)

−p−
√

1 + e2(p2 − 1)

∣∣∣ =
−p+ 1

| − p− 1|
> 1,

and therefore

lim
i→∞

h̃(y2i+4)

h̃(y2i)
= φ2(n−1)p > 1.

Thus h̃(y2) 6= 0 implies that |h̃(O−)| = ∞, a contradiction, hence h̃(y2) vanishes
that, as y2 was chosen arbitrarily, proves ‹ih4›. �

Notice that ‹ih1› is exactly [24, (i−) of Theorem 3.2].
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9. Notices and discussions

Pulling and applying other already known results perhaps most importantly the
range descriptions through our intertwining relations (5.4) and (5.5) will lead to
numerous new results about the shifted Funk transforms and, more importantly
from our point of view, about the Funk-type isodistant Radon transforms.

The k-dimensional isodistants k ≤ n−1 can be defined through the cross-sections
of Knκ with the k-dimensional affine planes (k ≤ n − 1). Then our intertwining
relations extend to these k-dimensional isodistants, so the method of [24, Theorem
3.1] extends our support theorems to these k-dimensional isodistants, which would
improve the decay conditions. This time we leave this for the future, but pay
attention to [32], where this is done on the sphere for the 1-shifted Funk transform,
i.e. for the spherical slice transform of Abouelaz–Daher–Helgason-type.

The isodistant of a totally geodesic Gk of co-dimension n−k ≥ 1 is like a tube of
co-dimension 1 around Gk. The associated Radon transform RE,k

κ gives the integral
of every suitable function over every isodistant using the natural measure. This
is quite a different kind of transformation, so our method seems to be unusable,
hence its investigation remains to the future.

Combining the intertwining relations (5.4) for different values of p but with the
same curvature κ leads to intertwining relations similar in spirit to those that are
in [3, 4, 6, 7, 20, 26, 30, 33, 34, 38] for the sphere, but also for the hyperbolic case.
For instance, we show here two relevant applications of this idea for the sphere
Sn = Kn1 . Firstly we improve ‹ks2› of Theorem 6.4 considerably.

Theorem 9.1.
‹ks2’› If |p|<1 and h∈C(Sn), then F1

ph vanishes if and only if
N1;+
p

(
h+p ◦Ψ1;+

p

)
= −N1;−

p

(
h−p ◦Ψ1;−

p

)
.

Proof. Since |p| < 1, we have Mn
1;p = Rn by (4.2). So, by (5.1), we have the

mapping Ψ1;±
p : Rn → K1;±

p for every p ∈ (−1, 1), where K1;±
p = Im Ψ1;±

p by (5.2).
Let h ∈ C(Sn), and define h±p : Kκ;±p → R by (6.7). Using N̄1;±

p , given in (5.3),
let f±p = N1;±

p

(
h±p ◦Ψ1;±

p ).
Let h̃±r =

(
N̄1;±
r f±p

)
◦ Ψ̄1;±

r , and define the function h̃ : Sn → R by (6.8). Then
h̃ ∈ C(Sn) is clear, because limt→∞ f±p (tu + P ) = h(u + pbn+1) for every point
P ∈ Rn and u ∈ Sn−1.

Since Theorem 5.1 gives S1
±h
±
p (p;w,q)√

1+q2(1−p2)
= Rf±p (w, q) =

S1
±h̃
±
r (r;w,q)√

1+q2(1−r2)
, by (6.1) and

(4.15), we obtain the intertwining relation
F1
ph(w, q)

√
1+q2(1−r2) =

(
S1+h

+
p (p;w, q)+S1−h

−
p (p;w, q)

)√
1+q2(1−r2)

=
(
S1+h̃

+
r (r;w, q)+S1−h̃

−
r (r;w, q)

)√
1+q2(1−p2)

=F1
rh̃(w, q)

√
1+q2(1−p2).

(9.1)

Thus F1
ph vanishes if and only if F1

rh̃ vanishes.
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Letting r = 0, we can use Funk’s result [13] saying that F1
0h̃ vanishes if and only

if h̃ is an odd function, i.e. h̃+r ◦ Ψ1;+
r = −h̃−r ◦ Ψ1;−

r . By the definition of h̃±r this
is equivalent to N̄1;+

r f+p = −N̄1;−
r f−p , i.e. f+p = −f−p .

By the definition of f±p this completes the proof. �

Secondly we prove as an example that only the zero is a common element of the
kernels of two special shifted Funk transforms. This result can be easily extended
to all pairs of the shifted Funk transforms, but, for the sphere, it is done in a more
general manner in [3]. For the other spaces it is left to the future. Notice though,
that if p · r = 1, then there are non-vanishing continuous functions h for which
F1
ph = F1

rh ≡ 0.

Theorem 9.2. If |p|<1, |r|<1, and h∈C(Sn), then F1
ph = F1

rh ≡ 0 if and only
if h ≡ 0.

Proof. Statement ‹ks2’› says that if |p| < 1, then F1
ph vanishes if and only if

−h−p (Ψ1;−
p (x))= N̄1;−

p N1;+
p

(
h+p (Ψ1;+

p (x))
)

=
∣∣∣p−√1+x2(1−p2)

p+
√

1+x2(1−p2)

∣∣∣n−1h+p (Ψ1;+
p (x)).

Assume −1 < p < r < 1. Starting from any point y1 = Ψκ;+
p (x0) ∈ K̂1;+

p , the
recursion

y2i+2 := Ψκ;−
p (x2i), x2i+1 := Ψ̄κ;−

r (y2i+2),

y2i+3 := Ψκ;+
r (x2i+1), x2i+2 := Ψ̄κ;+

p (y2i+3)

generates points for every i = 1, 2, . . .. This sequence of points yi, as it is easy to
see on the rightmost illustration of Figure 8.1, is infinite and the sequences y2i+1

and y2i tend to the points O±, respectively. Since we have

lim
i→∞

h̃(y2i+2)

h̃(y2i)
=
∣∣∣r + 1

r − 1

p− 1

p+ 1

∣∣∣n−1 =
∣∣∣r + 1

p+ 1

1− p
1− r

∣∣∣n−1 > 1,

h(y2) 6= 0 implies that |h(O−)| =∞, a contradiction, hence h(y2) vanishes which,
as y2 was chosen arbitrarily, completes the proof. �

The kernel descriptions for duplex Funk-type isodistant Radon transforms in
Section 8 could be easily extend for functions in the L1 space. For instance in The-
orem 8.1 one should consider a “small” compact spherical cap Y1 in Kn1 with center
at y1, and show that the sequence of compact neighborhoods Yi of yi generated
by the recursion (8.3) is such that limi→∞

µ(Y2i+4)
µ(Y2i)

= ρ−2p , where µ denotes the
canonical surface measure on the sphere Kn1 .

In the Euclidean space every duplex Funk-type isodistant Radon transform of a
suitable function f is a sum of the Euclidean Radon transforms of f at two different
hyperplanes, i.e. R0

pf(w, t) = Rf(w, (1 − p)t) + Rf(w, (1 + p)t), where p ∈ R is a
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constant. Recalling the curves of the (p, q)-plane mentioned in (1.4), we obtain the
freaky5 Radon-type transform

f 7→ R〈r〉f(w, t) := Rf
(
w, t− r

√
1 + t2

)
+ Rf

(
w, t+ r

√
1 + t2

)
(9.2)

if the curve is r2(1 + q2) = p2q2 (r > 0), and the horocyclic6 Radon-type transform

f 7→ R{α}f(w, t) := Rf(w, cotα− t) + Rf(w, cotα+ t) (9.3)

if the curve is q = tanα (α ∈ (0, π/2)). The problem of the injectivity of these
Radon-type transforms raises the question of
what kind of transforms M,N of the Grassmann manifold of hyperplanes
make the Radon-type transform RM,N : F 3 f 7→ RM,Nf = (Rf)◦M+(Rf)◦N
to an injectivity on a reasonably large function space F?

(9.4) 〈30〉

For an instant partial answer, which also generalizes Theorem 8.2, we define
the Radon-type transform Rv : f 7→ Rvf(w, t) = Rf(w, v−t) + Rf(w, v+t) for the
non-zero vectors v=(v−, v+)∈R2.

Theorem 9.3. Let f ∈ C∞(Rn) and v = (v−, v+) 6= (0, 0). Assume that Rvf(w, t)
vanishes for every t > 1 and w ∈ Sn−1.

(i) If either 0 < |v−| < |v+| or v+ = 0 or v− = v+, then the support of f is in
the ball |v−|Bn.

(ii) If v− = −v+, then f is an odd or even function outside the ball |v−|Bn if
n is even or odd, respectively.

Proof. Recall that Rf(w, ct) = cn−1Rfc(w, t), where fc : x 7→ f
(
cx
)
, hence Rvf =

R(vn−1− fv− + vn−1+ fv+), so Support Theorem 2.1 gives that vn−1− fv− + vn−1+ fv+
vanishes outside the unit ball.

If 0 < |v−| < |v+|, then we get that f(y) = − v
n−1
+

vn−1
−

f
( v+
v−

y
)
for |y| > |v−|. Since

|v+/v−| > 1, we deduce that f(y) =
(
− vn−1

+

vn−1
−

)k
f
(( v+
v−

)k
y
)
for every k ∈ N and

|y| > |v−|. This proves f(y) = 0, because f satisfies the infinite decay condition

that implies
(
− vn−1

+

vn−1
−

)k
f
(( v+
v−

)k
y
)
→ 0 as k →∞.

If v+ = 0, then v− 6= 0 and we get that f(v−x) vanishes for |x| > 1.
If v− = v+, then v− 6= 0 and we get that f(v−x) vanishes for |x| > 1.
If v− = −v+, then v∓ 6= 0 and we get that fv− + (−1)n−1f−v− vanishes outside

the unit ball. This implies that fv− is an odd or even function outside the unit ball
if n is even or odd, respectively. �

Notice that (i) is a generalization of [24, (i+) of Theorem 3.2].
The investigation of problem (9.4) remains to a later paper.

5This term was used by Ungar for a very similar problem on the sphere in [37].
6This term comes from the case of α = π/4 in the hyperbolic space.
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It is worth paying attention to the relations both the spherical and the hyperbolic
slice transforms have to the weighted versions of the so-called boomerang transform
[11, 23], which is in fact the dual of the Radon transform. These relations can be
shown through the stereographic projections Π∓1 of Knκ .

Finally we note that the inverses Ψ̄κ;±
p of the maps given in (5.1) create models

of Knκ in Rn. These models are mostly unknown, but the projective Cayley–Klein
models [39] are created by p = 0, essentially the conform Poincare models [2, 12]
are created by p = ±1, and the Gans models [14] are created by p = ±∞. The
corresponding projections Ψ̄κ;±

p are called gnomonic [41] if p = 0, stereographic [42]
if p = ±1, and orthogonal if p = ±∞, respectively.
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