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QUADRATIC ELLIPSOIDS IN MINKOWSKI GEOMETRIES

ÁRPÁD KURUSA

Abstract. A Minkowski plane is Euclidean if and only if at least one ellipse
is a quadric. We discuss the higher dimensional consequences too.

1. Introduction

Let I be an open, strictly convex, bounded domain in Rn, (centrally) symmetric
to the origin. Then the function d : Rn × Rn → R defined by

d(x,y) = inf{λ > 0 : (y − x)/λ ∈ I}

is a metric on Rn [1, IV.24], and is called Minkowski metric on Rn. It satisfies
the strict triangle inequality, i.e. d(A,B) + d(B,C) = d(A,C) is valid if and only
if B ∈ AC. A pair (Rn, d), where d is a Minkowski metric, is called Minkowski
geometry, and I is called the indicatrix of it. In a Minkowski geometry (Rn, d)

(D1) a set Ead;F1,F2
:={E : 2a = d(F1, E) + d(E,F2)}, where a > d(F1, F2)/2, is

called an ellipse if n = 2, and an ellipsoid in higher dimensions,
where F1, F2 ∈M are called the focuses, and a > 0 is called the radius.

A hypersurface in Rn is called a quadric if it is the zero set of an irreducible
polynomial of degree two in n variables. We call a hypersurface quadratic if it is
part of a quadric. Since every isometric mapping between two Hilbert geometries
is a restriction of a projectivity, and every projectivity maps quadrics to quadrics,
the quadraticity of a metrically defined hypersurface is a geometric property in
each Hilbert geometry. Thus the question arises whether the metrically defined
hypersurfaces are quadrics. In [5] we answered this question for conics.

We prove that (Theorem 4.3) a Minkowski plane is a model of the Euclidean
plane if and only if at least one of the ellipses is a quadric, and that (Theorem 4.4)
a Minkowski plane is analytic if and only if at least one of the ellipses is analytic.

As for higher dimensions, we prove (Theorem 5.1) that a Minkowski geometry
is a model of the Euclidean geometry if and only if every central planar section of
at least one quadric is an ellipse.

These results can be regarded as generalizations of [1, IV.25.4].

2. Notations and preliminaries

Points of Rn are labeled as A,B, . . . , vectors are denoted by
−−→
AB or a, b, . . . ,

but we use these latter notations also for points if the origin is fixed. The open
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segment with endpoints A and B is denoted by AB, while AB denotes the open
ray starting from A passing through B, and AB = AB ∪AB.

On an affine plane the affine ratio (A,B;C) of collinear points A,B and C

satisfies (A,B;C)
−−→
BC =

−→
AC [1, III.15.10], and the cross ratio of collinear points

A,B and C,D is (A,B;C,D) = (A,B;C)/(A,B;D) [1, VI.40.17].
It is easy to observe in (D1) that an ellipsoid intersects line F1F2, the main

axis, in exactly two points whose distance is twice the radius. Further notions are
the (linear) eccentricity c = d(F1, F2)/2, the numerical eccentricity ε = c/a. The
metric midpoint of the segment F1F2 is called the center.

In the plane we use the notations uϕ = (cosϕ, sinϕ) and u⊥ϕ := (cos(ϕ +

π/2), sin(ϕ+ π/2)). It is worth noting that, by these, we have d
dϕuϕ = u⊥ϕ .

A quadric in the plane has the equation of the form

Qσs :=

{
(x, y) :

1=x2 + σy2 if σ ∈ {−1, 1},
x=y2 if σ = 0,

}
(Dq)

in a suitable affine coordinate system s, and we call it elliptic, parabolic, or hyper-
bolic according to whether σ = 1, σ = 0, or σ = −1, respectively.

We usually polar parameterize the boundary ∂D of a non-empty domain D in
R2 star-like with respect to a point P ∈ D so that r : [−π, π) → R2 is defined by
r(ϕ) = r(ϕ)uϕ, where r is the radial function of D with base point P .

We call a curve in the plane analytic if the coordinates of its points depend on
its arc length analytically.

3. Utilities

In the presented technical lemmas the underlying plane is Euclidean.

Lemma 3.1. The border of a convex domain is an analytic curve if and only if
any one of its radial functions is analytic.

Proof. Let D be an open convex domain containing the origin O = (0, 0). Let
s 7→ p(s) be an arc length parameterization of ∂D, where s ≥ 0, and let ϕ 7→ r(ϕ) =
r(ϕ)uϕ be a polar parameterization of ∂D on [−π, π) such that p(0) = r(−π). Then

s(ξ) =

∫ ξ

−π
|ṙ(ϕ)|dϕ =

∫ ξ

−π

√
ṙ2(ϕ) + r2(ϕ)dϕ, (3.1) 〈2, 3〉

hence the function s : ξ 7→ s(ξ) is strictly monotonously increasing, and therefore
its inverse function σ : s(ξ) 7→ ξ exists and is strictly monotonously increasing.

First, assume the analyticity of r. Then, as r is bounded from below by a
positive number, the integrand on the right-hand side of (3.1) is analytic, and
therefore s is analytic. As ṡ(ξ) is positive by (3.1), the analyticity of σ follows
from the analytic inverse function theorem [3, Theorem 4.2], and this implies the
analyticity of p(s) = r(σ(s)) = r(σ(s))uσ(s).

http://www.math.u-szeged.hu/tagok/kurusa
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Conversely, assume that p is analytic. As the derivatives of the cosine and
sine functions do not vanish simultaneously, uσ(s) = p(s)/|p(s)| proves that σ is
analytic. As the derivative σ̇(t) = 1/ṡ(σ(t)) vanishes nowhere, the analyticity of s
follows again by the analytic inverse function theorem [3, Theorem 4.2]. Then the
analyticity of r(ξ) = 〈p(s(ξ)),uξ〉 follows.

The lemma is proved. �

Notice that by differentiating the last formula in the proof and then substituting
the derivative of (3.1) leads to

ṙ(ξ) = 〈ṗ(s(ξ)),uξ〉
√
ṙ2(ξ) + r2(ξ). (3.2) 〈9〉

Let again D be an open convex domain containing the origin O = (0, 0). Let
ϕ 7→ r(ϕ) = r(ϕ)uϕ be a polar parameterization of ∂D on [−π, π), and let A =

r(0), B = r(π). Let F1 ∈ AO and F2 ∈ OB.
Given ϕ0 ∈ (0, π/2), let D0 = r(ϕ0), α0 = ∠BF1D0 and β0 = ∠BF2D0.

Assuming thatD2i is defined for an i ∈ N, we define sequences recursively as follows
(See Figure 3.1.): D2i+1 := D2iF1∩∂D, α2i+1 := α2i+π, and β2i+1 := ∠BF2D2i+1;
then D2i+2 := D2i+1F2 ∩ ∂D, α2i+2 = ∠BF1D2i+2, and β2i+2 := β2i+1 − π. We
clearly have ϕ2i ∈ (0, π/2) and ϕ2i+1 ∈ (π, 3π/2) for every i ∈ N.

O

D2i

D2i+1

F1 F2

A
B

ϕ2i

ϕ2i+1

α2i

α2i+1
β2iβ2i+1 β2i+2

e 2
(β

2
i
)

e1
(α2i

)

e1
(α2i

+
1
)

e2(β2i+1)

ϕ2i ϕ2i+1 ϕ2i+2

α2i
+π7−→ α2i+1 α2i+2

+π7−→ . . .

β2i β2i+1
−π7−→ β2i+2

Figure 3.1. Sequence of angles

Lemma 3.2. If i → ∞, then α2i, β2i and ϕ2i tend to zero, α2i+1, β2i+1, and
ϕ2i+1 tend to π, and α2i+2/α2i tends to (F1, F2;A,B).

Proof. Observe that ϕ2i ∈ (0, π/2), ϕ2i+1 ∈ (π, 3π/2), and

β2i+2 < α2i < β2i and β2i+1 < α2i+1 < β2i−1 (i ∈ N),

hence the sequences β2i, β2i+1, ϕ2i, ϕ2i+1, α2i and α2i+1 decrease monotonously,
hence they are convergent.

From limi→∞ β2i> 0, limi→∞ β2i+1 >π, limi→∞ α2i> 0, and limi→∞ α2i+1 >π

follow, so limi→∞
β2i+2

β2i
= 1, hence limi→∞

α2i

β2i
= 1. By the sine law the last limit

http://www.math.u-szeged.hu/tagok/kurusa


Aequat. Math., ?(2021), ?–? c© Á. Kurusa http://www.math.u-szeged.hu/tagok/kurusa

4 Á. KURUSA

gives limi→∞
d(F2,D2i)
d(D2i,F1) = 1, which, by the continuity of the functions involved,

implies d(F2, limi→∞D2i) = d(limi→∞D2i, F1), and consequently limi→∞ ϕ2i =
π/2 which contradicts ϕ0 ∈ (0, π/2) as ϕi is monotonously decreasing. Thus, the
assumption was false, so α2i, β2i, and ϕ2i tend to zero, and α2i+1, β2i+1, and ϕ2i+1

tend to π.
So, observing Figure 3.1, we see that
e1(α2i) := d(F1,D2i)→ d(F1, B), e1(α2i+1) := d(F1,D2i+1)→ d(F1, A),

e2(β2i) := d(F2,D2i)→ d(F2, B), e2(β2i+1) := d(F2,D2i+1)→ d(F2, A),
(3.3) 〈4〉

and, by the sine law,
tanα2i

tanβ2i+2
=
e2(β2i+1) cosβ2i+1

e1(α2i+1) cosα2i+1
and

tanα2i+2

tanβ2i+2
=
e2(β2i+2) cosβ2i+2

e1(α2i+2) cosα2i+2
.

The quotient of these is
tanα2i+2

tanα2i
=
e2(β2i+2) cosβ2i+2

e1(α2i+2) cosα2i+2

e1(α2i+1) cosα2i+1

e2(β2i+1) cosβ2i+1

which, through (3.3), immediately implies the last statement of the lemma. �

Let r1 and r2 be analytic arc length parametrizations of curves, such that
r1(0) = r2(0) and ṙ1(0) = ṙ2(0). Let ` be the line through r1(0) that is orthogonal
to ṙ1(0), and let F1, F2, and B be different points on ` such that B /∈ F1F2 and
r1(0) /∈ {B,F1, F2}. Let e be an analytic arc length parametrization of a curve,
such that B = e(0) and ė(0) = uπ/2. Every point E = e(s) determines two straight
lines `1 := F1E and `2 := F2E forming small angles α and β with `, respectively.
Let the straight line ¯̀

j (j = 1, 2)through the midpoint O of the segment F1F2 be
parallel to `j . See Figure 3.2.

O
α β

r2

e

r1

¯̀1

¯̀ 2

E

F1 F2 B J

C̄1

D̄1

C̄2

D̄2

O
α β

r2

e

r1

¯̀1

¯̀ 2

E

F1

F2 B

I

C̄1

D̄1

C̄2

D̄2

Figure 3.2. Example configurations, where ṙ1(0)=uπ/2 and J=r1(0),
and ṙ1(0) = u−π/2 and I = r1(0).

Label the intersections of ¯̀
j with ri (i, j = 1, 2) as C̄1 = r1(s1(α)), D̄1 = r2(s2(α))

and C̄2 = r1(s1(β)), D̄2 = r2(s2(β)), where si(α) and si(β) are the corresponding
arc length parameters of ri at the intersection of ri with ¯̀

j (i, j = 1, 2).
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Lemma 3.3. If the curves r1 and r2 are different in every neighborhood of the
point K := r1(0), and E tends to B on the curve e, then

δ(α)

δ(β)
→ (F2, F1;B)k, for an integer k ≥ 2, (3.4) 〈8〉

where δ : ϕ 7→ 〈r1(s1(ϕ))− r2(s2(ϕ)),uϕ〉.

Proof. If r(i)
1 (0) = r

(i)
2 (0) for every i ∈ N, then, by the analyticity of r1 and r2,

r1 = r2 in a neighborhood of K, so k := min{i ∈ N : r
(i)
1 (0) 6= r

(i)
2 (0)} is well

defined and is at least two.
Let E⊥ be the orthogonal projection of E onto `. Using L’Hôpital’s rule we get

|F2 −B|
|F1 −B|

= lim
s→0

|F2 − E⊥|
|F1 − E⊥|

= lim
s→0

tanα

tanβ
= lim
s→0

(1 + tan2 α)dαds
(1 + tan2 β)dβds

= lim
s→0

α̇

β̇
. (3.5) 〈6〉

If lims→0
δ(α)
δ(β) exists, then L’Hôpital’s rule can be used, so we obtain

lim
s→0

δ(α)

δ(β)
= lim
s→0

δ̇(α)α̇

δ̇(β)β̇
= lim
s→0

δ̇(α)

δ̇(β)
lim
s→0

α̇

β̇
= · · · = lim

s→0

δ(k)(α)

δ(k)(β)

(
lim
s→0

α̇

β̇

)k
=
(

lim
s→0

α̇

β̇

)k
,

which proves the lemma. �

4. One ellipse in a Minkowski plane

We start by considering the Minkowski plane (R2, dI) with indicatrix I.
Since every ellipse is bounded, if an ellipse is a quadric, then it is an elliptic

quadric.
Take an ellipse EadI ;F1,F2

, and let ` be a line through F1 that passes F2. Let A,B
be the intersections of ` with EadI ;F1,F2

such that F1 ∈ AF2 and F2 ∈ F1B. Let IO
be the translate of the indicatrix centered at the midpoint O of F1F2, and let I, J
be the intersections of ` with ∂IO, so that I ∈ OA and J ∈ OB. Furthermore,
let tA, tB and tI , tJ , respectively, denote the tangents of the appropriate curve
EadI ;F1,F2

or ∂IO at A, B and I, J . See Figure 4.1.

O

E

F1 F2A B

tA tB

I J

tI tJϕα β

EadI ;F1,F2EadI ;F1,F2

∂IO

`

e(
ϕ)

e1(
α)

e
2
(β

)

r(α
)r(

β
)

Figure 4.1. Ellipse EadI ;F1,F2
in a Minkowski plane
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For any fixed Euclidean metric de let r be the radial function of IO with respect
to O, α = ∠(EF1O), β = ∠(EF2B) and ϕ = ∠(EOB) for the points E of EadI ;F1,F2

.
We consider these angles as functions α(ϕ), β(ϕ), and also define the functions
e1(α) = de(F1, E), e2(β) = de(F2, E) and e(ϕ) = de(O,E). Then dI(F1, E) =
e1(α)/r(α), and dI(F2, E) = e2(β)/r(β), hence

2a =
e1(α)

r(α)
+
e2(β)

r(β)
. (4.1) 〈6, 8〉

Lemma 4.1. If the ellipse EadI ;F1,F2
is a quadric, then tA ‖ tB ‖ tI ‖ tJ .

Proof. Since EadI ;F1,F2
is a quadric, ϕ and E are bijectively related, hence the

functions α(ϕ), β(ϕ) are well defined.
The symmetry of I entails that tI ‖ tJ , and it also follows that the affine center

of the quadric EadI ;F1,F2
coincides with its metric center O, hence tA ‖ tB too.

Choose a Euclidean metric de so that tA ⊥ ` ⊥ tB .
Differentiation of (4.1) with respect to ϕ gives

0 =
ė1(α)r(α)− e1(α)ṙ(α)

r2(α)
α̇+

ė2(β)r(β)− e2(β)ṙ(β)

r2(β)
β̇.

As ė1(0) = ė2(0) = 0 = ė1(π) = ė2(π), this gives at ϕ = 0 and at ϕ = π that

0 = ṙ(0)(e1(0)α̇(0) + e2(0)β̇(0)),

0 = ṙ(π)(e1(π)α̇(π) + e2(π)β̇(π)),
(4.2) 〈6〉

respectively. Applying (3.5) for the present configuration, we obtain

e1(0)α̇(0) = e2(0)β̇(0) 6= 0 and e1(π)α̇(π) = e2(π)β̇(π) 6= 0,

which prove ṙ(0) = ṙ(π) = 0 in (4.2), hence the lemma. �

Lemma 4.2. If the ellipse EadI ;F1,F2
is an analytic curve in a neighborhood of A

and B, then the curve ∂IO is analytic in a neighborhood of I and J .

Proof. By Lemma 3.1 and its proof, the functions α 7→ e1, β 7→ e2, s 7→ α and
s 7→ β, and the inverses α 7→ s and β 7→ s are analytic. Specifically these imply
that β(α) is also an analytic function.

As x 7→ 1/x is analytic in a neighborhood of r(0) > 0, r(β) is analytic in a
neighborhood of the zero too, so we only need to prove that r̄(β) := 1/r(β) is
analytic in some neighborhood of the zero. With this in mind (4.1) becomes

r̄(β) =
e1(α(β))

−e2(β)
r̄(α(β)) +

2a

e2(β)
. (4.3) 〈6, 9〉

Introduce the functions f(β) := α(β), g(β) := e1(α(β))
−e2(β) , and h(β) := 2a

e2(β) .

Then f , g, and h are analytic in a neighborhood of 0, f(0) = 0, ḟ(0) = e2(0)
e1(0) < 1,

g(0) = −e1(0)
e2(0) , and h(0) = 2a

e2(0) . Furthermore, by (4.3), the function φ(β) := r̄(β)

http://www.math.u-szeged.hu/tagok/kurusa
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solves the functional equation φ(α) = g(α)φ(f(α))+h(α). However, by [3, Theorem
4.6], such a functional equation has a unique solution, which additionally is analytic
in a neighborhood of 0. Consequently, r(β) is the reciprocal of that unique analytic
solution, so ∂IO is analytic around I, and, by its symmetry, around J too. �

Theorem 4.3. A Minkowski plane is a model of the Euclidean plane if and only
if at least one ellipse is a quadric.

Proof. Every ellipse is a quadric in the Euclidean plane, so we only have to prove
that a Minkowski plane is Euclidean if at least one ellipse is a quadric.

Assume that EadI ;F1,F2
is a quadric.

If F1 = F2, then EadI ;F1,F2
is a homothetic image of ∂I, hence ∂I is a quadric,

and therefore dI is Euclidean by [1, 25.4].
From now on we assume that F1 6= F2.
We have tA ‖ tI ‖ tJ ‖ tB by Lemma 4.1, and, as every (planar) quadric is

an analytical curve, the border ∂IO is analytic in a neighborhood of I and J
by Lemma 4.2, where O is the midpoint of F1F2. Furthermore, by the central
symmetry of IO and the definition of EadI ;F1,F2

, we have c = dI(F1, O),
−−→
AF1 =

−−→
F2B

and
−→
IA =

−→
BJ , so O is the (affine) midpoint of both IJ and AB. Additionally, we

have a · dI(O, J) = dI(O,B), because the definition of EadI ;F1,F2
implies

2dI(O,B) = 2dI(O,F2) + 2dI(F2, B)

= dI(F1, O) + dI(O,F2) + dI(F2, B) + 2a− dI(F1, B) = 2a.

Denote by C1 and C2 the points where the line through O parallel to tI intersects
EadI ;F1,F2

. Fix the affine coordinate system, where O = (0, 0), J = (1, 0) and
C1 = (0,

√
a2 − c2), and choose the Euclidean metric de such that {(1, 0), (0, 1)} is

an orthonormal basis. Let C denote the unit circle of de. See Figure 4.2.

1

C1

e(ϕ)

O

r(ϕ) (cosϕ;sinϕ)

Eϕ

J=r(0)

I=r(π)

∂IO

C

EadI ;F1,F2
=Eade;F1,F2

ϕ

A B

e1(α)

αF1

e
2
(β

)

βF2

Figure 4.2. Coinciding ellipses EadI ;F1,F2
≡ Eade;F1,F2
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Then both Eade;F1,F2
and EadI ;F1,F2

are quadrics, and they have four common
points A,B and C1, C2, and two common tangents tA and tB , hence they coincide.

By the definition of Eade;F1,F2
we have e1(α) + e2(β) = 2a. Using this fact and

using δ : ϕ 7→ r(ϕ)− 1, which corresponds to Lemma 3.3, in (4.1) we have

δ(α) = −δ(β)
e2(β)

e1(α) + 2aδ(β)
. (4.4) 〈8〉

Taking the limit of this as ϕ→ 0, we obtain

lim
ϕ→0

δ(α)

δ(β)
= −a− c

a+ c
= −(F2, F1;B).

Comparing this to (3.4), we obtain (F2, F1;B) = −1, which contradicts F2 ∈ F1B.
This contradiction implies that δ(β) = 0 in a neighborhood of J .

On the other hand, (4.4) implies that if δ(β0) 6= 0 for some β0, then δ(β2i) never
vanishes in the process described in Lemma 3.2, meanwhile β2i tends to zero by
Lemma 3.2. This is a contradiction as δ vanishes in a neighborhood of J , hence
δ ≡ 0, so the theorem is proved. �

This kind of implication extends over to analyticity too.

Theorem 4.4. The boundary of the indicatrix of a Minkowski plane is analytic if
and only if one of the ellipses of the Minkowski plane is analytic.

Proof. First, assume that the Minkowski plane (R2, dI) is analytic. Then the
circles are also analytic, because they are homothetic to the boundary of the indi-
catrix, so we only need to prove the analyticity of ellipses EadI ;F1,F2

with different
focuses.

Fix an arbitrary point E0 ∈ EadI ;F1,F2
, and let the point Ri ∈ I (i = 1, 2) be

such that ORi ‖ FiE0. Let the straight line ti (i = 1, 2) be tangent to I at Ri. Let
de be the Euclidean metric which satisfies t2 ⊥ OR2, de(O,R1) = de(O,R2), and
de(O, J) = 1. Then we have

e2
2(β) = e2

1(α) + 4c2 − 4e1(α)c cosα, and β = arcsin
e1(α) sinα

e2(β)
.

Substituting this into (4.1) results in the analytic equation

F (α, e1(α)) :=
(

2a− e1(α)

r(α)

)2

− e2
1(α) + 4c2 − 4e1(α)c cosα

r2
(

arcsin e1(α) sinα√
e21(α)+4c2−4e1(α)c cosα

) = 0.

Since

∂2F (α, e1(α)) =2
e2(β)

r(β)

−1

r(α)
− 2e1(α)− 4c cosα

r2(β)
+

+ 2
e2

2(β)

r3(β)

ṙ(β)

cosβ

( sinα

e2(β)
− 1

2

e1(α) sinα(2e1(α)− 4c cosα)

e3
2(β)

)
,
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∂2F (α, e1(α)) vanishes if and only if
e2(β)

r(α)
+
e1(α)− 2c cosα

r(β)
=
e2(β) sinα

r(β) cosβ

ṙ(β)

r(β)

(
1− e1(α)(e1(α)− 2c cosα)

e2
2(β)

)
.

By (3.2), we have ṙ(β)
r(β) = cot θ, where θ is the angle between F1E and the tangent

vector at E of EadI ;F1,F2
. Furthermore, it can be easily seen that e1(α)− 2c cosα =

e2(β) cos(β − α). Thus, the above equation is equivalent to
e2(β)

r(α)
+
e2(β) cos(β − α)

r(β)
=

cot θ

r(β) cosβ
(e2(β) sinα− e1(α) cos(β − α) sinα).

Since e2(β) sinβ = e1(α) sinα, this equation simplifies to
1

r(α)
+

cos(β − α)

r(β)
=

cot θ

r(β)

sinα− sinβ cos(β − α)

cosβ
= − sin(β − α)

cot θ

r(β)
.

In sum, ∂2F (α, e1(α)) vanishes if and only if
r(β)

r(α)
+ sin(β − α)(cot θ + cot(β − α)) = 0. (4.5) 〈9〉

At E0 we have θ=π/2, and r(β)=r(α), therefore (4.5) reduces to 1+cos(β−α)=0,
resulting β = π + α, a contradiction. Thus ∂2F (α, e1(α)) 6= 0 at E0, hence the
analytic implicit function theorem [3, Theorem 4.1] implies the analyticity of e1

in a neighborhood of α. As the point E0 was chosen arbitrarily on EadI ;F1,F2
, this

proves that EadI ;F1,F2
is analytic.

Assuming now that the ellipse is analytic, Lemma 4.2 proves the analyticity of
the boundary of the indicatrix, where F1F2 intersects it. By (4.3) we have

r̄(β(α)) =
e1(α)

−e2(β(α))
r̄(α) +

2a

e2(β(α))
.

This shows that if r̄ is analytic in an interval (−ε, ε), then it is also analytic in the
interval (−β(ε), β(ε)). According to Lemma 3.2, this means that the boundary of
the indicatrix is analytic. �

5. Quadrics in a Minkowski geometry

Note that in the planar case Theorem 5.1 states that if one ellipse is a quadric,
then the Minkowski plane is a model of the Euclidean geometry.

Theorem 5.1. A Minkowski geometry is a model of the Euclidean geometry if and
only if every central planar section of at least one quadric is an ellipse.

Proof. As every central planar section of each elliptic quadric is an ellipse in the
Euclidean geometry, we only have to prove that a Minkowski geometry is Euclidean
if every central planar section of at least one quadric is an ellipse.

Let the quadric Q be such that its every central planar section is an ellipse.
Then Theorem 4.3 implies, that every central planar section of the indicatrix is an

http://www.math.u-szeged.hu/tagok/kurusa
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ellipse, hence the statement of the theorem follows immediately from [2, II.16.12]
which states for any integers 1 < k < n that the border ∂K of a convex body
K ⊂ Rn is an ellipsoid if and only if every k-plane through an inner point of K
intersects ∂K in a k-dimensional ellipsoid. �

For the other deduction we only have the following result that we put here
without its easy proof.

Theorem 5.2. A Minkowski geometry is a model of the Euclidean geometry if and
only if there is a hyperplane and a point in that hyperplane such that every line in
the hyperplane through the point is parallel to the main axis of some ellipsoid that
is a quadric.

It is worth noting that the question whether finding an ellipsoid that is a quadric
would imply that a Minkowski geometry is Euclidean remains open for the non-
planar cases.

Acknowledgement. I appreciate József Kozma for some discussions.
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