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FINDING NEEDLES IN A HAYSTACK

ÁRPÁD KURUSA

Abstract. Convex polygons are distinguishable among the piecewise C∞

convex domains by comparing their visual angle functions on any surrounding
circle. This is a consequence of our main result, that every segment in a C∞

multicurve can be reconstructed from the masking function of the multicurve
given on any surrounding circle.

1. Introduction

Given a compact convex domain K inside a circle, we say it distinguishable if no
other convex disc exists in the circle that subtends the same angle at each point
of the circle as K does. Green proved in [3] that a compact convex domain inside
a circle which subtends a constant(!) angle ν at each point of the circle is not
distinguishable if and only if ν/π is a rational number with even denominator in
its smallest terms.

However it is proved in [4] and [8], that two polygons are always distinguishable
from each other, so the question

Are convex polygons distinguishable among convex domains? (1.1) 〈1〉

emerged naturally in [5, Question 3.2], where it is proved that all triangles [5,
Corollary 2.4], and the regular octagon surrounded by the regular star octagon
inscribed in the circle [5, Example 2.5] are distinguishable. Further, the midpoint
square of the inscribed square are distinguishable too by [6].

In this article we prove in Theorem 4.1, that every segment in a C∞ multicurve
can be determined by knowing the masking function of the multicurve on any
surrounding circle.

This implies an affirmative answer for (1.1) formulated in Corollary 4.2, i.e. that
every convex polygon is distinguishable among the convex domains of piecewise
C∞ boundary.

2. Notations and preliminaries

We work in the plane R2, the open unit ball centered at (0, 0) is B2, and its
boundary, the unit circle is S1 = ∂B2. Unit vectors are shorthanded as uβ =
(cosβ, sinβ).

The linear map ·⊥ on S1 is defined by u⊥β = uβ+π/2 = (− sinβ, cosβ). The
Euclidean multiplication is denoted by 〈·, ·〉.
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Let r : [a, b]→ R2 be a differentiable curve parameterized by arc-length param-
eter s. The trace Tr r of r is the set of points in R2 that is in the range of the
function r. A non-degenerate segment of the form r([s0, s1]) (s0 < s1) in Tr r is
said traced. We call also a straight line traced if there is a traced segment on it.

Amulticurve rJ is a finite set of differentiable curves rj : [aj , bj ]→R2 (j∈J ⊂N),
the members of the multicurve, such that the members are of finite length and do
not intersect each other in open arc. The trace Tr rJ of a multicurve rJ is the
union

⋃
j∈J Tr rj . A multicurve is said to have a property if each of its members

satisfies that property.
Let C be the set of curves that
• are twice differentiable,
• are not self-intersecting,
• are parameterized by arc-length on a finite closed interval,
• are intersecting every straight line in only finitely many closed (maybe

degenerate) segments,
• have only finitely many tangents through any point of its exterior,
• have only finitely many points of vanishing curvature beside a finite set of

traced straight lines, and
• have only finitely many multiple tangent lines.

A multicurve is called regular if all of its members are in C. A multicurve is
a multisegment if all of its members are segments. A multisegment is obviously
regular. To avoid long analytic technicalities, we confine ourselves to considering
only regular multicurves.

Following [9], the masking number1 MT (P ) of the trace T = Tr rJ of the regular
multicurve rJ is MT (P ) = 1

2

∫
S1 #(T ∩ `(P,w))dw, where `(P,w) is the straight

line through the point P ∈ R2 with direction w ∈ S1 and # is the counting
measure. If T is a closed convex curve, then the masking number MT (P ) is twice
of the point projection (see [2]) and the shadow picture (see [4]).

We define the masking function MrJ : R2 → R of a regular multicurve rJ by

MrJ
(X) =

∫ π

0

#(Tr rJ ∩ `(X,uα)) dα.

We clearly have MrJ
(X) =

∑
j∈J Mrj (X) and also MTr rJ

= MrJ
.

Proposition 2.1 ([9, Proposition 3.2]). If r : [0, h] 3 s 7→ r(0)+sv (v ∈ S1), then

∂wMr(X)=

{
−|〈v,w⊥〉|( 1

x + 1
h−x ) if X=r(0)+xv and x∈R\{0, h},

−∂−wMr(X) if X /∈ `(r(0),v),

where w ∈ S1 and ∂w denotes the one sided directional derivation.

1This number is finite at almost every point because of the regularity condition.
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Lemma 2.2 ([9, Lemma 4.1]). Let rJ be a regular multicurve, and let w ∈ S1 be
not parallel2 to any traced segment.

(1) If no traced line goes through X, then ∂wMrJ
(X) + ∂−wMrJ

(X) = 0.
(2) If X /∈ Tr rJ , then ∂wMrJ

(X) + ∂−wMrJ
(X) ≥ 0, and it is positive if

and only if X is on a traced straight line.
(3) Except for finitely many points X of a traced segment of rJ we have

∂wMrJ
(X) + ∂−wMrJ

(X) 6= 0.

For multicurves of class Ck (k ∈ N) item (1) can be obviously replaced with
(1’) if no traced line goes through X, then ∂kwMrJ

(X) = (−1)k∂k−wMrJ
(X).

Finally, the following known result on harmonic functions is displayed here for
the sake of completeness, and because it is crucial in what follows.

Theorem 2.3 ([1, I.4. Theorem (c)]). If the function f is harmonic on the open
subset D of Rn, and f has a continuous extension to D ∪ ∂D, then the supremum
and infimum of the extension are attained on ∂D.

Here the space Rn is with the Euclidean topology and is compactified by the
ideal point at infinity, which is not included in Rn, but is included in the boundary
of every unbounded subset of Rn.

3. Utilities

Let φj(p) ∈ (−π, π) be the oriented visual angle of the jth member segment
rj : [0, h] 3 s 7→ r(0) + sv (v ∈ S1) of the multisegment rJ at p ∈ R2 \ Tr rJ , i.e.

(cosφj(p), sinφj(p))=
(〈rj(0)−p, rj(h)−p〉
|rj(0)−p|·|rj(h)−p|

,
〈(rj(0)−p)×(rj(h)−p),m〉
|rj(0)−p|·|rj(h)−p|

)
, (3.1) 〈4〉

where m is a fixed unit normal vector of the plane. Observe that φj changes sign
if the parameterization of rj was reversed, so the definition

ΦrJ
: R2 3 p 7→

∑
j∈J

φj(p)

is valid only if a choice of the parameterization was fixed for every segment.
We need the following slight generalization of the observation given in the proof

of [4, Lemma 2.2].

Lemma 3.1. Let rJ be a multisegment.
(1) If no traced line of rJ goes through p, then MrJ

is real analytic around p.
(2) The function ΦrJ

is real analytic on R2 \ Tr rJ .

2This condition is mistakenly missing in [9, Lemma 4.1].
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Proof. As MrJ
and ΦrJ

are locally the sum of the functions ±φj , we can assume
without loss of generality that rJ is the segment r : [0, h] 3 s 7→ r(0)+sv (v ∈ S1).

Since both the functions arccos and arcsin are analytic on (−1, 1), the equality
of the first coordinates in (3.1) proves both statements if the traced line avoids p,
and the equality of the second coordinates in (3.1) proves the second statement if
the traced line goes through p. �

The following lemma is an obvious extension of [9, (1) of Theorem 6.1].

Lemma 3.2. For every multisegment rJ the functions MrJ
and ΦrJ

are locally
harmonic, where they are differentiable.

For a more direct proof one observes that MrJ
and ΦrJ

are locally the sum of
the functions ±φj , hence one can assume without loss of generality that rJ is a
segment for which [7, (2) of Lemma A.1] implies the harmonicity directly.

4. Finding the needles in a haystack

Theorem 4.1. The traced segments of a regular multicurve of class C∞ can be
reconstructed if the masking function is given on any rounding circle.

Proof. Let Tr rJ be in B2, and suppose that MrJ
is given on S1.

By (1) and (2) of Lemma 2.2 the set of the intersections of S1 with the traced
lines is {uξ : ∂u⊥

ξ
MrJ

(uξ) + ∂−u⊥
ξ
MrJ

(uξ) > 0}. This is a finite set, so we can
enumerate its elements in anticlockwise order: uξ0 , . . . ,uξi , . . . ,uξn .

Let pI be the multisegment of all the traced segments in rJ . Let pIi be the
multisegment of the segments in pI that are collinear with uξi (i = 0, . . . , n). Let
uξ0i = uξi , and let uξ1i , . . . ,uξmi , . . . ,uξpii be the remaining intersections of S1 with
the traced lines of pIi enumerated in anticlockwise order.

Let pImi
be the multisegment of the segments in pIi lying on the straight line

uξiuξmi , and let Ami be the counterclockwise arc ̂uξmi uξm+1
i

of S1 for every m =

1, . . . , pi, where pi + 1 is understood as 0. (See Figure 4.1.)

A0
i

A1
i

pI1i

pIpii

pImi

uξi = uξ0iuξ1i

uξmi
uξpiiB2

S1

Figure 4.1. Traced segments, traced lines and the “first” arc they determine
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With these notations in hand (1’) of Lemma 2.2 gives for every k ∈ N that

∂ku⊥
ξ
MrJ

(uξ) + (−1)k+1∂k−u⊥
ξ
MrJ

(uξ)

=

{
2∂k

u⊥
ξi

MpIi
(uξi) if ξ = ξi for an i ∈ {0, . . . , n},

0 if ξ 6= ξi for every i ∈ {0, . . . , n}.

(4.1) 〈5〉

According to (1) of Lemma 3.1 function MpIi
is analytic on the arc A0

i , so the
values in (4.1) determine the function MpIi

on the arc A0
i .

Take the parameterization re on every segment in pIi so that φe > 0 on A0
i .

Then ΦpIi
≡ MpIi

on A0
i so (2) of Lemma 3.1 gives ΦpIi

all over S1. From this
Theorem 2.3 implies that ΦpIi

is determined all over the exterior of B2, because
ΦpIi

vanishes at infinity and is harmonic in the exterior of B2 by Lemma 3.2.
In the other hand, ΦpIi

is real analytic on R2 \ TrpIi by (2) of Lemma 3.1 so
it is determined on R2 \ TrpIi by the unique analytic extension from the outside
of B2. However, ΦpIi

can not extend continuously to TrpIi because it has different
limits from different sides of the traced line of every segment in the multisegment
pIi . Thus pIi is determined as the set of points where ΦpIi

can not extend to.
Considering the difference MrJ

−MpIi
puts us into the same situation as at the

start of the proof, but with less traced straight lines, so repeating our procedure
over and over again will lead to the determination of all traced segments. �

As a special case we obtain from Theorem 4.1 the following nice result.

Corollary 4.2. Every segment of the piecewise C∞ boundary of a convex domain D
is determined by the visual angle function of D given on a surrounding circle.

Since a point of a surrounding circle can be collinear with at most two traced
segments of the boundary of a convex domain, the following comes up.

Conjecture 4.3. In the interior of B2 any closed convex polygon and any closed
convex disc with piecewise C5 boundary can be distinguished from each other by
their visual angle functions restricted to S1.
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