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CURVATURE IN HILBERT GEOMETRIES

ARPAD KURUSA

ABsTRACT. We provide more transparent proofs for the facts that the curva-
ture of a Hilbert geometry in the sense of Busemann can not be non-negative
and a point of non-positive curvature is a projective center of the Hilbert ge-
ometry. Then we prove that the Hilbert geometry has non-positive curvature
at its projective centers, and that a Hilbert geometry is a Cayley—Klein model
of Bolyai’s hyperbolic geometry if and only if it has non-positive curvature at
every point of its intersection with a hyperplane. Moreover a 2-dimensional
Hilbert geometry is a Cayley—Klein model of Bolyai’s hyperbolic geometry if
and only if it has two points of non-positive curvature and its boundary is
twice differentiable where it is intersected by the line joining those points of
non-positive curvature.

1. INTRODUCTION

A Hilbert geometry is a pair (Z,dz) of an open, strictly convex domain Z C R",
and the Hilbert metric |2, page 297] dz: T x T — R given by

0, if X =Y,

dz(X,Y) = _
2(XY) Hin(A, B; X,Y)|, if X #Y, where AB = TN XY.

(1.1) «4,5)

Every geodesic ? of a Hilbert geometry (Z,dz) is the intersection ZN ¢ of Z with a
straight line /.

Busemann posed the problem [3, 34th on p. 406] if a Hilbert geometry that has
non-positive curvature at every point is a Cayley—Klein model of Bolyai’s hyperbolic
geometry. This was affirmatively answered in [4, Theorem, p. 119], where Kelly
and Strauss showed that if a point in a Hilbert geometry (Z,dz) has non-positive
curvature then it is a projective center of Z. They finished [4] by a conjecture that a
Hilbert geometry can contain no points of non-negative curvature. This was proved
in [6], where Kelly and Strauss closed the paper by discussing the problem if

a projective center has mon-positive curvature. (1.2) (1)

In this paper we provide a bit more transparent proofs for the above mentioned
results of Kelly and Strauss, and then we prove (1.2) in Theorem 4.2. Finally we
obtain sharper affirmative answers for Busemann’s problem [3, 34th on p. 406] in
Section 5 as easy consequences.
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2 A. KURUSA

2. NOTATIONS AND PRELIMINARIES

Points of R™ are denoted as A, B, .... The open segment with endpoints A and
B is denoted by AB, and AB denotes the line through A and B.

We denote the affine ratio of the collinear points A, B and C by (A, B; C) that
satisfies (A,B;C’)B? — AC. The affine cross ratio of the collinear points A, B
and C,D is (A, B;C,D) = (A, B;C)/(A, B; D) [2, page 243].

In this article Z is an open, strictly convex domain in R™, where n > 2. We
shall use without further notice the well-known fact [8, Theorem 25.3], that a
convex function has both one-sided derivative at every point, and its derivative is
strictly monotone, hence it is differentiable everywhere except at most a countable
set. Moreover, a convex function has a second-order quadratic expansion at almost
every point of its domain by Alexandrov’s theorem [1] (see [9, Theorem 2.1]). These
are called Alexandrov points, and in the expansions the usual big-O notation is used.

Given a point P € Z, the polar P* of P is defined as the locus of every point X
that is the harmonic conjugate of P with respect to A and B, where AB = ZTNPX.
It is easy to see [7, p. 64] that the polar P* of a point P € Z C R™ is a hyperplane
outside Z if and only if P is a projective center of Z, i.e. there is a projectivity w
such that w(P) is the affine center of w(Z).

It is well known that a Hilbert geometry is the Cayley—Klein model of Bolyai’s
hyperbolic geometry if and only if it is given by an ellipsoid [2, 29.3].

A Hilbert geometry at a point O has positive, non-negative, non-positive and
negative curvature in the sense of Busemann if there exists a neighborhood U of
O such that for every pair of points P,Q € U we have

QdI(PaQ)>dI(PaQ)7 2dI(P7Q) ZdI(PaQ)a

2d7(P,Q) < dz(P,Q),  2dz(P.Q) < dz(P.Q),
respectively, where ]5, Q are the respective dz-midpoints of the geodesic segments
OP and OQ [3, (36.1) on p. 237]. If neither of the cases is satisfied in any neigh-

borhood of O, then we say that the curvature is indeterminate [4, Definition 1]'.
A projectivity w is clearly a bijective isometry of (Z,dz) to (w(Z), dx (1)), hence

Busemann’s curvature is a projective invariant. (2.1)

3. PREPARATIONS
We consider a Hilbert geometry (Z,dz) and a point O in Z.

Lemma 3.1 (|4, Lemma 1 and Corollary|). There exist two (maybe ideal) points
X andY in O* such that line XY does not intersect T, and 9T is differentiable at
the points in OZ N (OX UOY).

INotice that positivity or negativity of the curvature in [4, Definition 1] corresponds to non-
negativity, respectively non-positivity in our terms.

International Journal of Geometry, 9 (2020), No. 1, 85-94 © A. Kurusa http://www.math.u-szeged.hu/tagok /kurusa

(6,7,9)


http://www.math.u-szeged.hu/tagok/kurusa

CURVATURE IN HILBERT GEOMETRIES 3

Proof. There is at least one chord AB of T which is bisected by O. Then the
harmonic conjugate X of O with respect to A and B is on the line at infinity.

If X is the only point of O* at infinity, then O* cannot completely lie within the
strip formed by the two supporting lines of Z which are parallel to AB, because
otherwise, as O* is a connected curve, it would intersect Z. Thus, a further point
Y of O* outside this strip exists.

If X is not the only point of O* at infinity, then let that point be Y.

Then line XY does not intersect Z, but intersects O* in the points X and Y.

Since all but a denumerable set of points of 9Z are points of differentiability, we
may choose points X € O* and Y € O* near X and Y, respectively, so that 97 is
differentiable at the points in 0Z N (OX UOY), and XY does not intersect Z. [

Let ¢; and /5 be straight lines through O, and let I+ be straight lines through
O such that

7(61,62;1_,14_) 2 1. (31)
Denote by Y4 the points where [, intersects 0Z so that
(Y_,Y;0)? <1, (3.2)

Let t+ be the tangent lines of 07 at Y.

Fix a coordinate system so that O = (0,0), {_ is the z-axis, [} is the y-axis,
and Y, is in the upper half-plane. For z in a small neighborhood of 0, let y, be
the continuous functions of = such that (z,y, (x)) are the two points of 07 with
abscissa z, and Y1 = (0,y,(0)) so £y, (x) > 0.

Fix an Euclidean metric d such that the two axes and the lines ¢; and /5 are
perpendicular to each other, respectively. Let s > 0 be the slope of ¢1, hence the
slope of ¢35 is —1/s. Let my be the slope of ¢4, and if the intersection of ¢1 and
the z-axis exists, then denote it by 7. So Figure 3.1 shows what we have.

Yoq T,y (@)
(era erS)

FicURE 3.1. The configuration in euclidean plane.
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Let py, g+ > 0besuch that (py, £p4s) are the points of /1NOZ, and (£q+, Fg+/s)
are the points of /5 N OZ.

Lemma 3.2. If O is the affine midpoint of the chords {1 NZ and {5 NI, and the
points Yy are Alexandrov points of 0L, then in a small neighborhood of O we have

2 2

dz(P,Q) — 2dz(P, Q) > E(m - F(BQ

where P, Q are the dz-midpoints of the geodesic segments OP and OQ, respectively.

+2°0(1), (3.3)

Proof. Since O is the midpoint of the chords 171 =/¢;NZ and 172 =l NZ, we have
p:=py=p-and ¢ :=q4 =q-. 3
We have to show that there is an € > 0 such that the points P = (z,sz) € ¢4,
Q = (z,—x/s) € ly (z € (0,¢)), and the respective dz-midpoints P,Q of the
geodesic segments OP and OQ satisfy (3 3).
The strict triangle inequality dz (P, Q) < dz(P, P)+dz(P,Q)+dz(Q,Q), where
P=(%,%)and Q = (%,3%), gives

dz(P,Q) - 2dz(P,Q) > (dz(P, Q) — 2dz(P,Q)) — 2(dz(P, P) + dz(Q, Q)), (3.4)

so it is enough to estimate the right-hand side of this inequality from below.
By (1.1) and the Taylor series expansion of the logarithm, we have

dz(0, P) = %1 ifi :%(In(1+%)fln<lf%>) ;il_g_n(;)

i=1

hence

1 TN 2541 B O 9—1-2j , 1\ 2j+1
dI(O’P):;QjH(p) , and dI(OJD):JZ:; 2j+1(5) '

The same calculation for Q and Q leads to

. . 00 5 1-2j ;
#0.0) =3 (D)7 m w0 - (57
<

Further, as dz(0, P) = dz(O, P)/2, and d7(0, Q) = dz(0,Q)/2, the above formu-
las also imply

oo . 2 J
42(P.P) = |dz(0. P)=dz(0.P) = 3 > 2 ()7 39
j=1
A A —_ > - 72 j
12(Q.Q) = 12(0.Q) - (0.9 = 3> = (£)77. (9
j=1
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Since dz(P,Q) = ’1 (éi?il)*_(z : _;:/ (;i;;f))‘ by (1.1), the Taylor series expan-
sion of the logarithm gives
dI(P7 Q)
= o(m(r+ =) (- ) (i ) (i )
2 —y_(x) Yy () Yy () —y_(z)
_1<§:1—(—1)i( sT )i+§:1—(—1)i< z/s ))
2\~ i —y_(z) P i Yy ()
O _g2i+1 r N2+l 2 g2l z N2+l
o I | )
;)2]+1<y_(x)) Z2J+1 y+(x)) SR
sx/2—y_(x/2)  —x/2/s—y_(x/2) . .
In the same way dz(P,Q) = ‘1 (y+(x/2)7sm/2 R NCIPETEIE ) implies

— > _g2i+1 /2 \20+1 > 251 /2 \2+!
dI(P’Q)_j:0 2j + 1 (y_(x/2)) +§) 2j—|—1(y+(3:/2)) ' (3.8) (5)

Since the points Y3 are Alexandrov points of 0Z, we have the Taylor series
expansions 7 (t) = 7, (0) +ty/.(0) +t20(1) of the functions . = 1/?& For easy
handling of this we define gﬁ? (0) (¢ =0,1,2) so that g, (¢t) = ZZ 0 t’yi (0)/d!.

Substituting (3.5), (3.6), (3.7), (3.8), and the above Taylor expansion of 7, (z)
into the right-hand side of (3.4), we obtain

(dz(P,Q) — 2d7(P,Q)) — 2(dz(P, P) + dz(Q,Q))
2j+1 , 2 =(4)

00 . 0o _9i_ 2 (1) 9711
— S i1 Y- (0)>2J+1 s~ 2 1( i1 Y+ (0)) L
P 2j+1(§$ il +jz::0 2+ 1 ;‘T il

2, g2+l 79 241 O —2j-1 , 2 _(i) 9ii1
y-'(0)\ 2+ 5 gy (0)\ 2+
_9 ( i+1 ) 9 ( i+1 Y+ ) B
Z ] +1 Z 312i+1 Jgo 2j +1 ;x i12i+1

i 1—2"2% (x)2j+1 i 1-9"2 (x)2j+1
o+l i A

Separating the summands with index j = 0 from the sums with running variable j,
and moving them to the beginning result in

(dz(P, Q) —2d7.(15 Q)) —Q(dz(P P)+d7(Q,Q))
Z z+1y + i i+1 Y+ >0 i i+1g<j>(0)_
o i:ox 3120

2 (1)
1 19+ (0)
_ = i+1J4+ \7/ 3 1
. g x i +2°0(1).
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The summands with index ¢ = 0 just cancel each other, the summands with index

i = 2 has multiplier 23, so we obtain

(dz(P,Q) — 2dz(P,Q)) — 2(dz(P, P) + dz(Q, Q))

IQ(;S 7, (0) = 55(0)) +20(1).

Since y, := 1/y,, one gets

1_ 5_ —-19,0) sy (0) 1 /s?>m_ m
1= 5 (0) 53 (0) = 5o 4 5 = 5o (o — )
2s 2 25 y7(0)  292(0) 2s\yz(0) y7(0)
that proves the lemma. O

4. CURVATURE IN HILBERT GEOMETRY

Firstly we reprove the result of [6] using our preparatory Lemma 3.2.

Theorem 4.1. A Hilbert geometry can not have positive or non-negative curvature
at any point.

Proof. It is enough to prove that

through every point O of a Hilbert geometry (Z,dz) there are two geodesics

01 and Uy such that in any suitable small open neighborhood U of O in-

equality 2dI(P Q) < dI(P Q) is fulfilled for some points P € 6NU and (4.1) (6, 7)
Q € lyNU, where P,Q € U are the dz-midpoints of the geodesic segments

OP and OQ, respectively.

As two geodesics lie always in a common plane, it is enough to prove (4.1) in the
plane. Let O be an arbitrary point in Z C R2.

By Lemma 3.1, there is a projectivity w such that @w(O) is the affine center of
at least two geodesics w(f;) and w(fy). So taking (2.1) into account, we assume
from now on that O is the affine center of the segments {1 NZ and lo NT.

Choose the straight lines /4 through O so that Y1 are Alexander points of 0Z,
and —(f1,02;1_,14) > 1. This is possible because if equality happened in (3.1),
then rotating [_ a little bit helps. So by (3.2) we have

- (£17€2;l—vl+) > (Y—3Y+;O)2' (42) <7>

If either one of the tangents ¢ is parallel to [_, then slightly rotate [_ around O so
that it keeps the properties required above and intersects the tangents ¢+ in some
points, say Ty =ty Ni_. If (T4, T-;0)| < |(Y;,Y_; O)|, then change the indexing
from + to F, so we have |(T4,T_;0)| > |(Y},Y_; O)].

Now we choose a coordinate system so that the positive half of the z-axis contains
T_. Figure 4.1 shows what we have if O € T_T, .
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Ficure 4.1. The affine configuration it O € ZTNTT_.

2
. . m_ 2y+(0) _ m4
By Lemma 3.2 statemer:t (4.1) fulfills if the main term 207 (0) (s O] o)
2 y+(0)

y2 (0)

2¥1(0) —s [YLOP (61, 6551)

in (3.3) is positive, i.e. s > . Observe that (4.2) implies

5 _ _ _ (G, b5l L)
y2(0)  1/s|OY_|2  (Y_,Y;0)? (Y_,Yy;0)?

So we need to prove that =+ < 1. If 0 < (T,7_;O), then m . < 0 and therefore
b < 0. If (T4, T_;0) < 0, then

> 1.

me _ [VLO|/|IT 0| _ |[Y,0l0T | _|(Vy,Y0)| _ |
m_  |OY_|/|OT| ~ [OY_||T50| ~ [(T4,1-:0)| =

so the proof is complete. |

We use again Lemma 3.2 to improve [4, the first statement of Theorem].

Theorem 4.2. A point O in the Hilbert geometry (Z,dz) has non-positive curva-
ture if and only if it is a projective center of T.

Proof. Firstly we prove the necessity part?.

We assume that (Z, dz) has non-positive curvature at O, and have to prove that
O* is a hyperplane. For this it is enough to prove that every plane section of O* is
a straight line. So, from now on we assume that Z C R?, and need to prove that

there is a projectivity w such that w(O) is the affine center of w(T).

By Lemma 3.1, there is a projectivity w such that w(O) is the affine center
of at least two geodesics w(¢1) and w(¥2), so, according to (2.1), we may assume
without loss of generality that O is the affine center of the segments 1 N T and
lNT.

2This is [4, first statement of Theorem)]
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This time we choose the straight lines [ through O so that
— (b1, lo51_,14) =1, (4.3)

Y, are Alexander points of 0Z, and [_ intersects both t1. This can be achieved
easily, because except the two directions, where [_ is parallel to one of the tangents
t4+, and where a point Yy is not an Alexander point of 97, the direction of [_ can
be chosen freely, and [, is determined change accordingly by (4.3).

Choose the direction of the x-axes so that the abscissa of T_ be positive. Again
Figure 4.1 shows what we have if O € T, T_.

Since the Busemann curvature is non-positive, i.e. 2dI(P,Q) > dz(P,Q), the
2

main term in (3.3) of Lemma 3.2 should vanish, i.e. smo — . However
y2 (0) y3(0)
32:—1_—/’;:—(51,52;l,):—(ﬁl,ég;l,,u) =1, so _y;2((()0ﬂ;) = y;;((();;) follows, where
- ¥

the sign + at 0+ is determined by the direction of the z-axis. Rearrangement gives

y+(0) (=y-)(0)
Oy s ~ O e
that, as +y,(0) = d(0,Y%) and +y.(0)/(£y4(0)) = d(O,T+), means that the
triangles AOY, T, and AOY_T_ have equal areas.

Change now to a Euclidean metric d. such that ¢; and /> are orthogonal. Let
the direction vector of I, be (cosp,sing), hence the direction vector of I_ is
(cosp, —singp), and let r be the radial function of dZ from the point O, hence
Y, =r(p)(cosp,sing) and Y_ = r(¢ + m)(cos(p + m),sin(¢ 4+ m)). See Figure 4.2.

(¥ a+\
(p \
b £ \,6\’\t+
\‘ T+

N

FIGURE 4.2. We have area(AOY, Ty ) = area(AOY_T_) for every ¢.

Define o := £(0,Y;,T4), B := m —a — 2¢p. Then cota = —7(p)/r(p) and
a(p) :=2area(AOY, T, ) = r%g@)% sin v, hence

sin

sin(2¢) r2( )w = r72(p)(sin(2p) cot a + cos(2¢))

a(p) sin «
. — () 1 1/sin(20)\
= sin(2¢p) () +COS(290)7,2(@) = 5( 2(p) ) )
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Thus, we have

(sin(?cp) )’ _ sin(2¢)  sin(2(¢ + 7)) _ (smgQ((p + 7)) )’7

72(¢p) alp) — alp+m) (p+m)
and also lim,_,g *;g((Q:;) =0 = lim,_,o % Thus 7(¢) = r(p + ) follows,

meaning that Z is affine symmetric with respect to O.
Thus the necessity part of the theorem is proved.
Next we prove the sufficiency part?.
We assume that O is a projective center of Z, and we have to prove that

there is a suitable small open neighborhood U of O that for every
geodesics 01 and Uy through O inequality ZdI(P Q) < dI(P Q) is ful-

filled for every points P € {1y NU and Q € by NU, where P,Q € U are (44)
the dz-midpoints of the geodesic segments OP and OQ), respectively.

According to (2.1), we may assume without loss of generality that O is the affine
center of Z. Since two geodesics lie in a common plane, it is enough to prove (4.4)
in the plane, so we assume that O is the affine center of 7 C R2.

Choose the straight lines I+ so that Yy are Alexander points of 9Z, and

— (fl,gg;l,,br) > 1. (45)

This is possible because if equality happened in (3.1), then rotating [_ a little bit
helps. Moreover, if ¢ is parallel to [_, then one can slightly rotate [_ around O so
that (4.5) remains valid and intersects ¢;. Thus, we can assume that the point T
exists. Since O is the affine center of Z, we have ¢, || t_, so also point T_ exists,
and O is clearly the affine center of 7_T7 .

Now we fix the coordinate system and euclidean metric given in Section 3 so
that the positive half of the x-axes contains 7_. Again Figure 4.1 shows what we
have.

By Lemma 3.2 statement (4.4) fulfills if the main term 55— (s2 % O _ Z4) in

2sy7 () \° 42 (0) m—
2
3.3) is positive. This fulfills because m* =1byty | t_, m_ >0, and s> y2+(0) —1=
y% (0)
—15 —1=—(l, b1 ,14) =1 >0 by (4.5). 0

5. CONSEQUENCES

The following statements sharpen and extend the solution [4, second statement
in Theorem]| of Kelly and Strauss given to Busemann’s [3, Problem 34, p. 406].

Theorem 5.1. A Hilbert geometry is a Cayley—Klein model of Bolyai’s hyperbolic
geometry if and only if there is a hyperplane intersecting the Hilbert geometry so
that every point of the intersection is of non-positive curvature.

3The last paragraph of [6] argues that this “does not seem easy”.
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Proof. If the Hilbert geometry is a Cayley—Klein model of Bolyai’s hyperbolic
geometry, then it has non-positive curvature at every point.

If there is a hyperplane intersecting the Hilbert geometry so that the Hilbert ge-
ometry has non-positive curvature at every point in the intersection, then all these
points are projective centers by Theorem 4.2, and therefore [7, Theorem 3.3(a)| im-
plies that the domain is an ellipsoid, hence the Hilbert geometry is a Cayley—Klein
model of Bolyai’s hyperbolic geometry. O

For dimension 2 we have an even sharper version.

Theorem 5.2. A 2-dimensional Hilbert geometry is a Cayley—Klein model of the
hyperbolic space if and only if it has two points of non-positive curvature and its
boundary is twice differentiable where it is intersected by the line joining those
points of non-positive curvature.

Proof. If the 2-dimensional Hilbert geometry is a Cayley—Klein model of Bolyai’s
hyperbolic plane, then it has non-positive curvature at every point.

If the 2-dimensional Hilbert geometry has two points of non-positive curvature
and its boundary is twice differentiable where it is intersected by the line joining
those points of non-positive curvature, then [5, Theorem 3| implies that the domain
is an ellipse. U

ACKNOWLEDGMENT. The author thanks Janos Kincses for finding article [7].
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