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CONICS IN MINKOWSKI GEOMETRIES

ÁRPÁD KURUSA

Abstract. Euclidean geometry is the only Minkowski geometry in which
either there is a centrally symmetric, or a quadratic conic, or there is a conical
ellipsoid or hyperboloid.

1. Introduction

Let I be an open, strictly convex, bounded domain in Rn, (centrally) symmetric
to the origin. Then function d : Rn × Rn → R defined by

d(x,y) = inf{λ > 0 : (y − x)/λ ∈ I}
is a metric on Rn [1, IV.24], and is called Minkowski metric on Rn. It satisfies
the strict triangle inequality, i.e. d(A,B) + d(B,C) = d(A,C) is valid if and only
if B ∈ AC. A pair (Rn, d), where d is a Minkowski metric, is called Minkowski
geometry, and I is called the indicatrix of it. In a Minkowski geometry (Rn, d) a
set
(D1) C%d;F,H :={X ∈ Rn : %d(X,H) = d(F,H)d(F,X)} is called a conic,

where H is a hyperplane, the leading hyperplane, F /∈ H is a point, the focus,
and % > 0 is a number, the radius. A conic is said to be elliptic, parabolic and
hyperbolic, if % < d(F,H), % = d(F,H) and % > d(F,H), respectively1.

We prove in Theorem 4.2 and Theorem 4.3 that if one of the conics is centrally
symmetric, then the Minkowski plane is Euclidean.

Further, we prove in Theorem 5.1 that if one of the conics is quadratical, then
the Minkowski plane is Euclidean. This can be regarded as a generalization of the
theorem in [1, 25.4] which states that a Minkowski geometry is Euclidean if and
only if its indicatrix is an ellipsoid.

Finally, we prove in Theorem 6.1 that the Euclidean space is the only Minkowski
geometry in which one of the ellipses or hyperbolas is a conic. For elliptic conics
this strengthens [6, Theorem 2].

2. Notations and preliminaries

Points of Rn are denoted as A,B, . . . , vectors are
−−→
AB or a, b, . . . , but we use

these latter notations also for points if the origin is fixed. The open segment with
endpoints A and B is denoted by AB = (A,B), AB is the open ray starting from
A passing through B and the line through A and B is denoted by AB.
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1With a slightly more general interpretation of (D1), we may allowH to be the ideal hyperplane

and % = d(F,H) as infinity. Then we get the spherical conic, i.e. the sphere.
1
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We denote the affine ratio of the collinear points A,B and C by (A,B;C) that
satisfies (A,B;C)

−−→
BC =

−→
AC.

Notations uϕ = (cosϕ, sinϕ) and u⊥ϕ := (cos(ϕ + π/2), sin(ϕ + π/2)) are fre-
quently used. It is worth to note that by these we have d

dϕuϕ = u⊥ϕ .
A curve in the plane is called quadratical, if it is part of a quadric which has the

equation of the form

Qσs :=

{
(x, y) :

{
1=x2 + σy2, if σ ∈ {−1, 1},
x=y2, if σ = 0,

}}
(Dq) 〈11〉

in a suitable affine coordinate system s. A quadric is called ellipse (affine circle),
parabola and hyperbola, if σ = 1, σ = 0 and σ = −1, respectively.

For given fixed points F1, F2, the focuses, and number a 6= d(F1, F2)/2, the
radius, we can define

(D2) the ellipsoid (ellipse in dimension 2) as the set
Ead;F1,F2

:={E : 2a = d(F1, E) + d(E,F2)}, and
(D3) the hyperboloid (hyperbola in dimension 2) as the set

Had;F1,F2
:={X : 2a = |d(F1, X)− d(X,F2)|},

according to a > d(F1, F2)/2 or a < d(F1, F2)/2, respectively. Value 2f :=
d(F1, F2) is the eccentricity, and if the eccentricity vanishes, then the ellipsoid
(ellipse) is called sphere (circle). The metric midpoint of segment F1F2 is called
the center, and it is obviously the affine center of the ellipse or the hyperbola.

It is easy to observe that ellipsoids and hyperboloids intersect line F1F2, the
main axis, in exactly two points A and B and these satisfy 2a = d(A,B). The
numerical eccentricity is defined by ε = f/a.

We usually polar parameterize the boundary ∂D of a compact domain D in R2

starlike with respect to a point P ∈ D so that r : [−π, π) → R2 is defined by
r(ϕ) = r(ϕ)uϕ, where r is the radial function of D with base point P .

A point F ∈ ` is an `-foot of P /∈ ` with respect to d, if d(P,Q) ≥ d(P, F ) for
every Q ∈ `. A line `′ intersecting the line ` in a point F is said to be perpendicular
to ` with respect to d, if F is an `-foot of P for every P ∈ `′ \ {F}. We denote this
relation by `′ ⊥d `. These give that a line `′ intersecting the line ` in a point F is
perpendicular (`′ ⊥d `) to ` if there is a point P ∈ `′ such that IP is tangent to `
at F .

Ratio ε := %/d(F, `) is called the numerical eccentricity of the conic given in
(D1), so, a conic is elliptic, parabolic and hyperbolic, if ε < 1, ε = 1 and ε > 1,
respectively.

In Minkowski plane elliptic conics are convex curves that are strictly convex if
and only if the indicatrix is strictly convex [4] (see [5, Theorem 1]), hyperbolic
conics are the union of two simple curves and if one of these contains a segment,
then the indicatrix also contains a segment [5, Theorem 4], and parabolic conics
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are convex curves [4, Lemma 3] that contain segment if and only if the indicatrix
contains a segment [5, Theorem 5].

3. Utilities

For the results we are proving in the next sections, it is enough to work in the
affine plane, because, by [2, (16.12), p. 91],

a convex body in Rn (n ≥ 3) is an ellipsoid if and only if for any
fixed k ∈ {2, . . . , n−1} every k-plane through the origin intersects
it in a k-dimensional ellipsoid.

(3.1) 〈7, 9, 10〉

Lemma 3.1. Let C%d;F,` be a conic in the Minkowski plane (R2, d), and let F⊥ be
the `-foot of F . Then

(1) segment FF⊥ intersects C%d;F,` in a unique point A,
(2) the only nearest point of C%d;F,` to ` is A, and
(3) the only nearest point of C%d;F,` to F is A.
If % = d(F, `), then
(4) A is the only common point of line AF and C%d;F,`.
If % < d(F, `), then
(5) open ray AF intersects C%d;F,` in a unique point B,
(6) the only farthest point of C%d;F,` to ` is B, and
(7) the only farthest point of C%d;F,` to F is B.
If % > d(F, `), then
(8) open ray FA intersects C%d;F,` in a unique point B,
(9) the only nearest point of C%d;F,` ∩ L− to ` is B, and
(10) the only nearest point of C%d;F,` ∩ L− to F is B.

Proof. Let L+ be the half plane of ` that contains F , and let L− be the other
half plane. Further, let F∞ and F⊥∞ be the ideal points of rays F⊥F and FF⊥,
respectively.

Observe that ratio r(X) = d(F,X)/d(F⊥, X) is continuous along the geodesic
line FF⊥ except at F⊥, because d is continuous. Moreover, it is strictly monotone
on segment F⊥F and rays FF∞ F⊥F⊥∞, because the positive additivity of d. As
r(F ) = 0, limX→F⊥ r(X) = ∞, limX→F∞ r(X) = 1, and limX→F⊥∞ r(X) = 1, (1),
(4), (5), and (8) follow.

For any point P ∈ C%d;F,` ∩ L+ we have d(F,A) = εd(A,F⊥) and d(F, P ) =

εd(P, P⊥), and the triangle inequality implies

(1 + ε)d(P⊥, P ) = d(P⊥, P ) + d(P, F )

≥ d(F, P⊥) ≥ d(F, F⊥) = d(F⊥, A) + d(A,F )

= (1 + ε)d(F⊥, A) = (1 + ε)d(A⊥, A).
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This with the strictness of the triangle inequality proves (3) in L+, and by d(F,A) =
εd(A,F⊥) and d(F, P ) = εd(P, P⊥), also (2) is proved in L+.

For any point P ∈ C%d;F,` ∩ L−, by the minimizing property of the foot we have
d(P, F ) ≥ d(X,F ) ≥ d(F, F⊥) ≥ d(A,F ), X = ` ∩ FP . This proves (3) in L−.
Again the minimizing property of the foot implies

(1 + ε)d(P⊥, P ) = d(P⊥, P ) + d(P, F ) ≥ d(P, F )

≥ d(X,F ) ≥ d(F, F⊥) = d(F⊥, A) + d(A,F ) = (1+ε)d(A⊥, A),

where equality never holds. This proves (2) in L−.
Assume ε < 1 from now on.
If P ∈ C%d;F,` ∩ L− and X = ` ∩ FP , then d(P, P⊥) ≥ εd(P, P⊥) = d(P, F ) >

d(P,X) ≥ d(P, P⊥), a contradiction, hence C%d;F,` ⊂ L+.
For any point P ∈ C%d;F,`, d(F,B) = εd(B,F⊥), d(F, P ) = εd(P, P⊥), and the

triangle inequality implies

(1− ε)d(P, P⊥) = d(P, P⊥)− d(P, F ) ≤ d(P, F⊥)− d(P, F )

≤ d(F, F⊥) = (1− ε)d(B⊥, B).

By the strictness of the triangle inequality, equality holds only if P ∈ FB which
implies F⊥ = P⊥, hence B = P . This proves (6). However, as d(F,B) = εd(B,F⊥)
and d(F, P ) = εd(P, P⊥), this also proves (7).

Assume ε > 1 from now on.
If P ∈ C%d;F,` ∩ L− and X = ` ∩ FP , then

(ε− 1)d(P, F ) = ε(d(P,X) + d(X,F ))− εd(P, P⊥) ≥ εd(X,F ) ≥ εd(F, F⊥),

where equality holds if and only if P⊥ = X which implies F⊥ = P⊥, hence B = P .
This proves (10). However, as d(F,B) = εd(B,F⊥) and d(F, P ) = εd(P, P⊥), this
also proves (9).

The proof of the theorem is completed. �

Take a conic C%d;O,` in the Minkowski plane (R2, d), and let tI , tJ be the two
tangent lines of IO that are parallel to `, and denote the points, where tI and tJ
touch IO, by I and J , respectively. Then O ∈ IJ by the symmetry of I, hence
IJ ⊥d `, and therefore the `-foot O⊥ of O is in ` ∩ IJ . We have the freedom to
assume that d(`, I) < d(`, J).

Let A = C%d;O,`∩OO⊥, and let `A denote the tangent line of C%d;O,` at A. Observe
that `A is parallel with ` by (2) of Lemma 3.1.

Fix a coordinate system with origin O = (0, 0), I = (−1, 0), ` = {(−l, y) : y ∈ R}
for some l > 0, and {(0, 1), (0,−1)} = IO ∩ {(0, y) : y ∈ R}. Fix the Euclidean
metric such that {(1, 0), (0, 1)} is an orthonormal bases. In this Euclidean metric,
let ∂IO be polar parameterized by r(ϕ) = r(ϕ)uϕ, so that r(π) = (−1, 0), and
C%d;O,` be polar parameterized as c(ϕ) = c(ϕ)uϕ. (See Figure 3.1.)
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`
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O(−l; 0)
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c(ϕ)

r(π)
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r(0)

∂IO
Cρd;O,`

ϕO⊥ A

Figure 3.1. Conic Cρd;O,` in a Minkowski plane of indicatrix I.

Lemma 3.2. The focal polar-equation of a conic in a Minkowski plane is

c(ϕ) =
l%r(ϕ)

lσ − %r(ϕ) cosϕ
, (3.2) 〈5, 6, 10, 11〉

where σ ∈ {−1, 1}.

Proof. A point c(ϕ) of C%d;O,` satisfies l
|c(ϕ)|
r(ϕ) = ld(c, O)=%d(c, `)=%|l+c(ϕ) cosϕ|,

that can be reordered into the stated form, where σ ∈ {−1, 1}. �

According to (3.2), we can also express the central polar-coordinates of ∂IO by

r(ϕ) =
lσc(ϕ)

%(l + c(ϕ) cosϕ)
.

4. Symmetric conics

Let a conic C%d;F1,`−
be given in the Minkowski plane (R2, d). Let F⊥1 be the

`−-foot of F1 on `−, A = C%d;F1,`−
∩F1F⊥1 , and let `A be the tangent line of C%d;F1,`−

at A.
Assume that C%d;F1,`−

is metrically symmetric in point O. Then O is the affine
center of C%d;F1,`−

, and we introduce F2 = ρ̄OF1, `+ = ρ̄O`−, B = ρ̄OA, `B = ρ̄O`A,
where ρ̄O denotes the affine point reflection in point O, and define l = d(`−, F1).

Let tI , tJ be the two tangent lines of IO that are parallel to `−, and denote
the points, where tI and tJ touch IO, by I and J , respectively. By the symmetry
of I we have O ∈ IJ , hence IJ ⊥d `−. We have the freedom to assume that
d(`−, I) < d(`−, J),

As central symmetry maps every straight line onto a parallel straight line, we
have `+ ‖ `− and `A ‖ `B . Moreover, as IJ ⊥d ` and F1F

⊥
1 ⊥d ` imply IJ ‖ F1F

⊥
1 ,

we also have `A ‖ `− and `B ‖ `+.
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Lemma 4.1. We have
(1) % 6= l,
(2) F1F2 ≡ IJ ,
(3) O ∈ F1F2 ∩AB.

Proof. (1) It follows from (3.2) that for % = d(`−, F1) there is only one ray start-
ing from F1 which does not intersect C%d;F1,`−

. This contradicts the symmetry of
C%d;F1,`−

, hence (1).
As we have either % < l or % > l, by (8) and (5) of Lemma 3.1, there exists a

unique common point A′ of C%d;F1,`−
and F1F

⊥
1 other than A, that, by (6) and (9),

is an extremal point of C%d;F1,`−
. By the symmetry, with the same reasoning, there

is a unique extremal common point B′ of C%d;F2,`+
= C%d;F1,`−

and F2F
⊥
2 too.

Thus, by Lemma 3.1, Figure 4.1 shows what we have.

O

`−

`+

A

`A

B

`B

`B′

`A′
Cρd;F1,`−

I

I

I

I
J

A′

B′

F1

F2

O

`−

`+

A

`A

B

`B

A′

B′

`B′

`A′
Cρd;F1,`−

Cρd;F1,`−

I

I

I
I

J

F1

F2

Figure 4.1. Center of symmetry of conics in a Minkowski plane

(2) If % < l, then, by (6) of Lemma 3.1, the only farthest point of C%d;F1,`−
to `− is

A′, hence A′ is the only nearest point of C%d;F1,`−
to `+, that, by (2) of Lemma 3.1,

is B. This implies A′ ≡ B and A ≡ B′, hence O ∈ F1F2 ⊂ AB.
If % > l, then, by (9) of Lemma 3.1, the only nearest point of C%d;F1,`−

to `− is A′,
hence A′ is the only nearest point of C%d;F1,`−

to `+, that, by (2) of Lemma 3.1, is
B. This implies A′ ≡ B and A ≡ B′, hence O ∈ AB ⊂ F1F2. Thus, (2) is proved.

Now the lemma is completely proved. �

Denote the straight line through O parallel to `− by `0, and let `i be the straight
line through Fi parallel to `− for i = 1, 2. We also let {H−0 , H

+
0 } = ∂I ∩ `0 and

{P−i , P
+
i } = C%d;F1,`−

∩ `i for i = 1, 2.
Further, we fix the affine coordinate system for which O = (0, 0), I = (−1, 0),

J = (1, 0) and H±0 = (0,±1), and choose the Euclidean metric de such that
{(0, 1), (1, 0)} is an orthonormal basis. Equipped with these, we clearly have
F1 = (−f, 0) and F2 = (f, 0), A = (−a, 0) and B = (a, 0), where a = εl, and
`± = {(±l, y) : y ∈ R}.
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Let the border ∂I of the indicatrix I be polar parameterized by r(ϕ) = r(ϕ)uϕ,
where r(0) = (1, 0). Further, let C%d;F1,`−

be parameterized by c(ϕ) = c(ϕ)uϕ,
where c(0) = (a, 0). Let the point C(ϕ) of C%d;F1,`−

= C%d;F2,`+
be defined by

−−−−→
OC(ϕ) = c(ϕ) (hence C(π) = (−a, 0)), and let C⊥± be the `±-foot of C(ϕ), which is
clearly the same for both metrics d and de. Further, we introduce the Euclidean an-
gles α and β, such that C(ϕ) = F1+c1(α(ϕ))uα(ϕ) and C(ϕ) = F2+c2(β(ϕ))uβ(ϕ),
where c1 and c2 are positive.

4.1. Elliptic symmetric conics. In this subsection we consider elliptic con-
ics C%d;F1,`−

, where % < l, i.e. ε ∈ [0, 1). Figure 4.2 shows our configuration

x

y

O

`−

(−l; 0)

`+

(l; 0)

F1

(−f, 0)

F2

(f, 0)

C(ϕ)

C(π)

(−a, 0)

C(0)

(a, 0)

Cρd;F1,`−
Cρd;F2,`+

c(
ϕ)

ϕ

∂IO

r(
ϕ)

c1(
α)

α

c
2
(β

)

β

C⊥− C⊥+

Figure 4.2. Notations: an elliptic conic symmetric to O.

By the definitions of C%d;F1,`−
and C%d;F2,`+

we have

c1(α)

r(α)
= εd(C⊥− , C) = ε

l − f + c1(α) cosα

r(0)
= ε(l − f + c1(α) cosα),

c2(β)

r(β)
= εd(C,C⊥+ ) = ε

l − f − c2(β) cosβ

r(0)
= ε(l − f − c2(β) cosβ),

(4.1) 〈7〉

where ε = %/(l − f) < 1.

Theorem 4.2. Euclidean is the only Minkowski geometry that has centrally sym-
metric elliptic conic.

Proof. By (3.1) we need to work only in the plane. Formulas (4.1) give

c1(α) =
ε(l − f)r(α)

1− εr(α) cosα
, and c2(β) =

ε(l − f)r(β)

1 + εr(β) cosβ
.

Substituting these into c1(α) cosα−c2(β) cosβ = 2f and into c1(α) sinα = c2(β) sinβ
results in

εr(α) cosα

1− εr(α) cosα
− εr(β) cosβ

1 + εr(β) cosβ
=

2f

l − f
, and

http://www.math.u-szeged.hu/tagok/kurusa
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r(α) sinα

1− εr(α) cosα
− r(β) sinβ

1 + εr(β) cosβ
= 0. (4.2) 〈8〉

The previous one implies

εr(α) cosα

1− εr(α) cosα
+

1

1 + εr(β) cosβ
=

2f

l − f
+ 1 =

l + f

l − f
(4.3) 〈8〉

which gives

εr(β) cosβ =
( l + f

l − f
− εr(α) cosα

1− εr(α) cosα

)−1
− 1 =

(l + f)εr(α) cosα− 2f

l + f − 2lεr(α) cosα
.

Putting (4.3) into (4.2) leads to

r(β) sinβ =
r(α) sinα

1− εr(α) cosα

( l + f

l − f
− εr(α) cosα

1− εr(α) cosα

)−1
=

(l − f)r(α) sinα

l + f − 2lεr(α) cosα
.

As f = lε2, we have the map Φ: r(α)uα → r(β)uβ , as

Φ: (x, y) 7→ 1

(1 + ε2)− 2εx
((1 + ε2)x− 2ε, (1− ε2)y). (4.4) 〈8, 10〉

It is clear that ∂IO is an invariant curve of Φ. Looking for an invariant curve as a
function φ(x) = y > 0, we get φ(Φ1(x)) = Φ2(φ(x)) from (4.4), that is

(1 + ε2)− 2εx

1− ε2
φ
( (1 + ε2)x− 2ε

(1 + ε2)− 2εx

)
= φ(x). (4.5) 〈8〉

This is an equation of type [3, (4.20)], where f(z) = (1+ε2)z−2ε
(1+ε2)−2εz , g(z) = (1+ε2)−2εx

1−ε2 ,
and h(z) ≡ 0 are all analytic. Then, [3, Theorem 4.6] proves that (4.5) has one
and only one solution in a neighborhood of (1, 0) which is, in addition, analytic.
However, the circle x2 + y2 = 1 is an invariant curve of Φ, because x2 + y2 = 1
implies

((1− ε)2 − 2εx)2 = ((1 + ε2)x− 2ε)2 + (1− ε2)2y2, (4.6) 〈8〉

so, in a neighborhood of (1, 0), ∂IO coincides with the circle x2 + y2 =1.
Let α0 = sup{α0 ∈ (0, π) : r(α) = 1 for every α ∈ (0, α0)}. Then, for every

α ∈ (0, α0), we have uβ = Φ(uα), where β ∈ (0, π) by (4.6). Further, we also have
β > α, because

cotβ =
(1 + ε2)x− 2ε

(1− ε2)y
<
x

y
= cotα

by (4.4). Applying this inequality to α0 leads to contradiction unless α0 = π, hence
the circle x2 + y2 = 1 coincides with ∂IO everywhere. �
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4.2. Hyperbolic symmetric conics. In this subsection we consider hy-
perbolic conics C%d;F1,`−

, where % > l, i.e. ε > 1. Figure 4.3 shows what we have.

x

y

O

`−

(−l; 0)

`+

(l; 0)

F1

(−f, 0)
F2

(f, 0)

C(ϕ)

C(π)

(−a, 0)
C(0)

(a, 0)

Cρd;F1,`−
Cρd;F2,`+

c(
ϕ)

ϕ

∂I

r(
ϕ)

c1(α
)

α

c
2 (β

)

β

C⊥−
C⊥+

Figure 4.3. Notations: a hyperbolic conic symmetric to O.

By the definitions of C%d;F1,`−
and C%d;F2,`+

that

c1(α)

r(α)
= εd(C⊥− , C) = ε

c1(α) cosα− (f − l)
r(0)

= ε(l − f + c1(α) cosα),

c2(β)

r(β)
= εd(C,C⊥+ ) = ε

(f − l) + c2(β) cosβ

r(0)
= ε(f − l + c2(β) cosβ),

(4.7) 〈9〉

where ε = %/(f − l) > 1.

Theorem 4.3. Euclidean is the only Minkowski geometry that has centrally sym-
metric hyperbolic conic.

Proof. By (3.1) we need to work only in the plane. Formulas (4.7) give

c1(α) =
ε(l − f)r(α)

1− εr(α) cosα
, and c2(β) =

ε(f − l)r(β)

1− εr(β) cosβ
.

Substituting these into c1(α) cosα − c2(β) cosβ = 2f and into c1(α) sinα =
c2(β) sinβ results in

εr(α) cosα

1− εr(α) cosα
+

εr(β) cosβ

1− εr(β) cosβ
=

2f

l − f
r(α) sinα

1− εr(α) cosα
+

r(β) sinβ

1− εr(β) cosβ
= 0. (4.8) 〈10〉

The first one implies
εr(α) cosα

1− εr(α) cosα
+

1

1− εr(β) cosβ
=

2f

l − f
+ 1 =

l + f

l − f
(4.9) 〈10〉
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which gives

εr(β) cosβ = 1−
( l + f

l − f
− εr(α) cosα

1− εr(α) cosα

)−1 2f − (l + f)εr(α) cosα

l + f − 2lεr(α) cosα

Putting (4.9) into (4.8) gives

r(β) sinβ =
−r(α) sinα

1− εr(α) cosα

( l + f

l − f
− εr(α) cosα

1− εr(α) cosα

)−1
=

(f − l)r(α) sinα

l + f − 2lεr(α) cosα
.

As f = lε2, the map Ψ: r(α)uα → r(β)uβ takes the form

Ψ: (x, y) 7→ 1

(1 + ε2)− 2εx
(2ε− (1 + ε2)x, (ε2 − 1)y),

that, compared to (4.4), shows that Ψ(x, y) = −Φ(x, y). Now the proof can be
finished in the same way as the previous one. �

5. Quadratical conics

We start with the setup given at Lemma 3.2, and consider (3.2).
If ρ ≤ l, then, as r(ϕ)| cosϕ| ≤ 1 by the convexity of I, we have 1− ρ

l r(ϕ) cosϕ ≥
0, hence σ = 1 and c is bounded unless ρ = l and ϕ = 0. In the other hand, if ρ > l,
then there exists at least one ϕ ∈ (0, π) which satisfies lσ

ρ = r(ϕ) cosϕ. Based on
these observations and by the continuity of C%d;O,` we deduce that a quadratical
conic C%d;O,` is a quadric that is

(T1) elliptic if ρ ∈ (0, l), because c is bounded,
(T2) parabolic if ρ = l, because c tends to infinity exclusively if ϕ→ 0, and
(T3) hyperbolic if ρ > l, because c tends to infinity for at least two different

angles.

Theorem 5.1. Euclidean is the only Minkowski plane in which quadratical conic
exists.

Proof. By (3.1) we need to work only in the plane. We continue to work in the
setup given in the proof of Lemma 3.2.

First we assume that ` =∞.
Then (3.2) gives c(ϕ) = ρr(ϕ), therefore ∂I is a homothetic image of C%d;O,`,

which, by (T1), is an ellipse. Consequently the indicatrix is an ellipse, hence the
geometry is Euclidean [1, 25.4].

Now we assume that % ∈ (0, l).
As an elliptic quadric is symmetric, Theorem 4.2 implies that the Minkowski

plane is Euclidean.

http://www.math.u-szeged.hu/tagok/kurusa


Aequationes mathematicae (2018) c© Á. Kurusa http://www.math.u-szeged.hu/tagok/kurusa

CONICS IN MINKOWSKI GEOMETRIES 11

Now we assume that % = l.
Then, by (T2), C%d;O,` is a parabolic Euclidean conic. This parabolic Euclidean

conic is intersected by the x-axis perpendicularly, and the x-axis intersects it in
exactly one point.

Therefore, by (Dq), the affine equation of C%d;O,` is

a(x− p) = y2 (5.1) 〈11〉

with parameters a > 0 and p ∈ R. According to (3.2) point c(ϕ) has coordinates

x =
lr(ϕ) cosϕ

r(π)− r(ϕ) cosϕ
, y =

lr(ϕ) sinϕ

r(π)− r(ϕ) cosϕ
.

Substituting these into (5.1) gives

alr(ϕ) cosϕ

r(π)− r(ϕ) cosϕ
− ap =

l2r2(ϕ) sin2 ϕ

(r(π)− r(ϕ) cosϕ)2
.

i.e.

ar(π)lr(ϕ) cosϕ− alr2(ϕ) cos2 ϕ− l2r2(ϕ) sin2 ϕ

= ap(r2(π)− 2r(π)r(ϕ) cosϕ+ r2(ϕ) cos2 ϕ).
(5.2) 〈11〉

Taking this at ϕ+ π, by r(ϕ+ π) = r(ϕ), we get

−ar(π)lr(ϕ) cosϕ− alr2(ϕ) cos2 ϕ− l2r2(ϕ) sin2 ϕ

= ap(r2(π) + 2r(π)r(ϕ) cosϕ+ r2(ϕ) cos2 ϕ).
(5.3) 〈11〉

Substraction of (5.3) from (5.2) yields ar(π)r(ϕ) cosϕ(l + 2p) = 0, i.e. l + 2p = 0.
Summing up (5.2) and (5.3) gives

−alr2(ϕ) cos2 ϕ− l2r2(ϕ) sin2 ϕ = apr2(π) + apr2(ϕ) cos2 ϕ

r2(ϕ)
(
a(p+ l) cos2 ϕ+ l2 sin2 ϕ

)
= −apr2(π)

r2(ϕ)
(a

2
cos2 ϕ+ l sin2 ϕ

)
=
a

2
r2(π).

Choosing ϕ = π/2 implies a = 2lr2(π/2)
r2(π) , hence, we obtain

1

r2(ϕ)
=

cos2 ϕ

r2(π)
+

sin2 ϕ

r2(π/2)
, (5.4)

which is the polar form of an Euclidean ellipse relative its center [8]. Thus ∂I is a
Euclidean ellipse, and therefore the Minkowski plane is Euclidean.

Now we assume that % > l.
As every hyperbolic quadric is symmetric, Theorem 4.3 implies that the Minkowski

plane is Euclidean. �
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6. Conical ellipses and hyperbolas

According to [6], A. Moór posed the problem to determine those Finsler mani-
folds in which

(1) the class of elliptic conics coincides with the class of ellipses, or
(2) the class of hyperbolic conics coincides with the class of hyperbolas.

Tamássy and Bélteky considered only case (1) and they found in [7, Theorem 2],
that only the Euclidean space fulfills (1).

We call an ellipse or hyperbola conical if it is a conic.
As every ellipse and every hyperbola is symmetric in Minkowski geometry, every

conical ellipse and every conical hyperbola is a symmetric conic, hence Theorem
4.2 and 4.3 imply the following.

Theorem 6.1. Euclidean is the only Minkowski geometry in which either a conical
ellipsoid or a conical hyperboloid exists.

We raise the analogous problem to determine projective-metric spaces in which
(a) some or all ellipses are conical, or
(b) some or all hyperbolas are conical.

As Minkowski geometries are projective-metric spaces, our results give some sup-
port to conjecture that in both cases only the Euclidean space is the solution.

Acknowledgement. The author appreciates József Kozma for discussing some
parts of this paper.
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