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Isoptic characterization of spheres

Arpad Kurusa and Tibor Odor

Abstract. If a convex body in K € R" subtends constant visual angles over two
concentric spheres exterior to I, then it is a ball concentric to those spheres.

1 Introduction

The masking number' My (P) of the convex body K at P ¢ K as defined in [9, (7.1)]
is the integral

(1.1) M (P) = 5 o #(OK N L(P, ug))dE,

where # is the counting measure, 0XC denotes the boundary of IC, £ is the spherical
coordinate of the unit vector ug € S"~!, and ¢(P, ug) is the straight line through P
having direction ug.

ICP

’

Figure 1.1: The masking number My (P) is twice the measure of the visual
angle Kp of K at a point P ¢ K.

The set of points P € R™, where a convex body X C R™ has constant
a € (0,|S"!|) masking number My (P) is called the a-isomasker® of the con-
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I This is called the point projection in [1] or shadow picture in [3].

2We reserve the word isoptic for the set of points where not only the measure, but also the shape
of Kp is constant. A result toward this direction can be found in [12].
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vex body K. The a-isomasker of the convex body K in the plane is the set of the
points where K subtends angles of constant «/2 € (0, 7) measure, and it is called
the a-isoptic of K.

Following the conjecture of Klamkin [4] Nitsche proved in [13] that if two
isoptics of IC are concentric circles, then K is a disc. Nitsche also asked to consider
the problem in higher dimensions.

We generalize Nitsche’s result to higher dimensions in Theorem 5.1 as follows:
if two isomaskers of a convex body are also isomaskers of a ball with the same
masking numbers, then the body is that ball. We use an integral geometric method.

2 Preliminaries

We work in the Euclidean n-space R™ (n € N). Its unit ball is B = B™ (in the plane
the unit disc is D), its unit sphere is S*~! and the set of its hyperplanes is H. The
ball (resp. disc) of radius ¢ > 0 centered at the origin 0 is denoted by o8 = oBB"
(resp. D). The unit sphere centered at a point P is S’}fl.

Using spherical coordinates € = (&1, ...,&,—1) every unit vector can be written
in the form ug = (cos&,siné; coséa, sin&; sinéy cos&s, .. .), the i-th coordinate of
which is ug = (H;;ll sing;) cos&; (&, := 0). In the plane we use ug = (cos¢,siné)
and ug- = Ugir/o = (—sing, cos§). In analogy to this latter one, we introduce
¢t =(&,..., €0 2,En_1 + m/2) for higher dimensions.

We introduce the notation |[S¥| := 27%/2/T'(k/2) for the standard surface
measure of the k-dimensional sphere, where I" is Euler’s Gamma function.

The hyperplanes i € H are parametrized so that fi(ug, ) is orthogonal to the
unit vector ug € S"! and contains the point rug,> where r € R. For convenience
we also use fi(P,ug) to denote the hyperplane through the point P € R™ with
normal vector ug € S"~1. For instance, (P, ug) = h(ug, <O?7u5>), where O =0
is the origin and (.,.) is the usual inner product.

On H we use the kinematic density dh = drd€ that is (up to a constant mul-
tiple) the only measure on H invariant with respect to the Euclidean motions [16].

By a convex body we mean a convex compact set I C R™ with non-
empty interior C° and with piecewise C! boundary OK. For a convex body K
we let p: S"7!' — R denote the support function of K defined by pic(ug) =
SUPgex (ug, ). We also use notation I (u) = h(u, pi(u)).

If the origin is in K°, then the support function of K is positive, otherwise the
zero or even negative values appear in its image according to whether the origin is

3 Although h(ug,r) = h(—ug, —r) this parametrization is locally bijective.
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in OK or outside K. If the origin is in X°, another useful function of a convex body
K is its radial function ox: S"' — Ry defined by o (u) = [{ru:r >0} NOK].

Assume that the origin 0 is an interior point of a convex body . Define
Hy:={h e H:0 ¢ h}, and let §: Hy — R™ and §: R™ — Hy, the dualizing maps,
be defined by

1 < 1
(2.1) o(h(u,r)):=—-u and I(ru):= h( —u, 7>,

r r
respectively, where u € S~ ! is unit vector and > 0. These functions are obviously
inverses of each other, and it is an easy and well-known fact* that

5({heH:veh})=h(_” 1) and 5(h(u,r)):{heH:_71ueh}.

[v[ " vl
The dual body K* of K is bounded by 9K := {§(h(u,pxc(u))) : w € S*"'}. The
dual body K*, which is in fact the point reflection —to the origin 0— of the polar
body K* [17, Section 1.6], is convex, and its radial function is g, (u) =
[17, Theorem 1.7.6]. Further, we have (K*)* = K [17, Section 1.6].

A strictly positive integrable function w: R™ \ B — R is called weight and

1
p}g(_u)

the integral
V= [ el
R"\B

of an integrable function f: R™ — R is called the volume of f with respect to the
weight w or simply the w-volume of f. For the volume of the indicator function xg
of a set S C R™ we use the notation V,,(S) := V,,(xs) as a shorthand. If several
weights are indexed by i € N, then we use the even shorter notation V;(S) :=
Vwi (S) = ‘/;(XS) = Vwi (XS)'

Finally we introduce a utility function y that takes relations as argument and
gives 1 if its argument is fulfilled. For example x(1 > 0) = 1, but x(1 < 0) =0
and x(z > y) is 1 if x > y and it is zero if z < y. However we still use x also as
the indicator function of the set given in its subscript.

3 Dualizing the masking function

For any point P € R" define the sets Kp and Kp in the unit sphere S’]é_l cen-
tered at P that contains exactly those points X € S’];l for which the hyperplane

4Embed the space R™ of K into R**1 in such a way that the (n 4+ 1)th coordinate of every point
is 1 and the (n + 1)th coordinate axis intersects K in its inner point 0 € R™.
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h(P, ﬁ) and the straight line ¢(P, ﬁ% respectively, intersects K. Then, by (1.1)
and some easy observations we have

1 1
My (P) = 3 Snil#(a’Cﬂf(Rus))dS: Kpld£:|Sn2|/KP1d£
_ @ [ X(Pue) K # 0)de.

From this we obtain

572 M (P) = / \((ug, P) < pye(ug)) dE

Sn—l
(3.1) s - / x((ug, P) > pye(ug)) d€
Sn—l
=: [S"7 = ME(3(P)).

Assuming 0 € K° one can reformulate the last integral to obtain

MEGP) = [ x((uen (—ue).—w > e

1/

= [ x(ex-(-ue)> e )€

:/ x( € k)
5(P)

where P = ru, r > 0, uw € S"~!, and |d¢/dx| is the Jacobian of the map = — &
given by & = —|x|ug. Let = ’Tlu + 0Uy, where u L uy € S"7 and 9 is a
spherical coordinate on S"~2 such that & = (£,4). Then by rotational invariance

we obtain immediately that |% = \:C\Q’”|%|7 where tan & = ﬁ and so

%‘dm,

a__r
do 141202

Thus, we obtain

v P|
Mg (6(P :/ x(x € K*)|z|>™™ | dx
RO = [ (@€ K e T 1A

1/|P|

= xzek* dx,
/S(P) X ) |z|"

where de is the standard surface measure on the hyperplane & (P).

(3.2)
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4 Measures of convex bodies

In view of (3.2) it is natural to consider the following transforms.

Let M and K be convex bodies such that 0 € M C K°. Let v: H — C*(R")
be a function of weights, that is, v, is a weight for every h € H. Then the weighted
section function of IC with respect to M, the so called kernel, is defined by

@y Shew = [ X(@ € ), 00 (@) 1,
(@, u)=p 5, (u)

where dmhM(u) is the usual surface measure on fip(u).

Figure 4.1: Section of K with respect to the kernel M.

The function v: H — C1(R") of weights is called rotationally symmetric if for
every h € H, z € h and D € SO(n) one has vy, (Dx) = v,(x), where D € SO(n)
acts naturally on H. Assume that z,y € R" and u,v € S"~!. If |z| = |y| and
(z,u) = (y,v), then there is a D € SO(n) such that Dz = y and Du = v. Thus
we have the following lemma immediately.

Lemma 4.1. The function v of weights is rotationally symmetric if and only if
there is a function v: R® — R such that Vi, (®) = (1, (@, u), |2]).

If the kernel body is a ball, i.e. o3, we use the notation S, := Sy as a
shorthand.

Lemma 4.2. Let the convex body KC contain the ball oI3. Then for any rotationally
symmetric function v of weights we have

, o B z|2 — o? =3
42 [ Spelude =1 20,0, 2) =7 4
sn—1 K\eB ||

Proof. Define the function u® of weights by

:u;,(u,r)(m) = V}’L(u,r)(w + (T - <.’13, u>)u)X(0 < (m,u) —r < 5)7
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. |4
where ¢ > 0. Now we can write®

[ sictwadc= [ [ v @@ e K dend
Sn—1 Sn—1 <m,u<>:g
= / lim (1/ u (x)x(x € K) daz) d¢
gn—-1e—0 \¢€ (@,ue)>0 (u¢,0)
= lim (1/ / Hh(ue,0) (@)X (T € K) dz d(:)
20N Syt Swugze

1
= lim f/ 7 x)d¢ ) dx.
/IC\QBE*)O(E <m,u<>29 h(ug,g)( ) )

As v is rotationally symmetric, vy, ., .y, (@) = P((@, w), (x, u), |z|), and this
implies 15, ., (®) = V(0, 0,|x])x(0 < (z,u¢) — 0 < €). Therefore, letting |x|u, =
x, where u, € S”~1 the calculation above continues as

| Sttworic

1
— [ e o)) lim f/ X0 < (@ ug) — 0 < <) de) da.
/’C\QB ‘ ‘ e0 (5 (zue)>0 ¢ )

As
1
: - < — o <
&113})(5 /(M<>> X(0 <(z,u¢) —o<¢) dC)

n—3
n—2 (o+¢e)/| n— n—2
= lim (L /lz] [l VI— a2 3d>\> i (i)Q
el o E al)

the lemma is proved. .

Although the following lemma was already proved as Lemma 5.3 in [11], we

present it here for the sake of completeness with its short proof.

Lemma 4.3. Let w; (i = 1,2) be weights, let K and L be convex bodies containing
the unit ball B, and let ¢ > 1.
(1) If ¢VA(K) < Vi(L) and there is a constant ¢, such that

wp(X) = cxwn(X),  if X €K,
wa(X) = ¢iewr (X), if X € 0K,
wa(X) < epwr (X)), if X € K,

where equality may occur only in a set of measure zero, then cVo(KC) < Va(L).

5Similar calculation is given in [11]. It is given here for the sake of completeness.
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(2) If Vi(K) < c¢Vi(L) and there is a constant ¢, such that

wa(X) < cpwi(X), if X ¢ L,
wa(X) = cpwi(X), if X € 0L,
wa(X) > cpwr (X)), if X eL,

where equality may occur only in a set of measure zero, then Vo(KC) < cVa(L).
In both cases equality in the resulted inequality implies K = L and ¢ = 1.

Proof. In both statements KAL = @ implies V1(K) = V1(£), hence ¢ = 1 and
Vi(K) = Vi(£).

Assume from now on that XAL # 0.

We prove here only (1) since the verification of (2) is similar.

Having (1) we proceed as

Va(£) — cV2(K)
=Va(£) = Va(K) + (1 = ¢)Va(K) = V2(L\ K) = Va(K\ £) + (1 — ) V2(K)

:/ WQ<x)w1(a?)dx - / =2l wi(z)dz + (1 = )V2(K)
K

v wi(z) \z wi(®)
> e (Vi K) = Vi £)) + (1 — Va(K) =ex(Vi(£) — Vi(K)) + (1 — e)Va(K)
z@n@mux>xaxnwn(ﬁ(%Zigymmmazo

This implies V(L) — ¢V2(K) > 0.
The lemma is proved.

5 Spherical isomaskers

First we calculate the integral of the masking function My of the convex body
K c 7B™ over the sphere 7S"~! (7 > 0). Starting with equation (3.1) we get

_ 1 ne <
My(rug)d€ = gy [ 1877 = Mi(3(rug)) g

7 |Sn71‘2 1
- |Sn—2| ‘Sn—Z' gn—1

Sn—1

My (6 (rug)) dé.
Assuming 0 € K° we can continue by using (3.2) and (4.1) and obtain

|Sn=12 1 / / 1/7
Mi-(rug) d€ = — x(x € K*) —— dx d¢.
sn-1 rlrue) IS*=21 18772 Jsn-1 Jn(—ue,1/r) ( )|$|”

J. Geom, 106:1 (2015), 63-73. © A. Kurusa and T. Odor http://www.math.u-szeged.hu/tagok /kurusa


http://www.math.u-szeged.hu/tagok/kurusa

8 A. Kurusa anp T. Opor

This means

(5.1) Me(reyae = 51 S% . (ug) de
. K = - 1.50% 9
- S =2 [Sn 1| Jouoa DEKTE

where Vh(ur) (x) = r|x|~™. Having this we are ready to prove the following gener-
alization of Nitsche’s result [13].

Theorem 5.1. Let 0o > 01 > 7 > 0 and let K be a convex body contained in the
interior of p1B™. If the sphere 01S™~ ! is the common a-isomasker and 0aS™ ™! is
the common B-isomasker of the convex body IC and 7B, then I = 715.

Proof. By the conditions we have M (o1u) = o = Mzpn(01u) and M (gou) =
B = Mpgn(02u) for every u € S~ 1.

01S" 2

Figure 5.1: M (P) is clearly smaller than M (Q).

By some elementary observations and reasoning illustrated in Figure 5.1 it
follows that /C° contains the common center 0 of the balls 75, g1 8™ and g2B".
Now equation (5.1) implies

g ug) dé = " ue) dé = v ue) d€,
| pwerde= [ 8 e de = [ 8 () de
[t = [ 8 e = [ S e de

As the function v of weights having (g2, 02, 7) = p2r~" is obviously rotational
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invariant, (4.2) implies

—2\n=3 —2\n=3
[ = ==y G T
— - — )
N ipnipe  |Er?
and
_2\n=3 —2\n=3
JI =Ty G € =T
K*\ﬁlg" |ﬂ:|2n72 %Bn\ﬁsn |ﬂ:|2n72
Let wi(r) = r272"(r? — 91_2)712;3, a(r) = r27n(r? — QQQ)WT_S, and let
wi(x) = wi(|z|), wa(z) = w2(|z|). Then 2! is clearly a constant, say cg, on
%B”, and

_ _ o\ n—3 _ 9
W1(7)7(72_012) 2 7(17912—922) 7
n—3

wo(r) (r2 — 07 %)% 2 — o

shows that 2! is strictly monotone increasing.
The above observations show that the conditions in (2) of Lemma 4.3 are
satisfied for *, L := %B” and ¢ = 1, hence V5(K*) < V5(L), and equality implies
K*=Land c=1.
As K = (K*)* = (£)* = 7B", the theorem is proved.

6 Discussion

To have a complete generalization of Nitsche’s result [13] from the point of view of
Theorem 5.1, one should prove that if a convex body K has two spherical isomaskers
of values a1 # g, then there is a ball 7B™ with the same a;- and as-isomaskers of
radius o7 # p2. Although Nitsche proved this in the plane, the authors conjecture
that this is no longer valid in higher dimensions.

Conjecture 6.1. There are positive values ay # ag and p1 # 02 such that there is a
non-spherical convex body KK C R™ the a;- and as-isomaskers of which are spheres
of radius 01 # 02, Tespectively.

However note that it is proved in [7] that if two convex bodies in the plane
have rotational symmetry of angle 2(m — v) and have common v-isoptic, then that
v-isoptic is a circle.

In higher dimensions the only positive result the authors know about is the
surprisingly easy [5, Theorem 2]. It states that if a convex body I C R™ has an
isoptic Z in the sense of a k-dimensional angles for any 1 < k < n — 1, then K is
reconstructible from Z.
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