Isoptic characterization of spheres

Árpád Kurusa and Tibor Ódor

Abstract. If a convex body in $\mathcal{K} \in \mathbb{R}^n$ subtends constant visual angles over two concentric spheres exterior to \mathcal{K} , then it is a ball concentric to those spheres.

1 Introduction

The masking number $^{1}M_{\mathcal{K}}(P)$ of the convex body \mathcal{K} at $P \notin \mathcal{K}$ as defined in [9, (7.1)] is the integral

(1.1)
$$M_{\mathcal{K}}(P) = \frac{1}{2} \int_{\mathbb{S}^{n-1}} \#(\partial \mathcal{K} \cap \ell(P, \boldsymbol{u}_{\boldsymbol{\xi}})) d\boldsymbol{\xi},$$

where # is the counting measure, $\partial \mathcal{K}$ denotes the boundary of \mathcal{K} , ξ is the spherical coordinate of the unit vector $\mathbf{u}_{\xi} \in \mathbb{S}^{n-1}$, and $\ell(P, \mathbf{u}_{\xi})$ is the straight line through P having direction \mathbf{u}_{ξ} .

Figure 1.1: The masking number $M_{\mathcal{K}}(P)$ is twice the measure of the visual angle \mathcal{K}_P of \mathcal{K} at a point $P \notin \mathcal{K}$.

The set of points $P \in \mathbb{R}^n$, where a convex body $\mathcal{K} \subset \mathbb{R}^n$ has constant $\alpha \in (0, |\mathbb{S}^{n-1}|)$ masking number $M_{\mathcal{K}}(P)$ is called the α -isomasker² of the con-

AMS Subject Classification (2012): 52A40.

Key words and phrases: ball, sphere, masking function, characterization of balls.

¹This is called the point projection in [1] or shadow picture in [3].

²We reserve the word isoptic for the set of points where not only the measure, but also the shape of \mathcal{K}_P is constant. A result toward this direction can be found in [12].

vex body \mathcal{K} . The α -isomasker of the convex body \mathcal{K} in the plane is the set of the points where \mathcal{K} subtends angles of constant $\alpha/2 \in (0,\pi)$ measure, and it is called the α -isoptic of \mathcal{K} .

Following the conjecture of Klamkin [4] Nitsche proved in [13] that if two isoptics of \mathcal{K} are concentric circles, then \mathcal{K} is a disc. Nitsche also asked to consider the problem in higher dimensions.

We generalize Nitsche's result to higher dimensions in Theorem 5.1 as follows: if two isomaskers of a convex body are also isomaskers of a ball with the same masking numbers, then the body is that ball. We use an integral geometric method.

2 Preliminaries

We work in the Euclidean n-space \mathbb{R}^n $(n \in \mathbb{N})$. Its unit ball is $\mathcal{B} = \mathcal{B}^n$ (in the plane the unit disc is \mathcal{D}), its unit sphere is \mathbb{S}^{n-1} and the set of its hyperplanes is \mathbb{H} . The ball (resp. disc) of radius $\varrho > 0$ centered at the origin $\mathbf{0}$ is denoted by $\varrho \mathcal{B} = \varrho \mathcal{B}^n$ (resp. $\varrho \mathcal{D}$). The unit sphere centered at a point P is \mathbb{S}_P^{n-1} .

Using spherical coordinates $\boldsymbol{\xi}=(\xi_1,\ldots,\xi_{n-1})$ every unit vector can be written in the form $\boldsymbol{u}_{\boldsymbol{\xi}}=(\cos\xi_1,\sin\xi_1\cos\xi_2,\sin\xi_1\sin\xi_2\cos\xi_3,\ldots)$, the *i*-th coordinate of which is $u_{\boldsymbol{\xi}}^i=(\prod_{j=1}^{i-1}\sin\xi_j)\cos\xi_i$ $(\xi_n:=0)$. In the plane we use $\boldsymbol{u}_{\boldsymbol{\xi}}=(\cos\xi,\sin\xi)$ and $\boldsymbol{u}_{\boldsymbol{\xi}}^\perp=\boldsymbol{u}_{\boldsymbol{\xi}+\pi/2}=(-\sin\xi,\cos\xi)$. In analogy to this latter one, we introduce $\boldsymbol{\xi}^\perp=(\xi_1,\ldots,\xi_{n-2},\xi_{n-1}+\pi/2)$ for higher dimensions.

We introduce the notation $|\mathbb{S}^k| := 2\pi^{k/2}/\Gamma(k/2)$ for the standard surface measure of the k-dimensional sphere, where Γ is Euler's Gamma function.

The hyperplanes $\hbar \in \mathbb{H}$ are parametrized so that $\hbar(\boldsymbol{u}_{\boldsymbol{\xi}},r)$ is orthogonal to the unit vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$ and contains the point $r\boldsymbol{u}_{\boldsymbol{\xi}}$, where $r \in \mathbb{R}$. For convenience we also use $\hbar(P, \boldsymbol{u}_{\boldsymbol{\xi}})$ to denote the hyperplane through the point $P \in \mathbb{R}^n$ with normal vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$. For instance, $\hbar(P, \boldsymbol{u}_{\boldsymbol{\xi}}) = \hbar(\boldsymbol{u}_{\boldsymbol{\xi}}, \langle \overrightarrow{OP}, \boldsymbol{u}_{\boldsymbol{\xi}} \rangle)$, where $O = \mathbf{0}$ is the origin and $\langle ., . \rangle$ is the usual inner product.

On \mathbb{H} we use the *kinematic density* $d\hbar = dr d\xi$ that is (up to a constant multiple) the only measure on \mathbb{H} invariant with respect to the Euclidean motions [16].

By a convex body we mean a convex compact set $\mathcal{K} \subseteq \mathbb{R}^n$ with nonempty interior \mathcal{K}° and with piecewise C^1 boundary $\partial \mathcal{K}$. For a convex body \mathcal{K} we let $p_{\mathcal{K}} : \mathbb{S}^{n-1} \to \mathbb{R}$ denote the support function of \mathcal{K} defined by $p_{\mathcal{K}}(\boldsymbol{u}_{\xi}) = \sup_{\boldsymbol{x} \in \mathcal{K}} \langle \boldsymbol{u}_{\xi}, \boldsymbol{x} \rangle$. We also use notation $\hbar_{\mathcal{K}}(\boldsymbol{u}) = \hbar(\boldsymbol{u}, p_{\mathcal{K}}(\boldsymbol{u}))$.

If the origin is in \mathcal{K}° , then the *support function* of \mathcal{K} is positive, otherwise the zero or even negative values appear in its image according to whether the origin is

 $[\]overline{{}^{3}\text{Although }\hbar(\boldsymbol{u}_{\xi},r)=\hbar(-\boldsymbol{u}_{\xi},-r)\text{ this parametrization is locally bijective.}}$

in $\partial \mathcal{K}$ or outside \mathcal{K} . If the origin is in \mathcal{K}° , another useful function of a convex body \mathcal{K} is its radial function $\varrho_{\mathcal{K}} \colon \mathbb{S}^{n-1} \to \mathbb{R}_+$ defined by $\varrho_{\mathcal{K}}(\boldsymbol{u}) = |\{r\boldsymbol{u} : r > 0\} \cap \partial K|$.

Assume that the origin $\mathbf{0}$ is an interior point of a convex body \mathcal{K} . Define $\mathbb{H}_0 := \{ \hbar \in \mathbb{H} : \mathbf{0} \notin \hbar \}$, and let $\hat{\delta} \colon \mathbb{H}_0 \to \mathbb{R}^n$ and $\check{\delta} \colon \mathbb{R}^n \to \mathbb{H}_0$, the dualizing maps, be defined by

(2.1)
$$\hat{\delta}(\hbar(\boldsymbol{u},r)) := -\frac{1}{r}\boldsymbol{u} \quad \text{and} \quad \check{\delta}(r\boldsymbol{u}) := \hbar\left(-\boldsymbol{u}, \frac{1}{r}\right),$$

respectively, where $u \in \mathbb{S}^{n-1}$ is unit vector and r > 0. These functions are obviously inverses of each other, and it is an easy and well-known fact⁴ that

$$\hat{\delta}(\{\hbar\in\mathbb{H}:\boldsymbol{v}\in\hbar\})=\hbar\Big(\frac{-\boldsymbol{v}}{|\boldsymbol{v}|},\frac{1}{|\boldsymbol{v}|}\Big)\quad\text{ and }\quad\check{\delta}(\hbar(\boldsymbol{u},r))=\Big\{\hbar\in\mathbb{H}:\frac{-1}{r}\boldsymbol{u}\in\hbar\Big\}.$$

The dual body \mathcal{K}^* of \mathcal{K} is bounded by $\partial \hat{\mathcal{K}} := \{\hat{\delta}(\hbar(\boldsymbol{u}, p_{\mathcal{K}}(\boldsymbol{u}))) : \boldsymbol{u} \in \mathbb{S}^{n-1}\}$. The dual body \mathcal{K}^* , which is in fact the point reflection —to the origin $\boldsymbol{0}$ — of the polar body \mathcal{K}^* [17, Section 1.6], is convex, and its radial function is $\varrho_{\mathcal{K}^*}(\boldsymbol{u}) = \frac{1}{p_{\mathcal{K}}(-\boldsymbol{u})}$ [17, Theorem 1.7.6]. Further, we have $(\mathcal{K}^*)^* = \mathcal{K}$ [17, Section 1.6].

A strictly positive integrable function $\omega \colon \mathbb{R}^n \setminus \mathcal{B} \to \mathbb{R}_+$ is called *weight* and the integral

$$V_{\omega}(f) := \int_{\mathbb{R}^n \setminus \mathcal{B}} f(x)\omega(x)dx$$

of an integrable function $f: \mathbb{R}^n \to \mathbb{R}$ is called the *volume of* f *with respect to the* weight ω or simply the ω -volume of f. For the volume of the indicator function $\chi_{\mathcal{S}}$ of a set $\mathcal{S} \subseteq \mathbb{R}^n$ we use the notation $V_{\omega}(\mathcal{S}) := V_{\omega}(\chi_{\mathcal{S}})$ as a shorthand. If several weights are indexed by $i \in \mathbb{N}$, then we use the even shorter notation $V_i(\mathcal{S}) := V_{\omega_i}(\mathcal{S}) = V_i(\chi_{\mathcal{S}}) := V_{\omega_i}(\chi_{\mathcal{S}})$.

Finally we introduce a utility function χ that takes relations as argument and gives 1 if its argument is fulfilled. For example $\chi(1>0)=1$, but $\chi(1\leq 0)=0$ and $\chi(x>y)$ is 1 if x>y and it is zero if $x\leq y$. However we still use χ also as the indicator function of the set given in its subscript.

3 Dualizing the masking function

For any point $P \in \mathbb{R}^n$ define the sets $\bar{\mathcal{K}}_P$ and \mathcal{K}_P in the unit sphere \mathbb{S}_P^{n-1} centered at P that contains exactly those points $X \in \mathbb{S}_P^{n-1}$ for which the hyperplane

⁴Embed the space \mathbb{R}^n of \mathcal{K} into \mathbb{R}^{n+1} in such a way that the (n+1)th coordinate of every point is 1 and the (n+1)th coordinate axis intersects \mathcal{K} in its inner point $\mathbf{0} \in \mathbb{R}^n$.

 $hbar{\hbar}(P,\overrightarrow{PX})$ and the straight line $\ell(P,\overrightarrow{PX})$, respectively, intersects \mathcal{K} . Then, by (1.1) and some easy observations we have

$$\begin{split} M_{\mathcal{K}}(P) &= \frac{1}{2} \int_{\mathbb{S}^{n-1}} \# (\partial \mathcal{K} \cap \ell(P, \boldsymbol{u_{\boldsymbol{\xi}}})) d\boldsymbol{\xi} = \int_{\mathcal{K}_P} 1 \, d\boldsymbol{\xi} = \frac{1}{|\mathbb{S}^{n-2}|} \int_{\bar{\mathcal{K}}_P} 1 \, d\boldsymbol{\xi} \\ &= \frac{1}{|\mathbb{S}^{n-2}|} \int_{\mathbb{S}^{n-1}} \chi(\hbar(P, \boldsymbol{u_{\boldsymbol{\xi}}}) \cap \mathcal{K} \neq \emptyset) d\boldsymbol{\xi}. \end{split}$$

From this we obtain

$$\begin{aligned} |\mathbb{S}^{n-2}|M_{\mathcal{K}}(P) &= \int_{\mathbb{S}^{n-1}} \chi(\langle \boldsymbol{u}_{\boldsymbol{\xi}}, P \rangle \leq p_{K}(\boldsymbol{u}_{\boldsymbol{\xi}})) \, d\boldsymbol{\xi} \\ &= |\mathbb{S}^{n-1}| - \int_{\mathbb{S}^{n-1}} \chi(\langle \boldsymbol{u}_{\boldsymbol{\xi}}, P \rangle \geq p_{K}(\boldsymbol{u}_{\boldsymbol{\xi}})) \, d\boldsymbol{\xi} \\ &=: |\mathbb{S}^{n-1}| - M_{\mathcal{K}}^{\star}(\check{\delta}(P)). \end{aligned}$$

Assuming $0 \in \mathcal{K}^{\circ}$ one can reformulate the last integral to obtain

$$\begin{split} M_{\mathcal{K}}^{\star}(\check{\delta}(P)) &= \int_{\mathbb{S}^{n-1}} \chi\Big(\langle -\boldsymbol{u}_{\boldsymbol{\xi}}\varrho_{K^{\star}}(-\boldsymbol{u}_{\boldsymbol{\xi}}), -\boldsymbol{u}\rangle \geq \frac{1}{r}\Big) d\boldsymbol{\xi} \\ &= \int_{\mathbb{S}^{n-1}} \chi\Big(\varrho_{K^{\star}}(-\boldsymbol{u}_{\boldsymbol{\xi}}) \geq \frac{1/r}{\langle -\boldsymbol{u}_{\boldsymbol{\xi}}, -\boldsymbol{u}\rangle}\Big) d\boldsymbol{\xi} \\ &= \int_{\check{\delta}(P)} \chi\big(\boldsymbol{x} \in \mathcal{K}^{\star}\big) \Big| \frac{d\boldsymbol{\xi}}{d\boldsymbol{x}} \Big| d\boldsymbol{x}, \end{split}$$

where $P = r\boldsymbol{u}, r > 0, \boldsymbol{u} \in \mathbb{S}^{n-1}$, and $|d\boldsymbol{\xi}/d\boldsymbol{x}|$ is the Jacobian of the map $\boldsymbol{x} \mapsto \boldsymbol{\xi}$ given by $\boldsymbol{x} = -|\boldsymbol{x}|\boldsymbol{u}_{\boldsymbol{\xi}}$. Let $\boldsymbol{x} = \frac{-1}{r}\boldsymbol{u} + \varrho\boldsymbol{u}_{\boldsymbol{\psi}}$, where $\boldsymbol{u} \perp \boldsymbol{u}_{\boldsymbol{\psi}} \in \mathbb{S}^{n-1}$ and $\boldsymbol{\psi}$ is a spherical coordinate on \mathbb{S}^{n-2} such that $\boldsymbol{\xi} = (\boldsymbol{\xi}, \boldsymbol{\psi})$. Then by rotational invariance we obtain immediately that $\left|\frac{d\boldsymbol{\xi}}{d\boldsymbol{x}}\right| = |\boldsymbol{x}|^{2-n} \left|\frac{d\boldsymbol{\xi}}{d\varrho}\right|$, where $\tan \boldsymbol{\xi} = \frac{\varrho}{1/r}$ and so

$$\frac{d\xi}{d\rho} = \frac{r}{1 + r^2 \rho^2}.$$

Thus, we obtain

(3.2)
$$M_{\mathcal{K}}^{\star}(\check{\delta}(P)) = \int_{\check{\delta}(P)} \chi(\boldsymbol{x} \in \mathcal{K}^{\star}) |\boldsymbol{x}|^{2-n} \frac{|P|}{1 + |P|^{2}(|\boldsymbol{x}|^{2} - |P|^{-2})} d\boldsymbol{x}$$
$$= \int_{\check{\delta}(P)} \chi(\boldsymbol{x} \in \mathcal{K}^{\star}) \frac{1/|P|}{|\boldsymbol{x}|^{n}} d\boldsymbol{x},$$

where dx is the standard surface measure on the hyperplane $\check{\delta}(P)$.

4 Measures of convex bodies

In view of (3.2) it is natural to consider the following transforms.

Let \mathcal{M} and \mathcal{K} be convex bodies such that $\mathbf{0} \in \mathcal{M} \subseteq \mathcal{K}^{\circ}$. Let $\nu \colon \mathbb{H} \to C^{1}(\mathbb{R}^{n})$ be a function of weights, that is, ν_{\hbar} is a weight for every $\hbar \in \mathbb{H}$. Then the weighted section function of \mathcal{K} with respect to \mathcal{M} , the so called kernel, is defined by

$$(4.1) S_{\mathcal{M};\mathcal{K}}^{\nu}(\boldsymbol{u}) = \int_{\langle \boldsymbol{x}, \boldsymbol{u} \rangle = p_{\mathcal{M}}(\boldsymbol{u})} \chi(\boldsymbol{x} \in \mathcal{K}) \nu_{\hbar_{\mathcal{M}}(\boldsymbol{u})}(\boldsymbol{x}) d\boldsymbol{x}_{\hbar_{\mathcal{M}}(\boldsymbol{u})},$$

where $d\mathbf{x}_{\hbar_{\mathcal{M}}(\mathbf{u})}$ is the usual surface measure on $\hbar_{\mathcal{M}}(\mathbf{u})$.

Figure 4.1: Section of K with respect to the kernel M.

The function $\nu \colon \mathbb{H} \to C^1(\mathbb{R}^n)$ of weights is called rotationally symmetric if for every $\hbar \in \mathbb{H}$, $\boldsymbol{x} \in \hbar$ and $D \in SO(n)$ one has $\nu_{D\hbar}(D\boldsymbol{x}) = \nu_{\hbar}(\boldsymbol{x})$, where $D \in SO(n)$ acts naturally on \mathbb{H} . Assume that $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{n-1}$. If $|\boldsymbol{x}| = |\boldsymbol{y}|$ and $\langle \boldsymbol{x}, \boldsymbol{u} \rangle = \langle \boldsymbol{y}, \boldsymbol{v} \rangle$, then there is a $D \in SO(n)$ such that $D\boldsymbol{x} = \boldsymbol{y}$ and $D\boldsymbol{u} = \boldsymbol{v}$. Thus we have the following lemma immediately.

Lemma 4.1. The function ν of weights is rotationally symmetric if and only if there is a function $\bar{\nu} \colon \mathbb{R}^3 \to \mathbb{R}$ such that $\nu_{\hbar(\boldsymbol{u},r)}(\boldsymbol{x}) = \bar{\nu}(r,\langle \boldsymbol{x},\boldsymbol{u}\rangle,|\boldsymbol{x}|)$.

If the kernel body is a ball, i.e. $\varrho \mathcal{B}$, we use the notation $S_{\varrho;\mathcal{K}}^{\nu} := S_{\varrho \mathcal{B};\mathcal{K}}^{\nu}$ as a shorthand.

Lemma 4.2. Let the convex body K contain the ball ϱB . Then for any rotationally symmetric function ν of weights we have

(4.2)
$$\int_{\mathbb{S}^{n-1}} S_{\varrho;\mathcal{K}}^{\nu}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = |\mathbb{S}^{n-2}| \int_{\mathcal{K} \setminus \varrho \mathcal{B}} \bar{\nu}(\varrho, \varrho, |\boldsymbol{x}|) \frac{(|\boldsymbol{x}|^2 - \varrho^2)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{n-2}} d\boldsymbol{x},.$$

Proof. Define the function μ^{ε} of weights by

$$\mu^{\varepsilon}_{\hbar(\boldsymbol{u},r)}(\boldsymbol{x}) := \nu_{\hbar(\boldsymbol{u},r)}(\boldsymbol{x} + (r - \langle \boldsymbol{x}, \boldsymbol{u} \rangle)\boldsymbol{u})\chi(0 \leq \langle \boldsymbol{x}, \boldsymbol{u} \rangle - r \leq \varepsilon),$$

where $\varepsilon > 0$. Now we can write⁵

$$\begin{split} \int_{\mathbb{S}^{n-1}} \mathrm{S}^{\nu}_{\varrho;\mathcal{K}}(\boldsymbol{u}_{\zeta}) d\zeta &= \int_{\mathbb{S}^{n-1}} \int_{\langle \boldsymbol{x}, \boldsymbol{u}_{\zeta} \rangle = \varrho} \nu_{\hbar(\boldsymbol{u}_{\zeta}, \varrho)}(\boldsymbol{x}) \chi(\boldsymbol{x} \in \mathcal{K}) \, d\boldsymbol{x}_{\hbar} \, d\zeta \\ &= \int_{\mathbb{S}^{n-1}} \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} \int_{\langle \boldsymbol{x}, \boldsymbol{u}_{\zeta} \rangle \geq \varrho} \mu^{\varepsilon}_{\hbar(\boldsymbol{u}_{\zeta}, \varrho)}(\boldsymbol{x}) \chi(\boldsymbol{x} \in \mathcal{K}) \, d\boldsymbol{x} \right) d\zeta \\ &= \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} \int_{\mathbb{S}^{n-1}} \int_{\langle \boldsymbol{x}, \boldsymbol{u}_{\zeta} \rangle \geq \varrho} \mu^{\varepsilon}_{\hbar(\boldsymbol{u}_{\zeta}, \varrho)}(\boldsymbol{x}) \chi(\boldsymbol{x} \in \mathcal{K}) \, d\boldsymbol{x} \, d\zeta \right) \\ &= \int_{\mathcal{K} \setminus \varrho \mathcal{B}} \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} \int_{\langle \boldsymbol{x}, \boldsymbol{u}_{\zeta} \rangle > \varrho} \mu^{\varepsilon}_{\hbar(\boldsymbol{u}_{\zeta}, \varrho)}(\boldsymbol{x}) \, d\zeta \right) d\boldsymbol{x}. \end{split}$$

As ν is rotationally symmetric, $\nu_{\hbar(\boldsymbol{u},\langle\boldsymbol{x},\boldsymbol{u}\rangle)}(\boldsymbol{x}) = \bar{\nu}(\langle\boldsymbol{x},\boldsymbol{u}\rangle,\langle\boldsymbol{x},\boldsymbol{u}\rangle,|\boldsymbol{x}|)$, and this implies $\mu^{\varepsilon}_{\hbar(\boldsymbol{u}_{\zeta},\varrho)}(\boldsymbol{x}) = \bar{\nu}(\varrho,\varrho,|\boldsymbol{x}|)\chi(0 \leq \langle\boldsymbol{x},\boldsymbol{u}_{\zeta}\rangle - \varrho \leq \varepsilon)$. Therefore, letting $|\boldsymbol{x}|\boldsymbol{u}_{\xi} = \boldsymbol{x}$, where $\boldsymbol{u}_{\xi} \in \mathbb{S}^{n-1}$, the calculation above continues as

$$\int_{\mathbb{S}^{n-1}} S_{\varrho;\mathcal{K}}^{\nu}(\boldsymbol{u}_{\zeta}) d\zeta
= \int_{\mathcal{K} \setminus \varrho \mathcal{B}} \bar{\nu}(\varrho, \varrho, |\boldsymbol{x}|) \lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} \int_{\langle \boldsymbol{x}, \boldsymbol{u}_{\zeta} \rangle > \varrho} \chi(0 \le \langle \boldsymbol{x}, \boldsymbol{u}_{\zeta} \rangle - \varrho \le \varepsilon) d\zeta \right) d\boldsymbol{x}.$$

As

$$\lim_{\varepsilon \to 0} \left(\frac{1}{\varepsilon} \int_{\langle \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\zeta}} \rangle \geq \varrho} \chi(0 \leq \langle \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\zeta}} \rangle - \varrho \leq \varepsilon) \, d\boldsymbol{\zeta} \right)$$

$$= \lim_{\varepsilon \to 0} \left(\frac{|\mathbb{S}^{n-2}|/|\boldsymbol{x}|}{\varepsilon/|\boldsymbol{x}|} \int_{\varrho/|\boldsymbol{x}|}^{(\varrho + \varepsilon)/|\boldsymbol{x}|} \sqrt{1 - \lambda^2}^{n-3} \, d\boldsymbol{\lambda} \right) = \frac{|\mathbb{S}^{n-2}|}{|\boldsymbol{x}|} \sqrt{1 - \left(\frac{\varrho}{|\boldsymbol{x}|}\right)^2}^{n-3},$$

the lemma is proved.

Although the following lemma was already proved as Lemma 5.3 in [11], we present it here for the sake of completeness with its short proof.

Lemma 4.3. Let ω_i (i = 1, 2) be weights, let K and L be convex bodies containing the unit ball B, and let $c \geq 1$.

(1) If $cV_1(\mathcal{K}) \leq V_1(\mathcal{L})$ and there is a constant $c_{\mathcal{K}}$ such that

$$\omega_2(X) \ge c_{\mathcal{K}}\omega_1(X), \qquad \text{if } X \notin \mathcal{K},$$

$$\omega_2(X) = c_{\mathcal{K}}\omega_1(X), \qquad \text{if } X \in \partial \mathcal{K},$$

$$\omega_2(X) \le c_{\mathcal{K}}\omega_1(X), \qquad \text{if } X \in \mathcal{K},$$

where equality may occur only in a set of measure zero, then $cV_2(\mathcal{K}) \leq V_2(\mathcal{L})$.

⁵Similar calculation is given in [11]. It is given here for the sake of completeness.

(2) If $V_1(\mathcal{K}) \leq cV_1(\mathcal{L})$ and there is a constant $c_{\mathcal{L}}$ such that

$$\omega_2(X) \le c_{\mathcal{L}}\omega_1(X), \qquad \text{if } X \notin \mathcal{L},$$

$$\omega_2(X) = c_{\mathcal{L}}\omega_1(X), \qquad \text{if } X \in \partial \mathcal{L},$$

$$\omega_2(X) \ge c_{\mathcal{L}}\omega_1(X), \qquad \text{if } X \in \mathcal{L},$$

where equality may occur only in a set of measure zero, then $V_2(\mathcal{K}) \leq cV_2(\mathcal{L})$. In both cases equality in the resulted inequality implies $\mathcal{K} = \mathcal{L}$ and c = 1.

Proof. In both statements $\mathcal{K}\triangle\mathcal{L} = \emptyset$ implies $V_1(\mathcal{K}) = V_1(\mathcal{L})$, hence c = 1 and $V_1(\mathcal{K}) = V_1(\mathcal{L})$.

Assume from now on that $\mathcal{K}\triangle\mathcal{L} \neq \emptyset$.

We prove here only (1) since the verification of (2) is similar.

Having (1) we proceed as

$$\begin{split} &V_2(\mathcal{L}) - cV_2(\mathcal{K}) \\ &= V_2(\mathcal{L}) - V_2(\mathcal{K}) + (1-c)V_2(\mathcal{K}) = V_2(\mathcal{L} \setminus \mathcal{K}) - V_2(\mathcal{K} \setminus \mathcal{L}) + (1-c)V_2(\mathcal{K}) \\ &= \int_{\mathcal{L} \setminus \mathcal{K}} \frac{\omega_2(x)}{\omega_1(x)} \omega_1(x) dx - \int_{\mathcal{K} \setminus \mathcal{L}} \frac{\omega_2(x)}{\omega_1(x)} \omega_1(x) dx + (1-c)V_2(\mathcal{K}) \\ &> c_{\mathcal{K}}(V_1(\mathcal{L} \setminus \mathcal{K}) - V_1(\mathcal{K} \setminus \mathcal{L})) + (1-c)V_2(\mathcal{K}) = c_{\mathcal{K}}(V_1(\mathcal{L}) - V_1(\mathcal{K})) + (1-c)V_2(\mathcal{K}) \\ &\geq (c-1)(c_{\mathcal{K}}V_1(\mathcal{K}) - V_2(\mathcal{K})) = (c-1)\left(\int_{\mathcal{K}} \left(c_{\mathcal{K}} - \frac{\omega_2(x)}{\omega_1(x)}\right) \omega_1(x) dx\right) \geq 0. \end{split}$$

This implies $V_2(\mathcal{L}) - cV_2(\mathcal{K}) > 0$.

The lemma is proved.

5 Spherical isomaskers

First we calculate the integral of the masking function $M_{\mathcal{K}}$ of the convex body $\mathcal{K} \subset \bar{r}\mathcal{B}^n$ over the sphere $\bar{r}\mathbb{S}^{n-1}$ $(\bar{r} > 0)$. Starting with equation (3.1) we get

$$\int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}(\bar{r}\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = \frac{1}{|\mathbb{S}^{n-2}|} \int_{\mathbb{S}^{n-1}} |\mathbb{S}^{n-1}| - M_{\mathcal{K}}^{\star}(\check{\delta}(\bar{r}\boldsymbol{u}_{\boldsymbol{\xi}})) d\boldsymbol{\xi}
= \frac{|\mathbb{S}^{n-1}|^2}{|\mathbb{S}^{n-2}|} - \frac{1}{|\mathbb{S}^{n-2}|} \int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}^{\star}(\check{\delta}(\bar{r}\boldsymbol{u}_{\boldsymbol{\xi}})) d\boldsymbol{\xi}.$$

Assuming $\mathbf{0} \in \mathcal{K}^{\circ}$ we can continue by using (3.2) and (4.1) and obtain

$$\int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}(r\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = \frac{|\mathbb{S}^{n-1}|^2}{|\mathbb{S}^{n-2}|} - \frac{1}{|\mathbb{S}^{n-2}|} \int_{\mathbb{S}^{n-1}} \int_{\hbar(-\boldsymbol{u}_{\boldsymbol{\xi}}, 1/r)} \chi(\boldsymbol{x} \in \mathcal{K}^{\star}) \frac{1/\bar{r}}{|\boldsymbol{x}|^n} d\boldsymbol{x} d\boldsymbol{\xi}.$$

This means

(5.1)
$$\int_{\mathbb{S}^{n-1}} M_{\mathcal{K}}(r\boldsymbol{\xi}) d\boldsymbol{\xi} = \frac{|\mathbb{S}^{n-1}|^2}{|\mathbb{S}^{n-2}|} - \frac{1}{|\mathbb{S}^{n-1}|} \int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\bar{r}};\mathcal{K}^{\star}}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi},$$

where $\nu_{h(\boldsymbol{u},r)}(\boldsymbol{x}) = r|\boldsymbol{x}|^{-n}$. Having this we are ready to prove the following generalization of Nitsche's result [13].

Theorem 5.1. Let $\varrho_2 > \varrho_1 > \bar{r} > 0$ and let \mathcal{K} be a convex body contained in the interior of $\varrho_1 \mathcal{B}^n$. If the sphere $\varrho_1 \mathbb{S}^{n-1}$ is the common α -isomasker and $\varrho_2 \mathbb{S}^{n-1}$ is the common β -isomasker of the convex body \mathcal{K} and $\bar{r}\mathcal{B}$, then $\mathcal{K} = \bar{r}\mathcal{B}$.

Proof. By the conditions we have $M_{\mathcal{K}}(\varrho_1 \boldsymbol{u}) = \alpha = M_{\bar{r}\mathcal{B}^n}(\varrho_1 \boldsymbol{u})$ and $M_{\mathcal{K}}(\varrho_2 \boldsymbol{u}) = \beta = M_{\bar{r}\mathcal{B}^n}(\varrho_2 \boldsymbol{u})$ for every $\boldsymbol{u} \in \mathbb{S}^{n-1}$.

Figure 5.1: $M_{\mathcal{K}}(P)$ is clearly smaller than $M_{\mathcal{K}}(Q)$.

By some elementary observations and reasoning illustrated in Figure 5.1 it follows that \mathcal{K}° contains the common center **0** of the balls $\bar{r}\mathcal{B}$, $\varrho_1\mathcal{B}^n$ and $\varrho_2\mathcal{B}^n$.

Now equation (5.1) implies

$$\int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\varrho_1};\mathcal{K}^{\star}}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = \int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\varrho_1};(\bar{r}\mathcal{B}^n)^{\star}}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = \int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\varrho_1};\frac{1}{\bar{r}}\mathcal{B}^n}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi},$$

$$\int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\varrho_2};\mathcal{K}^{\star}}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = \int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\varrho_2};(\bar{r}\mathcal{B}^n)^{\star}}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi} = \int_{\mathbb{S}^{n-1}} S^{\nu}_{\frac{1}{\varrho_2};\frac{1}{\bar{r}}\mathcal{B}^n}(\boldsymbol{u}_{\boldsymbol{\xi}}) d\boldsymbol{\xi}.$$

As the function ν of weights having $\bar{\nu}(\varrho_2, \varrho_2, r) = \varrho_2 r^{-n}$ is obviously rotational

invariant, (4.2) implies

$$\int_{\mathcal{K}^{\star} \setminus \frac{1}{\varrho_{2}} \mathcal{B}^{n}} \frac{(|\boldsymbol{x}|^{2} - \varrho_{2}^{-2})^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2n-2}} \, d\boldsymbol{x} = \int_{\frac{1}{\bar{r}} \mathcal{B}^{n} \setminus \frac{1}{\varrho_{2}} \mathcal{B}^{n}} \frac{(|\boldsymbol{x}|^{2} - \varrho_{2}^{-2})^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2n-2}} \, d\boldsymbol{x},$$

and

$$\int_{\mathcal{K}^{\star} \setminus \frac{1}{\varrho_{1}} \mathcal{B}^{n}} \frac{(|\boldsymbol{x}|^{2} - \varrho_{1}^{-2})^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2n-2}} \, d\boldsymbol{x} = \int_{\frac{1}{\bar{r}} \mathcal{B}^{n} \setminus \frac{1}{\varrho_{1}} \mathcal{B}^{n}} \frac{(|\boldsymbol{x}|^{2} - \varrho_{1}^{-2})^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{2n-2}} \, d\boldsymbol{x}.$$

Let $\bar{\omega}_1(r) := r^{2-2n}(r^2 - \varrho_1^{-2})^{\frac{n-3}{2}}$, $\bar{\omega}_2(r) := r^{2-2n}(r^2 - \varrho_2^{-2})^{\frac{n-3}{2}}$, and let $\omega_1(\boldsymbol{x}) := \bar{\omega}_1(|\boldsymbol{x}|)$, $\omega_2(\boldsymbol{x}) := \bar{\omega}_2(|\boldsymbol{x}|)$. Then $\frac{\omega_1}{\omega_2}$ is clearly a constant, say $c_{\mathcal{L}}$, on $\frac{1}{\bar{r}}\mathcal{B}^n$, and

$$\frac{\bar{\omega}_1(r)}{\bar{\omega}_2(r)} = \frac{(r^2 - \varrho_1^{-2})^{\frac{n-3}{2}}}{(r^2 - \varrho_2^{-2})^{\frac{n-3}{2}}} = \left(1 - \frac{\varrho_1^{-2} - \varrho_2^{-2}}{r^2 - \varrho_1^{-2}}\right)^{\frac{n-3}{2}}$$

shows that $\frac{\bar{\omega}_1}{\bar{\omega}_2}$ is strictly monotone increasing.

The above observations show that the conditions in (2) of Lemma 4.3 are satisfied for \mathcal{K}^{\star} , $\mathcal{L} := \frac{1}{\bar{r}}\mathcal{B}^n$ and c = 1, hence $V_2(\mathcal{K}^{\star}) \leq V_2(\mathcal{L})$, and equality implies $\mathcal{K}^{\star} = \mathcal{L}$ and c = 1.

As
$$\mathcal{K} = (\mathcal{K}^*)^* = (\mathcal{L})^* = \bar{r}\mathcal{B}^n$$
, the theorem is proved.

6 Discussion

To have a complete generalization of Nitsche's result [13] from the point of view of Theorem 5.1, one should prove that if a convex body \mathcal{K} has two spherical isomaskers of values $\alpha_1 \neq \alpha_2$, then there is a ball $\bar{r}\mathcal{B}^n$ with the same α_1 - and α_2 -isomaskers of radius $\varrho_1 \neq \varrho_2$. Although Nitsche proved this in the plane, the authors conjecture that this is no longer valid in higher dimensions.

Conjecture 6.1. There are positive values $\alpha_1 \neq \alpha_2$ and $\varrho_1 \neq \varrho_2$ such that there is a non-spherical convex body $\mathcal{K} \subset \mathbb{R}^n$ the α_1 - and α_2 -isomaskers of which are spheres of radius $\varrho_1 \neq \varrho_2$, respectively.

However note that it is proved in [7] that if two convex bodies in the plane have rotational symmetry of angle $2(\pi - \nu)$ and have common ν -isoptic, then that ν -isoptic is a circle.

In higher dimensions the only positive result the authors know about is the surprisingly easy [5, Theorem 2]. It states that if a convex body $\mathcal{K} \subset \mathbb{R}^n$ has an isoptic \mathcal{I} in the sense of a k-dimensional angles for any 1 < k < n-1, then \mathcal{K} is reconstructible from \mathcal{I} .

Acknowledgement. This research was supported by the European Union and cofunded by the European Social Fund under the project "Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences" of project number 'TÁMOP-4.2.2.A-11/1/KONV-2012-0073".

The authors thank János Kincses for discussions of the problems solved in this paper. \blacksquare

References

- [1] R. J. Gardner, *Geometric tomography* (second edition), Encyclopedia of Math. and its Appl. **58**, Cambridge University Press, Cambridge, 2006 (first edition in 1996).
- [2] J. W. Green, Sets subtending a constant angle on a circle, *Duke Math. J.*, 17 (1950), 263–267.
- [3] J. Kincses and Á. Kurusa, Can you recognize the shape of a figure from its shadows?, Beiträge zur Alg. und Geom., 36 (1995), 25–34.
- [4] M. S. Klamkin, Conjectured isoptic characterization of a circle, Amer. Math. Monthly, 95 (1988), 845.
- [5] Á. Kurusa, You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59 (1996), 103–112.
- [6] Á. Kurusa, The shadow picture problem for nonintersecting curves, *Geom. Dedicata*, **59** (1996), 113–125.
- [7] Á. Kurusa, Is a convex plane body determined by an isoptic?, Beitr. Alg. Geom., 53:2 (2012), 281–294; doi: 10.1007/s13366-011-0074-2.
- [8] Á. Kurusa, The shadow picture problem for parallel straight lines, J. Geom., 103:3 (2012), 515–518; doi: 10.1007/s00022-012-0137-z.
- [9] Á. Kurusa, The masking function of multicurves, manuscript (2014), submitted.
- [10] Á. Kurusa and T. Ódor, Characterizations of balls by sections and caps, Beitr. Alg. Geom. (2014), to appear; doi: 10.1007/s13366-014-0203-9.
- [11] Å. Kurusa and T. Ödor, Spherical floating body, manuscript (2014), submitted.
- [12] S. Matsuura, A problem in solid geometry, J. Math. Osaka City Univ., A 12 (1961), 89–95.
- [13] J. C. C. Nitsche, Isoptic characterization of a circle, (Proof of a conjecture of M.S. Klamkin), *Amer. Math. Monthly*, **97** (1990), 45–47.
- [14] T. Ódor, Rekonstrukciós, karakterizációs és extrémum problémák a geometriában, PhD dissertation, Budapest, 1994 (in hungarian; title in english: Problems of reconstruction, characterization and extremum in geometry).

- [15] T. Ódor, Ball characterizations by visual angles and sections, manuscript, (2002), unpublished.
- [16] L. A. Santaló, *Integral Geometry and Geometric Probability*, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2004.
- [17] R. Schneider, Convex bodies: The Brunn-Minkowski Theory, Encyclopedia of Math. and its Appl., Cambridge Univ. Press, Cambridge, 1993; second edition, 2013.
- Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: kurusa@math.u-szeged.hu
- T. Ódor, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: odor@math.u-szeged.hu