Projective-metric spaces with Ceva or Menelaus property

Árpád Kurusa

http://www.math.u-szeged.hu/tagok/kurusa
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
https://www.renyi.hu/
Bolyai Institute, University of Szeged http://www.math.u-szeged.hu/

Talk given on the Erasmus trip to University of Basilicata at Potenza on 16th July 2019
This work was supported by NFSR of Hungary (NKFIH) under grant numbers K 116451 and KH_18 129630, and by the Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT.

For the animations Adobe PDF Reader is necessary.

In todays' language Hilbert's IV. problem [8] was to give all the metrics, the projective metrics [6], on every projective space $\mathbb{P}^{n}, n \in \mathbb{N}$, that satisfy the strict triangle inequality, and then investigate those geometries given by these metrics.
Hamel [9] proved that, according to the domain \mathcal{D} of the projective metric d, there are exactly three kinds of them:
hyperbolic type ($\mathcal{D} \subsetneq \mathbb{P}^{n} \backslash \mathbb{R}^{n}$ convex) parabolic type $\left(\mathcal{D}=\mathbb{P}^{n} \backslash \mathbb{R}^{n}\right)$ and elliptic type $\left(\mathcal{D}=\mathbb{P}^{n}\right)$.

A pair (\mathcal{D}, d) of an open convex domain \mathcal{D} and a projective metric $d: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}_{+}$is called projective-metric space if the geodesics (the chords of $\partial \mathcal{D}$) are isometric to a Euclidean circle (for elliptic type) or to a Euclidean straight line (for the straight types, i.e. either the parabolic or the hyperbolic type).
Spaces of constant curvature show that there are important projective-metric spaces.
 $v_{k}(r) S^{n-1}$ is isometric to a metric sphere of radius $r>0$ in \mathbb{K}_{k}^{n}. The projection function $\mu_{k}:\left[0, i_{k}\right) \rightarrow \mathbb{R}_{+}$gives the geodesic correspondence $\tilde{\mu}_{\kappa}: \operatorname{Exp}_{O}(r \omega) \mapsto \mu_{\kappa}(r) \omega$.

\mathbb{K}_{K}^{n}	κ	v_{K}	μ_{κ}	i_{κ}
\mathbb{H}^{n}	-1	$\sinh r$	$\tanh r$	∞
\mathbb{R}^{n}	0	r	r	∞
$\mathbb{S}^{n}\left(\mathbb{P}^{n}\right)$	+1	$\sin r$	$\tan r$	$\pi / 2$

Here we identified the space $\mathcal{T}_{O} \mathbb{K}_{k}^{n}$ with \mathbb{R}^{n} by the natural way, and used $\omega \in \mathcal{S}^{n-1}$ in both senses.

Blaschke [2] proved that Crofton's formula [7] gives projective metrics from measures on the Grassmannian.
Busemann conjectured [4] that all projective metrics can be constructed in this way. This was first proved by Pogorelov [13] and Szabó [14].
Beltrami's theorem [1] implies that the only Riemannian projective metrics are those of constant curvature.

The class of projective metrics and the class of projective-metric spaces are both so huge. Busemann noticed [5] that "... the second part of [Hilbert's] problem ... has inevitably been replaced by the investigation of special, or special classes of, interesting geometries."
Our general goal is to
characterize the interesting geometries among projective-metric spaces.
This time we investigate the validity of the theorems of Ceva and Menelaus.

Hilbert metric $d: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ is defined by

$$
d(X, Y)= \begin{cases}0, & \text { if } X=Y, \\ \frac{1}{2}\left|\ln \left(X, Y ; D_{X}, D_{Y}\right)\right|, & \text { if } X \neq Y\end{cases}
$$

where \mathcal{D} is an open, strictly convex, bounded domain in \mathbb{R}^{n} and $\overline{D_{X} D_{Y}}=\mathcal{D} \cap X Y$.

Minkowski metric $d_{I}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $d(X, Y)=\left(Y, I_{Y} ; X\right)$, where I, the indicatrix, is an open, strictly convex, bounded domain in \mathbb{R}^{n} symmetric at $O, I_{X}=I+\overrightarrow{O X}$, and $\overline{I_{X} I_{Y}}=I_{X} \cap X Y$.

Elliptic metric $d: \mathbb{P}^{n} \times \mathbb{P}^{n} \rightarrow \mathbb{R}$ is defined by $d(X, Y)=\arccos |\langle\overrightarrow{O X}, \overrightarrow{O Y}\rangle|$, where the points of \mathbb{P}^{n} are the diagonal point pairs of \mathcal{S}^{n}.

Although the theorems of Ceva and Menelaus basically belong to affine geometry, they can be formulated by the metric just as well.
Below, if the projective-metric space is of elliptic type, then it is so meant that a straight line was removed a priori.
Let A, B be different points in a projective-metric space (\mathcal{D}, d), and let $C \in(A B \cap \mathcal{D}) \backslash\{B\}$.

Then the metric ratio and the size-ratio of the triplet $(A, B ; C)$ are
 where v is the size function of the hyperbolic, Euclidean, or elliptic space according to the type of (\mathcal{D}, d). Observe that in a constant curvature space \mathbb{K}^{n} a size-ratio $\langle A, B ; C\rangle_{d}^{\circ}$ is the affine ratio of the orthogonal projections of points A, B, C into the tangent space $T_{C} \mathbb{K}^{n}$.
By a triplet (Z, X, Y) of a non-degenerate triangle $A B C \triangle$ we mean three points Z, X and Y being respectively on the straight lines $A B, B C$ and $C A$. It is called

- a Ceva triplet if lines $A X, B Y$ and $C Z$ are concurrent, and

- a Menelaus triplet if Z, X and Y are collinear.

A 3-tuple (α, β, γ) of real numbers is

- of Ceva type if $\alpha \cdot \beta \cdot \gamma=+1$, and
- of Menelaus type if $\alpha \cdot \beta \cdot \gamma=-1$.

The Ceva or Menelaus property of a projective-metric space means that any triplet (Z, X, Y) of any non-degenerate triangle $A B C \triangle$ is Menelaus or Ceva if and only if the 3-tuple $\left(\langle A, B ; Z\rangle_{d}^{\circ},\langle B, C ; X\rangle_{d}^{\circ},\langle C, A ; Y\rangle_{d}^{\circ}\right)$ is of Menelaus or Ceva type, respectively.

A projective-metric space is called Cevian or Menelausian if it has the appropriate property. Known examples are the Minkowski geometries, as the size-function is the identity, and the constant curvature spaces, where appropriate trigonometry applies [12].
Non-Cevian and non-Menelausian spaces are the non-hyperbolic Hilbert geometries ${ }^{1}$. This was proved in [10, Theorem 3.1] by showing that both the Ceva and the Menelaus properties fail for some triangles if the boundary of the Hilbert geometry is not an ellipsoid.

Lemma. If five collinear points A, R, Z, Q, B in a Cevian projective-metric space satisfies $(Z, A ; R)(B, Z ; Q)(A, B ; Z)=1$ in order $A<$ $R<Z<Q<B$, then
(2.1) $\langle Z, A ; R\rangle_{d}^{\circ}\langle B, Z ; Q\rangle_{d}^{\circ}\langle A, B ; Z\rangle_{d}^{\circ}=1$.

Lemma. If five collinear points Q, Y, X, R, Z in a Menelausian projective-metric space satisfies $(X, R ; Z)(R, Q ; X)(Q, X ; Y)=-1 \mathrm{in}$ order $Q<Y<X<R<Z$, then (2.2) $\langle X, R ; Z\rangle_{d}^{\circ}\langle R, Q ; X\rangle_{d}\langle Q, X ; Y\rangle_{d}^{\circ}=-1$.

Relabeling the points $Q<Y \prec X<R<Z$ as $Q \mapsto B, Y \mapsto Q, X \mapsto Z, R \mapsto R$, and $Z \mapsto A$ shows that (2.2) is equivalent ${ }^{2}$ to (2.1).

[^0]
Theorem. (Á. K. 2019 [11]).

A projective-metric space is Cevian or Menelausian if and only if

- it is a Cayley-Klein model of the hyperbolic geometry, or
- it is a Minkowski geometry, or
- it is the elliptic geometry.

For proving this result we use the equivalency

$$
\begin{equation*}
\frac{\overrightarrow{Z B}-\overrightarrow{Z Q}}{\overrightarrow{Z A}-\overrightarrow{Z R}} \frac{\overrightarrow{R Z}}{\overrightarrow{Z Q}} \frac{\overrightarrow{A Z}}{\overrightarrow{Z B}}=1 \Leftrightarrow \frac{v(d(Z, B)-d(Z, Q))}{v(d(A, Z)-d(R, Z))} \frac{v(d(R, Z))}{v(d(Z, Q))} \frac{v(d(A, Z))}{v(d(Z, B))}=1 \tag{2.3}
\end{equation*}
$$

that follows from (2.1) by the additivity of the metric d. Although this equivalency is quite different in every type of the projective-metric spaces, each case leads to Cauchy's functional equation [15].
As a general setup we parameterize the five collinear points $A<R<Z<Q<B$ by the linear function $P: \mathbb{R} \rightarrow R Q$ so that $Z=P(0), A=P(a), R=P(r), Q=P(q), B=P(b)$, where $a<r<0<q<b$.

Further, we introduce $\ell: R Q \rightarrow \mathbb{R}$ defined by $\ell(s)=v(d(P(s), Z))$.

Cevian (\mathcal{D}, d) is of elliptic type.
The geodesics of a projective-metric space of elliptic type have equal lengths, so we can set their length to π by simply multiplying the projective metric with an appropriate positive constant. Hence $v(\cdot)=\sin (\cdot)$, and so $\ell(s)=\sin (d(P(s), Z))$.
Equivalency (2.3) with the addition formulas for sine give

$$
\frac{b-q}{b} \frac{-a}{r-a} \frac{-r}{q}=1 \Leftrightarrow \frac{\ell(b) \cos (d(Z, Q))-\cos (d(Z, B)) \ell(q)}{\ell(a) \cos (d(R, Z))-\cos (d(A, Z)) \ell(r)} \frac{\ell(r)}{\ell(q)} \frac{\ell(a)}{\ell(b)}=1 .
$$

After some easy simplifications this becomes
(2.4) $\frac{1}{q}-\frac{1}{b}=\frac{1}{a}-\frac{1}{r} \Leftrightarrow \cot (d(Z, Q))-\cot (d(Z, B))=\cot (d(R, Z))-\cot (d(A, Z))$.

Letting $b \rightarrow \infty$ and $a \rightarrow-\infty$ implies that $q \rightarrow-r$ by the left-hand equation of (2.4). The right-hand equation of (2.4) gives that $\cot (d(Z, Q))=\cot (d(R, Z))$, hence $d(Z, Q)=d(R, Z)$. Thus, $q=-r$ is equivalent to $d(Z, Q)=d(R, Z)$, hence ℓ is an even function.
Let function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be defined by $f(x):=\cot (d(Z, P(x)))$. Then (2.4) reads as

$$
f\left(\frac{a b r}{a r+b r-a b}\right)=f(b)+f(r)-f(a) .
$$

Putting $r=-b$ (hence accepting $a<-b$ too!), this gives

$$
\begin{equation*}
f\left(\frac{a b}{2 a+b}\right)=2 f(b)-f(a) \tag{2.5}
\end{equation*}
$$

because f is an even function due to the evenness of ℓ.

Define the odd function

$$
g(x)=\left\{\begin{array}{rr}
f(1 / x), & \text { if } x>0 \\
-f(1 / x), & \text { if } x<0
\end{array}\right.
$$

Then, as $2 a+b<a<0<b$, (2.5) gives

$$
\begin{equation*}
g\left(\frac{2}{b}+\frac{1}{a}\right)=2 g\left(\frac{1}{b}\right)+g\left(\frac{1}{a}\right) . \tag{2.6}
\end{equation*}
$$

For the moment let $b=-a / 2$. Then (2.6) gives $g\left(\frac{-3}{a}\right)=2 g\left(\frac{-2}{a}\right)+g\left(\frac{1}{a}\right)$. So $g(0)=0$ follows from $a \rightarrow-\infty$ by the continuity of g. Now, $a \rightarrow-\infty$ in (2.6) gives by the continuity of g that $g(2 / b)=2 g(1 / b)$. Substituting this into (2.6) we arrive at Cauchy's functional equation [15] for the continuous function g, so we obtain that $g(x)=c x$ for some $c>0$ and every x. By the definition of g and f this gives $d(P(s), P(0))=|\arctan (c s)|$ which implies $c=1$.
This proves the theorem for projective-metric spaces of elliptic type.

Cevian (\mathcal{D}, d) is of parabolic type.
We have $v(\cdot)=\cdot$, so $\ell(s)=d(P(s), Z)$, hence (2.3) gives

$$
\frac{b-q}{b} \frac{-a}{r-a} \frac{-r}{q}=1 \Leftrightarrow \frac{\ell(b)-\ell(q)}{\ell(a)-\ell(r)} \frac{\ell(r)}{\ell(q)} \frac{\ell(a)}{\ell(b)}=1 .
$$

After some easy simplifications this becomes

$$
\begin{equation*}
\frac{1}{q}-\frac{1}{b}=\frac{1}{a}-\frac{1}{r} \Leftrightarrow \frac{1}{\ell(q)}-\frac{1}{\ell(b)}=\frac{1}{\ell(r)}-\frac{1}{\ell(a)} \tag{2.7}
\end{equation*}
$$

Letting $a \rightarrow-\infty$ and $b \rightarrow \infty$ equation (2.7) gives

$$
\frac{1}{q}=-\frac{1}{r} \Leftrightarrow \frac{1}{\ell(q)}=\frac{1}{\ell(r)},
$$

so the affine and the d-metric midpoint of any segment coincide.
Thus, according to Busemann [3, page 94], d is a Minkowski metric, hence the theorem for projective-metric spaces of parabolic type.

Cevian (\mathcal{D}, d) is of hyperbolic type.
We have $v(\cdot)=\sinh (\cdot)$, so $\ell(s)=\sinh (d(P(s), Z)$), and (2.3) with the addition formulas for the hyperbolic sine give

$$
\frac{b-q}{b} \frac{-a}{r-a} \frac{-r}{q}=1 \Leftrightarrow \frac{\ell(b) \cosh (d(Z, Q))+\cosh (d(Z, B)) \ell(q)}{\ell(a) \cosh (d(R, Z))+\cosh (d(A, Z)) \ell(r)} \frac{\ell(r)}{\ell(q)} \frac{\ell(a)}{\ell(b)}=1 .
$$

After some easy simplifications this shows
(2.8) $\frac{1}{q}-\frac{1}{b}=\frac{1}{a}-\frac{1}{r} \Leftrightarrow \operatorname{coth}(d(Z, Q))+\operatorname{coth}(d(Z, B))=\cot (d(R, Z))+\cot (d(A, Z))$.

The intersection $e:=A B \cap \mathcal{D}$ of line $A B$ and the domain \mathcal{D} can be of three types:

- a whole affine line $A B$,

- a ray $\overline{A_{\infty}} B$, or

- a segment $\overline{A_{\infty} B_{\infty}}$.

- $e=A B$.

Letting $b \rightarrow \infty$ and $a \rightarrow-\infty$, implies that $q \rightarrow-r$ by the left-hand equation of (2.4). From the right-hand equation of (2.4) we get that $\operatorname{coth}(d(Z, Q))=\operatorname{coth}(d(R, Z))$, hence $d(Z, Q)=$ $d(R, Z)$. Thus, $q=-r$ is equivalent to $d(Z, Q)=d(R, Z)$, hence ℓ is an even function. Thus the map $\rho_{d ; e ; z}: P(z-x) \leftrightarrow P(z+x)$ is a d-isometric point reflection of e for every $P(z) \in e$, hence $\left.\tau_{d ; e ; z, t}:=\rho_{d ; e ; t} \circ \rho_{d ; e ; z}: P(y) \rightarrow P(2 z-y) \rightarrow P(2(t-z)+y)\right)$ is a d-isometric translation.

So $d(P(x), P(y))=d(P(0), P(y-x))$, hence $d(P(0), P(y-x))+d(P(0), P(z-y))=d(P(x), P(y))+d(P(y), P(z))=d(P(x), P(z))=d(P(0), P(z-x))$.
Thus the continuous function $f(x)=d(P(0), P(x))$ satisfies Cauchy's functional equation [15], hence a constant $c_{e}>0$ exists such that $d(P(x), P(y))=c_{e}|x-y|$ for every $x, y \in \mathbb{R}$.
$0=\overline{A_{\infty}} B$.
Let $A_{\infty}=P\left(a_{\infty}\right)$. Letting $b \rightarrow \infty$ and $a \rightarrow a_{\infty}$ implies that

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{a_{\infty}}-\frac{1}{r} \Leftrightarrow \operatorname{coth}(d(Z, Q))=\operatorname{coth}(d(R, Z)) \tag{2.9}
\end{equation*}
$$

by (2.8). Reparameterizing ray e by the linear map $\bar{P}: \mathbb{R} \rightarrow R Q$ such that $\bar{A}_{\infty}=\bar{P}(0)$, $R=\bar{P}(r), Z=\bar{P}(z), Q=\bar{P}(q)$, we can reformulate equivalency (2.9) to

$$
\frac{1}{q-z}=\frac{1}{-z}-\frac{1}{r-z} \Leftrightarrow d(Z, Q)=d(R, Z)
$$

where $0<r<z<q$. Thus, the map $\rho_{d ; e ; z}: P(r) \leftrightarrow P\left(z^{2} / r\right)$ is a d-isometric point reflection on ray e for every $P(z) \in e$, hence $\tau_{d ; e ; z, t}:=\rho_{d ; ; ; t} \circ \rho_{d ; e ; z}: P(r) \rightarrow P\left(z^{2} / r\right) \rightarrow P\left(r t^{2} / z^{2}\right)$ is a d-isometric translation.
So $d\left(P(r), \tau_{d ; e ; z, t}(P(r))\right)$ does not depend on r, hence it is a real function δ of t / z. As d is additive, this implies $\delta(x)+\delta(y)=\delta(x y)$, so, by the solution of Cauchy's functional equation [15], we have a constant $\bar{c}_{e}>0$ such that $\delta(x)=2 c_{e}|\ln (x)|$. Thus

$$
d(P(x), P(y))=d\left(P(x), \tau_{d ; e, 1, \sqrt{y / x}}(P(x))\right)=\delta(\sqrt{y / x})=\bar{c}_{e}|\ln (y / x)| \quad \text { for every } x, y \in \mathbb{R} .
$$

This means $d(P(x), P(y))=\bar{c}_{e}\left|\ln \left(A_{\infty}, \infty ; P(y), P(x)\right)\right|$, i.e. a Hilbert metric on ray e.
$e=\overline{A_{\infty} B_{\infty}}$.
Let $A_{\infty}=P\left(a_{\infty}\right)$ and $B_{\infty}=P\left(b_{\infty}\right)$. Letting $b \rightarrow b_{\infty}$ and $a \rightarrow a_{\infty}$ implies that

$$
\frac{1}{q}-\frac{1}{b_{\infty}}=\frac{1}{a_{\infty}}-\frac{1}{r} \Leftrightarrow \operatorname{coth}(d(Z, Q))=\operatorname{coth}(d(R, Z))
$$

by (2.8). Reparameterizing segment e by the linear map $\bar{P}: \mathbb{R} \rightarrow R Q$ such that $\bar{A}_{\infty}=\bar{P}(0)$, $R=\bar{P}(r), Z=\bar{P}(z), Q=\bar{P}(q)$, and $\bar{B}_{\infty}=\bar{P}(1)$ we can reformulate the equivalency in (2.9) to

$$
\frac{1}{q-z}-\frac{1}{1-z}=\frac{1}{-z}-\frac{1}{r-z} \Leftrightarrow d(Z, Q)=d(R, Z)
$$

where $0<r<z<q<1$. Thus, the map $\rho_{d ; e ; z}: P(r) \leftrightarrow P\left(\frac{z^{2}(1-r)}{z^{2}-r(2 z-1)}\right)$ is a d-isometric point reflection on segment e for every $P(z) \in e$, hence

$$
\tau_{d ; e ;, z, t}:=\rho_{d ; e, t} \circ \rho_{d ; e ; z}: P(r) \rightarrow P\left(\frac{z^{2}(1-r)}{z^{2}-r(2 z-1)}\right) \rightarrow P\left(\frac{1}{1+\frac{1-r}{r} \frac{z^{2}}{(1-z)^{2}} \frac{(1-t)^{2}}{t^{2}}}\right)
$$

is a d-isometric translation. So $d\left(P(r), \tau_{d ; e ; z, t}(P(r))\right)$ does not depend on r, hence it is a real function δ of $\frac{z^{2}}{(1-z)^{2}} \frac{(1-t)^{2}}{t^{2}}$. As d is additive, this implies $\delta(x)+\delta(y)=\delta(x y)$ so, by the solution of Cauchy's functional equation [15], we have a constant $\bar{c}_{e}>0$ such that $\delta(x)=2 c_{e}|\ln (x)|$. Thus

$$
d(P(x), P(y))=d\left(P(x), \tau_{d ; e ; 1, \frac{x}{1-x} \frac{1-y}{y}}(P(x))\right)=\delta\left(\sqrt{\frac{x}{1-x} \frac{1-y}{y}}\right)=\bar{c}_{e}\left|\ln \left(\frac{x}{1-x} \frac{1-y}{y}\right)\right| .
$$

This means $d(P(x), P(y))=\bar{c}_{e}\left|\ln \left(A_{\infty}, B_{\infty} ; P(y), P(x)\right)\right|$, i.e. a Hilbert metric on segment e.

Having the metric for every possible domain of a projective-metric space of hyperbolic type, we are ready to step forward by considering the properties of the domain \mathcal{D}.

If \mathcal{D} contains a whole affine line, then by [6, Exercise [17.8]] it is either a half plane or a strip bounded by two parallel lines, because it is not the whole plane. Thus, domain \mathcal{D} is

$$
\text { either } \mathcal{P}_{(0, \infty)}:=\left\{(x, y) \in \mathbb{R}^{2}: 0<x\right\} \text { or } \mathcal{P}_{(0, b)}:=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<b\right\}
$$

in suitable linear coordinates. As the perspective projectivity $\varpi:(x, y) \mapsto\left(\frac{x}{x+1}, \frac{y}{x+1}\right)$ maps $\mathcal{P}_{(0, \infty)}$ onto $\mathcal{P}_{(0,1)}$ bijectively, it is enough to consider the case $\mathcal{D}=\mathcal{P}_{(0,1)}$.
By the above, we know that $d((x, y),(x, z))=c(x)|z-y|$ for a continuous $c:(0,1) \rightarrow \mathbb{R}_{+}$, and

$$
d((x, \lambda+\sigma x),(\mu x, \lambda+\mu \sigma x))=\bar{c}(\lambda, \sigma)\left|\ln \left(0, \frac{1}{x} ; 1, \mu\right)\right|=\bar{c}(\lambda, \sigma)\left|\ln \frac{1-\mu x}{\mu(1-x)}\right|
$$

where $\bar{c}: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is also a continuous function. Putting these together gives

$$
d((x, 0),(s, y))= \begin{cases}\bar{c}\left(\frac{-y x}{s-x}, \frac{y}{s-x}\right)\left|\ln \frac{x(1-s)}{s(1-x)}\right|, & \text { if } x \neq s \\ c(x)|y|, & \text { if } x=s\end{cases}
$$

for every $x, s \in(0,1)$ and $y \in \mathbb{R}$. Letting $y=k(s-x)>0$ where $k \geq 0$, we get

$$
\begin{aligned}
k c(x) & =\lim _{s \rightarrow x} \frac{d((x, 0),(x, s-x))}{s-x}=\bar{c}(-k x, k) \lim _{s \rightarrow x}\left|\frac{\ln \frac{x(1-s)}{s(1-x)}}{s-x}\right| \\
& =\bar{c}(-k x, k) \lim _{s \rightarrow x}\left|\frac{\ln \left(1-\frac{1}{s(1-x) /(s-x)}\right)^{s(1-x) /(s-x)}}{s(1-x)}\right|=\frac{\bar{c}(-k x, k)}{x(1-x)} .
\end{aligned}
$$

This gives $0=\lim _{k \rightarrow 0} \bar{c}(-k x, k)$, and by continuity $\bar{c}(0,0)=0$, a contradiction.

Thus \mathcal{D} does not contain a whole affine line, so it is either bounded or contains some rays. The metric on every chord $\ell \cap \mathcal{D}$ cut out by the straight lines ℓ from \mathcal{D} is of the form $c_{\ell} \delta$, where δ is the Hilbert metric on \mathcal{D}. Multiplier c_{ℓ} depends on ℓ continuously because d and δ are continuous. Given non-collinear points $A, B, C \in \mathcal{D}$ the strict triangle inequalities give that $|\delta(A, C)-\delta(B, C)|<\delta(A, B)$ and $\left|c_{A C} \delta(A, C)-c_{B C} \delta(B, C)\right|=|d(A, C)-d(B, C)|<d(A, B)=$ $c_{A B} \delta(A, B)$. These imply

$$
\left|\frac{\delta(A, C)}{\delta(B, C)}-1\right|<\frac{\delta(A, B)}{\delta(B, C)} \text {, and }\left|c_{A C} \frac{\delta(A, C)}{\delta(B, C)}-c_{B C}\right|<c_{A B} \frac{\delta(A, B)}{\delta(B, C)} \text {. }
$$

If C tends to a point ∞ on the boundary $\partial \mathcal{D}$ of \mathcal{D}, then the first inequality implies $\frac{\delta(A, C)}{\delta(B, C)} \rightarrow 1$, so from the second inequality $c_{A \infty}=c_{B \infty}$ follows. Thus c_{ℓ} is the same for every line that goes through the same point of $\partial \mathcal{D}$. This clearly implies that c_{ℓ} does not depend on ℓ, i.e. constant, hence (\mathcal{D}, d) is a Hilbert geometry.
However, [10, Theorem 3.1] proves that a Hilbert geometry which has the Ceva property is hyperbolic, hence the theorem for projective-metric spaces of hyperbolic type.

To make versions of Ceva's or Menelaus' theorems valid in more projective-metric spaces more freedom should be allowed for the ratios.
Let A, B be different points in a projective-metric space (\mathcal{M}, d), and let $C \in(A B \cap \mathcal{M}) \backslash\{B\}$. Then the real number

$$
\langle A, B ; C\rangle_{d}^{\dagger}=\left\{\begin{align*}
\frac{\lambda(d(A, C))}{\lambda(d(C, B))}, & \text { if } C \in \overline{A B}, \tag{3.1}\\
-\frac{\lambda(d A, C))}{\lambda(d(C, B))}, & \text { otherwise },
\end{align*}\right.
$$

is called the λ-ratio of the triplet (A, B, C), where λ is a non-negative strictly increasing function of the positive real numbers.
The question arises if there is a projective-metric space in which Ceva's or Menelaus' theorems are valid with a λ-ratio. The answer to this question is negative for the Hilbert geometries (\mathcal{M}, d).
For, just choose five points on $\partial \mathcal{M}$, and fit an ellipse \mathcal{E} through these points. Then \mathcal{E} intersects $\partial \mathcal{M}$ in at least six points in a circumcise order $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$. The chords $\overline{M_{1} M_{4}}, \overline{M_{2} M_{5}}$, and $\overline{M_{3} M_{6}}$ in general intersect each other in three points, say in A, B, and C. Now, on the side-lines of trigon $A B C \triangle$ the hyperbolic metric is given, hence Ceva's and Menelaus' theorems are valid with $\lambda(\cdot) \equiv \sinh (\cdot)$. For the hyperbolic geometry only the hyperbolic sine function can be a good choice, and we know from the results of the previous slides that it just does not work for more general Hilbert geometries.

Bibliography ordered by authors I

［1］E．Beltrami
Risoluzione del problema：riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette，Opere，I（1865），262－280．〈3〉
［2］W．Blaschke
Integralgeometrie 11，Abh．Math．Sem．Univ． Hamburg， 11 （1936），359－366．〈3〉
［3］H．Busemann
The geometry of geodesics，New York， 1955. ＜9）
［4］H．Busemann
Geometries in which the planes minimize area，Ann．Mat．Pure Appl．，55：4（1961），171－190．〈3〉
［5］H．Busemann
Problem IV：Desarguesian Spaces，Proc． Amer．Math．Soc．Symp．Pure Math．， 28 （1976）， 131－141．〈3〉
［6］H．Busemann and P．J．Kelly Projective Geometries and Projective Met－ rics，Academic Press，New York，1953．〈2，13〉
［7］M．W．Crofton
Probability，Encyclopaedia Britannica，9th ed．， 19 （1885），768－788．〈3〉
［8］D．Hilbert
Mathematische Probleme，Göttinger Nachrichten，（1900），253－297；Archiv der Math． Physik（3）， 1 （1901），44－63，213－237；in english： http：／／aleph0．clarku．edu／～djoyce／hilbert／ problems．html．$\langle 2\rangle$
［9］G．Hamel
Über die Geometrien，in denen die Graden die kürzestens sind，Math．Ann．， 57 （1903）， 231－264．〈2〉

Bibliography ordered by authors II

［10］J．Kozma and Á．Kurusa
Ceva＇s and Menelaus＇theorems character－ ize the hyperbolic geometry among Hilbert geometries，J．Geom．， 106 （2015），465－470； http：／／doi．org／10．1007／s00022－014－0258－7． $\langle 5,14\rangle$
［11］Á．Kurusa
Ceva＇s and Menelaus＇theorems in projective－metric spaces，J．Geom．， （2019），to appear；https：／／doi．org／10．1007／ s00022－019－0495－x．〈6〉
［12］L．A．Masal＇tsev
Incidence theorems in spaces of constant curvature，J Math Sci， 72 （1994），3201；https： ／／doi．org／10．1007／BF01249519．〈5〉
［13］A．V．Pogorelov
A complete solution of Hilbert＇s fourth prob－ lem，Soviet Math．Dokl．， 14 （1979），46－49．〈3〉
［14］Z．I．Szabó
Hilbert＇s fourth problem I．，Adv．Math．， 59 （1986），185－301；https：／／doi．org／10．1016／ 0001－8708（86）90056－3．〈3〉
［15］Wikipedia
https：／／en．wikipedia．org／wiki／
Cauchy＇s＿functional＿equation．〈6，8， 11，12〉

Projective-metric spaces with Ceva or Menelaus property

(1) Projective-metric spaces

- Introduction
- Examples and question
- Ceva and Menelaus property

2. Cevian and Menelausian spaces

- Characterization
- Proofs
- Elliptic case
- Parabolic case
- Hyperbolic case
(3) Discussion

[^0]: ${ }^{1}$ We say that a Hilbert geometry is hyperbolic or is the hyperbolic geometry if it is a Cayley-Klein modell of the hyperbolic geometry. ${ }^{2}$ By projective duality it is not a surprise that the Ceva and the Menelaus properties boil down to the same equation.

