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Quadrireciprocal and Riemannian points 1. The questions 1.1. (−1)-chord functions

The (−1)-chord functions of a convex domain

The i-chord function (i ∈ R, i , 0) of an open convex
domainM ⊂ Rn at a point P inM is

ρM;i;P : Sn−1 → R, u 7→ di(P−,P) + di(P,P+),
where d is the Euclidean metric, P−P+ = M∩ `u, and
`u is the line through P with directional vector u.

∂M
M

P+

d(P
+ ,P)

d(P,
P
− )P−
P

The i-body1 ofM at P is the star body having radial function (ρM;i;P/2)1/i at P.

Points of an ellipsoid are quadrireciprocal.

F− F+

The focuses are equireciprocal.

The (−1)-body is called the reciprocal body.
A point P is quadrireciprocal if ρM;−1;P is
quadratic. It is isoreciprocal if ρM;−1;P is con-
stant. A pair of isoreciprocal points are called
equireciprocal ([4, Theorem 2] explains).

By Falconer’s [4, Theorem 3], if a convex body in the plane with twice differentiable boundary
has equireciprocal points, then it is an ellipse.

How many quadrireciprocal points ensure thatM is an ellipsoid?
1The i-body is the i-chordal symmetral as defined in [6, Defintition 6.1.2].
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Quadrireciprocal and Riemannian points 1. The questions 1.2. Hilbert metric

The Hilbert metric of a convex domain
LetM be an open convex domain in Rn. The function
dM : M×M→ R defined by

dM(A,B) =

0, if A = B,∣∣∣ln(A,B; X,Y)
∣∣∣/2, if A , B,

where XY =M∩ AB, is a metric, the Hilbert metric.

∂M

Y

X A

B

Hilbert geometries (M, dM) are Finsler manifolds [2, (29.6)]. Further, a Hilbert geometry
(M, dM) is a Cayley–Klein model of the hyperbolic geometry ifM is an ellipsoid.

A point P ∈ M is called Riemannian if the Finsler norm on TPM is quadratic.

Every point of a Cayley–Klein model (M, dM)
is Riemannian.

By Beltrami’s (more general) theorem [1]
(see also [2, (29.3)]), a Riemannian
Hilbert metric has constant curvature, hence
(M, dM) is a Cayley–Klein model of the hy-
perbolic geometry, i.e.,M is an ellipsoid.

How many Riemannian points ensure that (M, dM) is a Cayley–Klein model?
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Quadrireciprocal and Riemannian points 1. The questions 1.3. The connection

Connecting the problems
Identifying the tangent spaces TPM of (M, dM) with Rn by the map ıP : v 7→ P+v, the Finsler
function FM : M× Rn → R associated with dM can be given at a point P ∈ M by

(1.1) FM(P, v) =
1
2

( 1
λ−v

+
1
λ+

v

)
,

where v ∈ TPM, and λ±v ∈ (0,∞] is such that P±v := P ± λ±v v ∈ ∂M [2, (50.4)]. So map ıP
assigns the indicatrixes of FM and the reciprocal bodies ofM to each other. In this context
reciprocal bodies are called infinitesimal spheres. We have the following result:

Riemannian points of dM correspond to the quadrireciprocal points ofM, and vice versa.

This allows to rephrase the partial results mentioned earlier:

The reciprocal bodies of a convex bodyM are all ellipsoids if and only if ∂M is an ellipsoid.

Two reciprocal bodies of a convex plane bodyM with twice differentiable boundary ∂M are
both circular if and only if ∂M is an ellipse and the points are the focuses.

The remaining problem is formulated in both scenarios as follows:

Do two Riemannian points ensure that (M, dM) is a Cayley–Klein model?
Do two quadrireciprocal points ensure thatM is an ellipsoid?

Answering these questions needs both points of view alternatively.
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Quadrireciprocal and Riemannian points 2. The answer 2.1. Preliminaries

Preliminaries

From now on, we only work in the plane unless explicitely said otherwise.

In this case infinitesimal sphere is called infinitesimal circle and denoted by CMP .

This presentation uses the following setup:
Q and P are Riemannian points of (M, dM); ` =

PQ is a straight line that intersects ∂M in points
I and J; a coordinate system is fixed so that
I = (−1, 0), J = (1, 0); then Q = (q, 0) and
P = (p, 0), where −1 < q < p < 1; the Euclidean
metric de is fixed so that {(1, 0), (0, 1)} is an or-
thonormal basis; `ξ is the straight line through P
with directional vector uξ = (cos ξ, sin ξ);

M

I
J

CMP

X

Y

ξ
`

`ξ

P
p

If not otherwise specified, X and Y are the points where `ξ intersects ∂M.
For iterations of maps like X 7→ Y the theory dynamical systems helps:

Stable Manifold Theorem. ([4, p. 114] and [5, Theorem 4.1]).

LetN0 ⊂ R
2 be a neighborhood of the origin 0, and let the mapping Φ : N0 → R

2 be of class
Cl (l ∈ [1,∞]). If there are linearly independent vectors u and v such that Φ(w) = w for every
w ∈ `u ∩N0, and DΦ(0,0)v = kv for some k ∈ (0, 1), then in some neighborhood N ⊆ N0 of 0,
the set {w∈ N : Φ(r)(w)→ 0 as r → ∞} is the graph of a Cl function from `v ∩ N to `u ∩ N .
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Quadrireciprocal and Riemannian points 2. The answer 2.2. Preparations

Step 1
Observe that (1.1) gives 2FM(P,X − P) − 1 = 1/λ−X−P > 0 for X ∈ ∂M, so, as a continuous
function takes its minimal value, there is a suitably small ε > 0 such that the map

(2.1) ΦP : Z 7→ ΦP(Z) = P + (P − Z)
1

2FM(P,Z − P) − 1
is well defined on the Minkowski sumMε := ∂M + εB2, where B2 is the unit ball at (0, 0).
Parameterize CMP in polar coordinates with center P by r : [−π, π) 3 ξ 7→ r(ξ)uξ ∈ R2. Then

1
|XP| +

1
|PY | = 2

r(ξ) , so r is twice differentiable if ∂M is twice differentiable.

Approximation lemma. (K.Á.: [9, Lemma 3.2]).

Assume that ∂M is twice differentiable. Let X ∈ I + εB2, and set
Y = ΦP(X). Let (x, y)=X−I and (u, v)=J−Y. Then

(2.2) v
(
1 +

u
1 − p

+ O(u2)
)

= y
(1 − p
1 + p

+ x
1 − p

(1 + p)2 + O(x2)
)
,

and

−u = x
(1 − p)2

(1 + p)2 − y
2r′(0)

(1 + p)3 + x2 2(1 − p)2

(1 + p)4 − xy
r′(0)2(3 − p)

(1 + p)5 +

+ y2 1
(1 + p)3

(
− (1 − p) +

2(r′(0))2

(1 + p)3 +
r′′(0)
1 + p

)
+

+ O(x3) + O(x2y) + o(y2).

(2.3)

Mε

I
J

CMP

(x
, y

)

(u
, v

)

X

Y

`
P

p
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Quadrireciprocal and Riemannian points 2. The answer 2.2. Preparations

Step 2
Let tI and tJ be the tangents ofM at I and J, respectively.
Let L = tI ∩ tJ (maybe ideal point). Let tQI and tPJ be the
tangents of CMQ and CMP , respectively, where ` intersects
the infinitesimal circles.
Choose a straight line l through L that avoidsM, and let
$ be a perspectivity that takes l to the ideal line. Then
its derivative $̇ makes $̇(CMQ ) ≡ C$(M)

$(Q) , and $̇(CMP ) ≡
C
$(M)
$(P) . As $̇ is an affine map, hence keeps quadraticity,

$(Q) and $(P) are Riemannian points in ($(M), d$(M)).
Thus tI ‖ tJ can be assumed without loss of generality.

It is an easy consequence of [2, (28.11)], that the tan-
gents tQI and tPJ are parallel to LQ and LP, respectively.
Thus tQI ‖ tI ‖ tJ ‖ t

P
J , and we choose de so that ` ⊥ tI .

So CMP and CMQ are ellipses with polar equations of the

form 1
r2(ϕ) =

cos2 ϕ

a2 +
sin2 ϕ

b2 at centers P and Q, respectively.
This implies

(2.4) r′(0) = 0 and r′′(0) = r3(0)
( 1
r2(0)

−
1

r2(π/2)

)
.

M

Q
q
CMQ

P
p
CMP

I J

tJ tI

Lt
Q
I tPJ

M

I J

Q

q

CMQ

P
p

CMP

t
Q
I tPJ

tI tJ
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Quadrireciprocal and Riemannian points 2. The answer 2.2. Preparations

Step 3

Lemma. If ∂M is twice differentiable at I and J, then there is a unique ellipse E touchingM
at I, J such that CEQ ≡ CMQ and CEP ≡ C

M

P .

Proof. Fix the Euclidean metric d in which CMQ is a circle.
Assume that X ∈ ∂M, hence also Y = ΦP(X) ∈ ∂M.
Basic differential geometry gives that the respective
curvatures of ∂M at I and J are

(2.5) κI := lim
x→0

2x
y2 and κJ := lim

u→0

2u
v2 .

Using the formulas of the Approximation Lemma in
conjunction with the quadraticity (2.4) leads to

E

M

I J
Q
q

CMQ

P
p

CMP

t
Q
I tPJ

tI tJ

κJ = lim
u→0

2u
v2 = lim

u→0

−2x
y2 +

2
r(0)

− 2r(0)
( 1
r2(0)

−
1

r2(π/2)

)
= −κI +

2r(0)
r2(π/2)

.

Repeating the same calculation for ΦQ gives κJ = −κI + 2
1−q2 , hence r

( π
2

)
=

√
1 − q2

√
1 − p2.

Now easy calculation shows that (q, 0) is a focus of the ellipse x2 +
y2

1−q2 = 1, and the

infinitesimal circle at (p, 0) is the ellipse (x−p)2

(1−p2)2 +
y2

(1−q2)(1−p2) = 1. Thus choosing the ellipse

x2 +
y2

1−q2 = 1 for E proves the lemma.
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Quadrireciprocal and Riemannian points 2. The answer 2.2. Preparations

Step 4

Lemma. If ∂M is C2 at I and J, then E coincides with ∂M in a neighborhood of I and J.

Proof. According to the last formula in the proof of the previous
lemma, the infinitesimal circles CEP ≡ C

M

P and CEQ ≡ CMQ can be
represented by polar equations of form

1
r2(ϕ)

=
cos2 ϕ

a2 +
sin2 ϕ

b2 , and
1

r2
q(ϕ)

=
1

r2
q(0)

,

respectively. Substitution of these into (2.1) shows that ΦP and
ΦQ are real analytic mappings onMε.
Thus Φ := ΦQ ◦ΦP : X 7→ Y 7→ Z is also a real analytic mapping.
The Approximation Lemma and a (long) calculation gives that

ΦΨ(z, y) := Ψ−1 ◦ Φ ◦ Ψ(z, y) = (z + o(1), yk + o(y2)),
where Ψ : (z, y) 7→ (zy2, y), y , 0, k =

1−p
1+p

1+q
1−q < 1, and z is close to

κI/2. So defining ΦΨ(z, 0) := (z, 0) extends ΦΨ to a real analytic
Mε

I
J

Φ
P

Φ
Q

X

Y

Z
Q
q

P
p

mapping around (κI/2, 0). As ΦΨ fixes the points (z, 0) near (κI/2, 0), and it has the derivative
Φ̇Ψ(κI/2, 0) =

(
1 0
0 k

)
at (κI/2, 0), the Stable Manifold Theorem applies. Thus a neighborhood

N of (κI/2, 0) exists such that C =
{
w∈ N :

(
ΦΨ

)(r)(w) → (κI/2, 0) as r → ∞
}

is the graph of
a C1 function z 7→ y. As Φ fixes ∂M, this proves the lemma.
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Quadrireciprocal and Riemannian points 2. The answer 2.2. Preparations

Step 5

Lemma. If Q and P are common Riemannian points of the Hilbert geometries (L, dL) and
(M, dM), and the boundaries ∂L and ∂M coincide in a neighborhood of the line PQ, then
L ≡ M.

Proof. Let N be a neighborhood of line
PQ such that ∂L ∩N ≡ N ∩ ∂M.

Observe that CLQ ≡ C
M

Q and CLP ≡ C
M

P ,
because the common arcs of ∂L and
∂M determine small common arcs of the
quadratic infinitesimal circles near line
QP.

Thus both ΦP and ΦQ map any common
arc of ∂L and ∂M to a common arc of ∂L
and ∂M.

See the proof without words on the right!
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Quadrireciprocal and Riemannian points 2. The answer 2.3. The results

The results

Theorem. (K.Á.: [9, Theorem 4.4]).

If a Hilbert geometry has two Riemannian points, and its boundary is twice differentiable
where it is intersected by the line joining those Riemannian points, then it is a Cayley–Klein
model of the hyperbolic plane.

The same in the language of geometric tomography [6] reads as:

Theorem. (K.Á.: [9, Theorem 5.1]).

Let Q and P be two interior points of a convex compact domainM. Assume that the bound-
ary ∂M is twice differentiable where it intersects line QP. If the (−1)-chord functions at Q
and P are quadratic, then ∂M is an ellipse.

This generalizes Falconer’s [4, Theorem 3], where only circles were considered.
However, Falconer’s [4, Theorem 4] gives that for any two fixed points P,Q, a bunch of
strictly convex bounded open domainsM exist such that P,Q ∈ M are equireciprocal, the
boundary ∂M is differentiable at I, J ∈ PQ ∩ ∂M and twice differentiable everywhere in
∂M\ {I, J}, BUT ∂M is not an ellipse.
Observe that in such anM there can not exist a third inner point with quadratic (−1)-chord
function, because then ∂M should be an ellipse by the above theorem.
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Quadrireciprocal and Riemannian points 3. Further questions 3.1. Riemannian points in higher dimensions

Riemannian points in higher dimensions
Unfortunately, our results do not imply similar statements for higher dimensions directly.
Looking for possible higher dimensional analogs one can use [3, (16.12), p. 91], which says
that

a convex body in Rn (n ≥ 3) is an ellipsoid if and only if for a
fixed k ∈ {2, . . . , n − 1} every k-plane through an inner point
intersects it in a k-dimensional ellipsoid.

This immediately implies the following generalization.

Theorem. If a Hilbert geometry has twice differentiable boundary, and has a Riemannian
point P such that for some fixed k ∈ {2, . . . , n − 1} on every k-plane through P there is a
distinct Riemannian point, then it is a Cayley–Klein model of the hyperbolic space.

The question arises:

How many Riemannian points are needed to deduce
the hyperbolicity of a Hilbert geometry in dimension n > 2?

My believe is that n + 1 Riemannian points in general position guarantees the hyperbolic-
ity of the Hilbert geometry. A more brave tip is that n is enough if the boundary is twice
differentiable.
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Quadrireciprocal and Riemannian points 3. Further questions 3.2. Radon points in dimension 2

Radon points in dimension 2
It is proved in [7, Theorem 2] that perpendicularity in a Hilbert geometry is reversible for
two lines if the perpendicularity of these two lines is also reversible with respect to the
local Minkowski geometry at the intersection point of the lines. Thus, perpendicularity is
reversible at a point if and only if the infinitesimal circle is a Radon curve [10].

Calling such points Radon points, the question2 arises:

How many Radon points are needed to deduce
the hyperbolicity of a Hilbert geometry in dimension 2?

Kelly and Paige proved in [8] that a Hilbert geometry is a Cayley–Klein model of the hyper-
bolic geometry if every point is a Radon point.

As Riemannian points are Radon points, my [9, Theorem 4.4] supports my conjecture that

Conjecture. The existence of two Radon points implies the hyperbolicity
of a Hilbert geometry if the boundary is twice differentiable.

If twice differentiability fails, then we know that even two Riemannian points do not guarantee
the hyperbolicity of the Hilbert geometry.

2The author thanks Tibor Ódor for a discussion where this question was arisen.

Á. Kurusa (Alfréd Rényi Institute of Mathematics, HAS) 12 / 12 2019. 04. 05.



Quadrireciprocal and Riemannian points

THANK YOU FOR YOUR ATTENTION!

Árpád Kurusa http://www.math.u-szeged.hu/tagok/kurusa
A. Rényi Institute of Math., Hung. Academy of Sci. karpad@renyi.hu
Bolyai Institute, University of Szeged kurusa@math.u-szeged.hu

Á. Kurusa (Alfréd Rényi Institute of Mathematics, HAS) 2019. 04. 05.

http://www.math.u-szeged.hu/tagok/kurusa
karpad@renyi.hu
kurusa@math.u-szeged.hu


Quadrireciprocal and Riemannian points : References

Bibliography ordered by authors I

[1] E. Beltrami, Risoluzione del problema: ri-
portare i punti di una superficie sopra un
piano in modo che le linee geodetiche
vengano rappresentate da linee rette, Opere,
I (1865), 262–280.

[2] H. Busemann and P. J. Kelly, Projective
Isometries and Projective Metrics, Academic
Press, New York, 1953.

[3] H. Busemann, The Geometry of Geodesics,
Academic Press, New York, 1955.

[4] K. J. Falconer, On the equireciprocal prob-
lem, Geom. Dedicata, 14 (1983), 113–126; https:
//doi.org/10.1007/BF00181619.

[5] K. J. Falconer, Differentiation of the Limit
Mapping in a Dynamical System, J. London
Math. Soc., 27 (1983), 356–372; https://doi.
org/10.1112/jlms/s2-27.2.356.

[6] R. J. Gardner, Geometric tomography 2nd
ed., Encyclopedia of Math. and its Appl.
58, Cambridge University Press, Cambridge, 2006
(1996).

[7] D. Kay, The Ptolemaic inequality in Hilbert
geometry, Pacific J. Math., 21 (1967), 293–301.

[8] P. J. Kelly and L. J. Paige, Symmetric Per-
pendicularity in Hilbert Geometries, Pacific J.
Math., 2 (1952), 319–322.

[9] Á. Kurusa, Hilbert geometries with Rieman-
nian points, submitted.

[10] H. Martini and K. J. Swanepoel, Anti-
norms and Radon curves, Aequ. Math.,
72 (2006), 110–138; https://doi.org/10.1007/
s00010-006-2825-y.

Á. Kurusa (Alfréd Rényi Institute of Mathematics, HAS) 2019. 04. 05.

https://doi.org/10.1007/BF00181619
https://doi.org/10.1007/BF00181619
https://doi.org/10.1112/jlms/s2-27.2.356
https://doi.org/10.1112/jlms/s2-27.2.356
https://doi.org/10.1007/s00010-006-2825-y
https://doi.org/10.1007/s00010-006-2825-y


Quadrireciprocal and Riemannian points : Abstract

LetM be a strictly convex body with non-empty interior.
At a point P in the interior ofM the i-chord function ρM;i;P is defined [6, Definition 6.1.1] for every unit
vector u so that if P divides into two segments the chord in which B intersects the line ` of direction u
passing through P, then ρM;i;P(u) is the i-power sum of the lengths of the segments.
A point P is called quadrireciprocal if at P the (-1)-chord function is quadratic.
The Hilbert metric [2, page 297]

d : M×M 7→ d(A,B) =

0, if A = B,
1
2

∣∣∣ ln(A,B; C,D)
∣∣∣, if A , B, where CD =M∩ AB

is Finslerian in the interior of the strictly convex bodyM.
A point P in the interior ofM is called Riemannian if at P the infinitesimal sphere of the Hilbert metric
is quadratic.
In this talk we show that a point is quadrireciprocal if and only if it is also Riemannian, and this duality
is used to prove that

a twice differentiable convex body is an ellipsoid if and only if it has two
quadrireciprocal points,

and the other way around that

a Hilbert geometry of twice differentiable boundary is the hyperbolic ge-
ometry if and only if it has two Riemannian points.

The proof uses tools of geometric tomography [6] and of Hilbert geometries [2] as well.
This work was supported by the NFSR of Hungary (NKFIH) under grant numbers K 116451, KH_18 129630,
and by the Ministry of Human Capacities, Hungary grant 20391-3/2018/FEKUSTRAT.
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Quadrireciprocal and Riemannian points : Structure

Structure of the talk

1 The questions
(−1)-chord functions
Hilbert metric
The connection

2 The answer
Preliminaries
Preparations
The results

3 Further questions
Riemannian points in higher dimensions
Radon points in dimension 2
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