Projective metrics with quadratic metric ellipses

Árpád Kurusa

Bolyai Institute, University of Szeged
http://www.math.u-szeged.hu/tagok/kurusa

27th July, 2016.

Hilbert's IV. problem (Hilbert 1900, [7])

Give all the metrics on every projective space \mathbb{P}^{n} of dimension n that satisfies the strict triangle inequality.

Classification of projective metrics (Hamel 1903, [8])

Let \mathcal{D} be the support of such a projective metric. Then there are exactly three cases:
elliptic $\left(\mathcal{D}=\mathbb{P}^{n}\right)$, parabolic $\left(D=\mathbb{P}^{n} \backslash \mathbb{R}^{n}\right)$ and hyperbolic $\left(\mathcal{D} \subsetneq \mathbb{P}^{n} \backslash \mathbb{R}^{n}\right.$ convex)

Construction (Busemann 1961, [3]; based on Blaschke's extension [2] of the Crofton-tormula [6])

Let μ be a quasi pozitive "measure" on the set of the hyperplanes.
Let the length of a curve be the measure $\mu / 2$ of the set of intersecting hyperplanes.

Theorem. (Pogorelov 1973, [13] on the plane; Szabó 1986, [14] any dimension).

Busemann's construction gives all the projective metrics.
Busemann [4]: "... It is clear from Hilbert's comments that he was not aware of the immense number of these metrics, so that the second part of the problem ... has inevitably been replaced by the investigation of special, or special classes of, interesting geometries." .
${ }^{1} \underline{\text { not }}$ necessarily positive everywhere, but for any non-collinear triple $A B C$ of points the "measure" of the hyperplanes intersecting $\overline{A B} \cup \overline{B C}$ is positive and the "measure" of those hyperplanes passing through B is zero.

Classic metrics .

 $v_{k}(r) \mathcal{S}^{n-1}$ is isometric to a metric sphere of radius $r>0$ in \mathbb{K}_{κ}^{n}. The projection function $\mu_{\kappa}:\left[0, i_{k}\right) \rightarrow \mathbb{R}_{+}$makes geodesic correspondence by $\tilde{\mu}_{\kappa}: \operatorname{Exp}_{O}(r \omega) \mapsto \mu_{\kappa}(r) \omega$.

\mathbb{K}_{κ}^{n}	κ	v_{κ}	μ_{κ}	i_{κ}
\mathbb{H}^{n}	-1	$\sinh r$	$\tanh r$	∞
\mathbb{R}^{n}	0	r	r	∞
$\mathbb{S}^{n}\left(\mathbb{P}^{n}\right)$	+1	$\sin r$	$\operatorname{tg} r$	$\pi / 2$

Here we identified the space $\mathcal{T}_{O} \mathbb{K}_{K}^{n}$ with \mathbb{R}^{n} by the natural way, and used $\omega \in \mathcal{S}^{n-1}$ in both senses.

Hilbert metric . $d_{\mathcal{H}}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is defined by

$$
d_{\mathcal{H}}(X, Y)= \begin{cases}0, & \text { if } X=Y, \\ \frac{1}{2}\left|\ln \left(X, Y ; H_{X}, H_{Y}\right)\right|, & \text { if } X \neq Y,\end{cases}
$$

where \mathcal{H}, the infinity, is an open, strictly convex, bounded domain in \mathbb{R}^{n} and $\overline{H_{X} H_{Y}}=\mathcal{H} \cap X Y$.

Minkowski metric . $d_{I}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $d_{I}(X, Y)=\left(Y, I_{Y} ; X\right)$, where I, the indicatrix, is an open, strictly convex, bounded domain centrally symmetric at O in \mathbb{R}^{n} and $\overline{I_{X} I_{Y}}=I_{X} \cap X Y$.

Elliptic metric . $d: \mathbb{P}^{n} \times \mathbb{P}^{n} \rightarrow \mathbb{R}$ is defined by $d(X, Y)=\arccos |\langle\overrightarrow{O X}, \overrightarrow{O Y}\rangle|$, where the points of \mathbb{P}^{n} are the diagonal point pairs of \mathcal{S}^{n}.

A set $\mathcal{E}_{d ; F_{1}, F_{2}}^{a}:=\left\{P: 2 a=d\left(F_{1}, P\right)+d\left(P, F_{2}\right)\right\}$, where F_{1}, F_{2}, the focuses, are fixed points and $f:=d\left(F_{1}, F_{2}\right) / 2<a$, is called metric ellipse. The metric ellipse is called metric circle if $f=0$. The metric midpoint of the segment $F_{1} F_{2}$ is called the metric center of $\mathcal{E}_{d ; F_{1}, F_{2}}^{a}$.

A projective metric d is called strongly quadratic if for every $a>0$ and pair of points F_{1}, F_{2}, such that $a>d\left(F_{1}, F_{2}\right)$, the metric ellipse $\mathcal{E}_{d ; F_{1}, F_{2}}^{a}$ is quadratic.

Folkloric result. The classic metrics are strongly quadratic.
Proof for the hyperbolic plane only ${ }^{2}$. In the quadratic model $\mathbb{H}^{2}=\left\{(x, y, z): x^{2}+y^{2}-z^{2}=-1, z \geq 1\right\}$ the metric is $d(\boldsymbol{p}, \boldsymbol{q})=\cosh ^{-1}\langle\boldsymbol{p}, \boldsymbol{q}\rangle$ and $\kappa=-1$. Fix $f>0$ and $a>f$, and let $F_{1}=(\sinh (-f), 0, \cosh f)$ and $F_{2}=(\sinh f, 0, \cosh f)$. Then $C=(0,0,1)$. For any point $P=(x, y, z) \in \mathcal{E}_{d ; F_{1}, F_{2}}^{a} \subset \mathbb{H}^{2}$ there is a $t \in[0, f]$ such that

$$
a+t=d\left(F_{1}, X\right)=\cosh ^{-1}(-x \sinh f+z \cosh f), \quad \text { and } \quad a-t=d\left(X, F_{2}\right)=\cosh ^{-1}(x \sinh f+z \cosh f)
$$

Taking cosh gives $\cosh a \cosh t \pm \sinh a \sinh t=\cosh (a \pm t)=z \cosh f \mp x \sinh f$, hence $\cosh a \cosh t=z \cosh f$ and $\sinh a \sinh t=-x \sinh f$. This implies

$$
\frac{z^{2}}{\cosh ^{2} a / \cosh ^{2} f}-\frac{x^{2}}{\sinh ^{2} a / \sinh ^{2} f}=\cosh ^{2} t-\sinh ^{2} t=1, \text { hence } z^{2}-x^{2} \frac{\tanh ^{2} f}{\tanh ^{2} a}=\frac{\cosh ^{2} a}{\cosh ^{2} f}=\frac{1-\tanh ^{2} f}{1-\tanh ^{2} a}
$$

Substituting the C-based polar coordinates (ω, r) of P, we have $P=(\sinh r \cos \omega, \sinh r \sin \omega, \cosh r)$, which results in

$$
\mathcal{E}_{d_{k} ; F_{1}, F_{2}}^{a}: \quad \frac{1}{v_{K}^{2}(r(\omega))}=\frac{\cos ^{2} \omega}{v_{K}^{2}(a)}+\frac{\sin ^{2} \omega}{\left(\mu_{\kappa}^{2}(a)-\mu_{\kappa}^{2}(f)\right)\left(1-\kappa v_{K}^{2}(a)\right)}
$$

[^0]
Problem. (Kurusa, 2015).

Which projective metrics are such that one, many or all of its metric ellipses are quadratic?

A projective metric d is called strongly ε-quadratic for an $\varepsilon \in[0,1)$ if for every $a>0$ and pair of points F_{1}, F_{2}, where $\varepsilon a=d\left(F_{1}, F_{2}\right)$, the metric ellipse $\mathcal{E}_{d ; F_{1}, F_{2}}^{a}$ is quadratic.

Beltrami's theorem. (1865, [1]).
If a projective metric is Riemannian, then it is elliptic, Euclidean or Bolyai's hyperbolic.
Condition "Riemmannian" can be thought of as every infinitesimal sphere is quadratic.

Tétel. (Busemann 1953, [5, 25.4]).

A Minkowski metric is Euclidean if and only if its unit metric spheres are quadratic.

Tétel. (Kay 1967, [9, 296. old.]).
If the unit metric sphere of every associated Minkowski metrics of a Hilbert metric is quadratic, then it is Bolyai's hyperbolic metric.

A projective metric is called weakly quadratic if it has a quadratic metric ellipse.

Question (Kurusa, 2015)

Is a weakly quadratic projective metric classic?
There is no known counterexample (yet?) but we have positive results.

Theorem. (Kurusa 2016, [11]).

Weakly quadratic Minkowski metric is Euclidean.

Detailed sketch of proof. Suppose that $\mathcal{E}_{d_{I} ; F_{1}, F_{2}}^{a}$ is quadratic. Then it is the unit circle $\mathcal{E}_{d ; O}^{1}$ of a Euclidean metric d, where O is the midpoint of segment $\overline{F_{1} F 2}$. Place I so that its center is O. Since $t_{A} \perp F_{1} F_{2} \perp t_{B}$, obviously $\dot{e}_{1}(0)=\dot{e}_{2}(0)=0$.

As $d_{I}\left(F_{1}, E\right)=\frac{e_{1}(\alpha)}{r(\alpha)}$
and $d_{I}\left(E, F_{2}\right)=\frac{e_{2}(\beta)}{r(\beta)}$, we have

$$
2 a=\frac{e_{1}(\alpha)}{r(\alpha)}+\frac{e_{2}(\beta)}{r(\beta)} .
$$

The derivative of this with respect to φ at 0 and the consequence $t_{I} \| t_{J}$ of the symmetry of \mathcal{I} proves $t_{I} \perp$ $F_{1} F_{2} \perp t_{J}$.

As parallelism does not depend on metrics this is proves $t_{I}\left\|t_{A}\right\| t_{B} \| t_{J}$. Let ℓ be the straight line through O which is parallel to t_{A} and let C_{1} and C_{2} be the intersection of ℓ with $\mathcal{E}_{d_{I} ; F_{1}, F_{2}}^{a}$.

We choose now a different Euclidean metric d_{e} such that $d_{e}^{2}\left(O, C_{1}\right)=a^{2}-f^{2}$ and $d_{e}(O, I)=$ 1. Then $\mathcal{E}_{d_{T} ; F_{1}, F_{2}}^{a} \equiv \mathcal{E}_{d_{e} ; F_{1}, F_{2}}^{a}$ as they have 4 points and two tangents in common. By the definition of these ellipses we have

$$
e_{1}(\alpha)+e_{2}(\beta)=2 a=\frac{e_{1}(\alpha)}{r(\alpha)}+\frac{e_{2}(\beta)}{r(\beta)}, \quad \text { i.e. } \quad \delta(\alpha)=-\delta(\beta) \frac{e_{2}(\alpha)}{e_{1}(\beta)+2 a \delta(\beta)},
$$

where $\delta: \varphi \mapsto r(\varphi)-1$. Taking the limit as $\varphi \rightarrow 0$, we obtain $\lim _{\varphi \rightarrow 0} \frac{\delta(\alpha)}{\delta(\beta)}=-\frac{a-f}{a+f}=-\left(F_{2}, F_{1} ; B\right)$.
If $\delta(\beta) \neq 0$, then differential geometric reasoning (see [11, Lemma 3.4]), implies $\left(F_{2}, F_{1} ; B\right)=-1$ which is a contradiction.

Thus $\delta(\beta)=0$ for small enough β.

Observe that $\delta(\beta) \neq 0$ if and
 only if $\delta(\alpha) \neq 0$.

Take a look at the figure!

We clearly have $\beta_{2 i+2}<\alpha_{2 i}<\beta_{2 i}$ and $\beta_{2 i+1}<\alpha_{2 i+1}<\beta_{2 i-1}$ and it is easy to prove that $\beta_{2 i} \rightarrow 0$. Thus, for large enough $i \in \mathbb{N}$ we obtain $\delta\left(\beta_{2} i\right)=0$, hence $\delta \equiv 0$.

Theorem. (Kurusa 2016, [11]).

Weakly quadratic Hilbert metric is Bolyai's hyperbolic metric.
Sketch of proof without details. The idea is similar as for the Minkowski case, but needs much more complicated formulas and new tricks. Let $\mathcal{E}_{d_{I} ; F_{1}, F_{2}}^{a}$ be a quadric.

Let ℓ be the line $F_{1} F_{2}$ if $F_{1} \neq$ F_{2} and $O F_{1}$ if $F_{1}=F_{2}$, where O is the affine center of $\mathcal{E}_{d_{I} ; F_{1}, F_{2}}^{a}$. To reach
$t_{I}\left\|t_{A}\right\| t_{B} \| t_{J}$,
where t_{I}, t_{J} and t_{A}, t_{B} are the tangents of \mathcal{I} and $\mathcal{E}_{d_{T} ; F_{1}, F_{2}}^{a}$, respectively, is the first step and usually needs projectivity. Then a Bolyai plane \mathcal{H} is constructed such that $\mathcal{E}_{d_{I} ; F_{1}, F_{2}}^{a}=$ $\mathcal{E}_{d_{\mathcal{H}} ; F_{1}, F_{2}}^{a}$.

Then a complicated estimate of the difference of the radial functions of \mathcal{I} and \mathcal{H}, using differential geometric methods, proves $I=\mathcal{H}$ in a neighborhood of I. Considering sequences of angles finishes the proof.

A projective metric d is called ε-quadratic if for every $a>0$ and point F_{1} there is a point F_{2}, such that $\varepsilon a=d\left(F_{1}, F_{2}\right)$ and the metric ellipse $\mathcal{E}_{d ; F_{1}, F_{2}}^{a}$ is quadratic.

Conjecture. An ε-quadratic projective metric is classic.
A set $\mathcal{H}_{d ; F_{1}, F_{2}}^{a}:=\left\{P: 2 a=\left|d\left(F_{1}, P\right)-d\left(P, F_{2}\right)\right|\right\}$, where F_{1} and F_{2}, the focuses, are fixed points and $0<a<d\left(F_{1}, F_{2}\right) / 2=f$, is called metric hyperbola. The metric midpoint of the segment $\overline{F_{1} F_{2}}$ is called the center of $\mathcal{H}_{d ; F_{1}, F_{2}}^{a}$.

Theorem. (Kurusa \& Kozma, 2016, [12]).

If a metric hyperbola of a Minkowski metric or Hilbert metric in the plane is quadratic, then the metric is Euclidean.

A set $C_{d ; \ell, F}^{\varrho}:=\{P: \varrho d(\ell, P)=d(\ell, F) d(F, P) \mid\}$, where ℓ, the directrix, is a fixed straight line, $F \notin \ell$, the focus, is a fixed point, and $\varrho>0$, is called metric conic.

Theorem. (Kurusa, 2015, [10]).

If a metric conic of a Minkowski metric in the plane is quadratic, then the metric is Euclidean.

Bibliography ordered by authors I

［1］E．Beltrami
Risoluzione del problema：riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette，Opere，I（1865），262－280．〈5〉
［2］W．Blaschke
Integralgeometrie 11，Abh．Math．Sem．Univ． Hamburg， 11 （1936），359－366．〈2〉
［3］H．Busemann
Geometries in which the planes minimize area，Ann．Mat．Pure Appl．，55：4（1961），171－190． （2）
［4］H．Busemann
Problem IV：Desarguesian Spaces，Proc． Amer．Math．Soc．Symp．Pure Math．， 28 （1976）， 131－141．〈2〉
［5］H．Busemann and P．J．Kelly Projective Geometries and Projective Met－ rics，Academic Press，New York，1953．〈5〉
［6］M．W．Crofton
Probability，Encyclopaedia Britannica，9th ed．， 19 （1885），768－788．〈2〉
［7］D．Hilbert
Mathematische Probleme，Göttinger Nachrichten，（1900），253－297；Archiv der Math． Physik（3）， 1 （1901），44－63，213－237；angolul： http：／／aleph0．clarku．edu／djoyce／hilbert／problems．html． ＜2）
［8］G．Hamel
Über die Geometrien，in denen die Graden die kürzestens sind，Math．Ann．， 57 （1903）， 231－264．〈2〉
［9］D．Kay
The ptolemaic inequality in Hilbert geometry， Pacific J．Math．， 21 （1967），293－301．〈5〉
［10］Á．Kurusa
Projective metrics with quadratic conics， manuscript，（2016）．〈10〉

Bibliography ordered by authors II

［11］Á．Kurusa
Projective metrics with quadratic ellipses， manuscript，（2016）．〈4，6，7，9〉
［12］Á．Kurusa and J．Kozma
Projective metrics with quadratic hyperbolas， manuscript，（2016）．〈10〉

［13］A．V．Pogorelov
A complete solution of Hilbert＇s fourth prob－ lem，Soviet Math．Dokl．， 14 （1979），46－49．〈2〉
［14］Z．I．Szabó
Hilbert＇s fourth problem I．，Adv．Math．， 59 （1986），185－301；doi：10．1016／0001－8708（86） 90056－3．〈2〉

Projective metrics with quadratic metric ellipses

(1) Short history and concise theory
2. Examples: classic, Minkowski and Hilbert geometries
(3) Metric ellipses and classic metrics
4. Classifications by metric spheres

5 Classifications by metric ellipses

- Weakly quadratic Minkowski metric
- Weakly quadratic Hilbert metric

6 Further considerations

[^0]: ${ }^{2}$ It is very much the same for the Euclidean plane and the sphere. See [11].

