The shadow picture problem
for parallel straight lines

Árpád Kurusa

Abstract. We prove that convex bodies can be distinguished by their visual angles given on any two straight lines.

1. Introduction

The shadow picture [3] of a compact convex set B is defined at each point $P \in \mathbb{R}^2 \setminus B$ as the angle measure $\nu_B(P)$ of the so-called visual angle that B subtends at P. The point P and the set B are usually called the source and the object of the shadow picture $\nu_B(P)$, respectively. The shadow picture is often called visual angle or point projection [1].

The central problem of the subject is to show such set S of sources and set O of objects that $O \ni B \mapsto \nu_B|_S$ is injective. See [2], [3], [4], [5] for example only.

In this short note an earlier result of the author [5, Theorem 1], is completed.

2. Shadow pictures on two straight lines distinguish convex bodies

Let us parametrize the Grassman manifold \mathcal{L} of the straight lines in the plane so that for the real number $r \in \mathbb{R}$ and unit vector $w \in S^1$ the straight line $l(r, w)$ is the one through rw that is perpendicular to w. We shall use the notations $w_\beta = (\cos \beta, \sin \beta)$ and $\ell(P, \beta) = l(\langle P, w_\beta \rangle, w_\beta)$ regularly, where $\langle \cdot, \cdot \rangle$ is the usual inner product.

Given a planar compact domain \mathcal{D}, we define $\bar{\mathcal{D}} \subseteq \mathcal{L}$ as the domain of those straight lines ℓ that intersect \mathcal{D} and have exactly two tangents of \mathcal{D} parallel to ℓ.

AMS Subject Classification (2000): 52A10; 44A12.

Key words and phrases: visual angle, shadow picture

http://www.math.u-szeged.hu/tagok/kurusa
Using this correspondence we can extend the meaning of the shadow pictures onto the planar compact domains by

\[S^D: \mathbb{R}^2 \rightarrow \mathbb{R} \quad S^D(P) = \int_{-\pi/2}^{\pi/2} \chi_{\bar{D}}(\ell(P, \beta)) d\beta, \]

where \(\chi_{\bar{D}} \) is the indicator function of \(\bar{D} \). It is easily proved at the end of the proof of [5, Theorem 1] that

\[\mu(\bar{D}) := \int_{\bar{D}} \frac{dw dr}{|\langle w, w_0 \rangle|} = \int_{\mathbb{R}} S^D((x, 0)) dx \]

if the domain \(D \) does not intersect the \(x \)-axis. Observe that \(\mu \) becomes infinite for those domains that have non-vanishing width parallel to the \(y \)-axis, in particular, \(\mu(\bar{B}) \) is infinite for the convex bodies \(B \).

Theorem 2.1. Let \(B_1 \) and \(B_2 \) be compact strictly convex bodies, and let \(\ell_1 \) and \(\ell_2 \) be straight lines outside of \(B_1 \cup B_2 \). If \(B_1 \) and \(B_2 \) sub tend equal shadow pictures at each point of \(\ell_1 \cup \ell_2 \), then they coincide.

Proof. For intersecting straight lines the statement is proved by [4, Theorem 1], hence we can assume that the straight lines are parallel and their indices are chosen so that \(\ell_1 \) is closer to \(B_1 \cup B_2 \). Neither of the convex bodies \(B_1 \) and \(B_2 \) can contain the other, therefore they have common tangents, i.e. straight lines that are tangent to both of them.

If a common tangent of \(B_1 \) and \(B_2 \) intersects the straight lines \(\ell_1 \parallel \ell_2 \), then the statement is proved by [5, Theorem 1].

Assume that each common tangent of \(B_1 \) and \(B_2 \) is parallel to \(\ell_1 \parallel \ell_2 \).

Let \(b \) be that one of the common tangents of \(B_1 \) and \(B_2 \) that is farthest from \(\ell_1 \). As \(B_1 \) and \(B_2 \) are strictly convex, we have their unique points \(B_i = B_i \cap b \) \((i = 1, 2)\). The other unique tangents of the domains \(B_1 \) and \(B_2 \) that are parallel to \(b \) coincide because otherwise there were a common tangent of the domains \(B_1 \) and \(B_2 \) intersecting \(b \). Let this unique tangent be \(a \), and let \(A_i = B_i \cap a \) \((i = 1, 2)\).

Choose a coordinate system so that \(\ell_1 \) is the \(x \)-axis, \(B_1 \cup B_2 \) is in the quadrant \(x, y > 0 \) of the plane and the \(x \)-coordinate of \(A_1 B_1 \) is nonnegative. Let \(y = s_a \), \(y = s_b \) and \(y = c_j \) be the equation of \(a, b \) and \(\ell_j \) \((j = 1, 2)\), respectively, where \(c_2 < 0 = c_1 < s_a < s_b \) by the above considerations.

Through any point \(P \) there are exactly two tangent straight lines \(a_i^P \) and \(b_i^P \) to \(B_i \) \((i = 1, 2)\). Let \(\alpha_i^P \) and \(\beta_i^P \) denote the angles of \(a_i^P \) and \(b_i^P \), respectively, to the positive ray of the \(x \)-axis. Assume that the notation are chosen so that

\[J. \text{Geom.,} \ 103 \ (2012), \ 515–518. \]

\(\copyright \) Á. Kurusa

http://www.math.u-szeged.hu/tagok/kurusa
$\alpha_i^p > \beta_i^p > 0$, hence $S^{B_i}(P) = \alpha_i^p - \beta_i^p$, and define the points $A_i^p = a_i^p \cap B_i$ and $B_i^p = b_i^p \cap B_i$ for $i = 1, 2$. For any point $P \in \ell_1 \cup \ell_2$ we clearly have $A_i^p PA_j^p \angle = B_i^p PB_j^p \angle$, $B_i^p PB_j^p \angle \neq 0 \neq A_i^p PA_j^p \angle$, and
\[
\tau(A_i^p PA_j^p \angle) = \frac{1}{2}|PA_i^p||PA_j^p| \sin A_i^p PA_j^p \angle, \\
\tau(B_i^p PB_j^p \angle) = \frac{1}{2}|PB_i^p||PB_j^p| \sin B_i^p PB_j^p \angle
\]
for the areas of the triangles.

Assume $B_1 \neq B_2$. Then
\[
1 = \lim_{P \to \infty} \frac{\tau(A_1^p PA_2^p \angle)}{\tau(B_1^p PB_2^p \angle)} = \lim_{P \to \infty} \frac{\tau(A_1^p PA_1^p \angle) + \tau(A_1^p PA_2^p \angle) + \tau(A_2^p PA_2^p \angle)}{\tau(B_1^p PB_1^p \angle) + \tau(B_1^p PB_2^p \angle) + \tau(B_2^p PB_2^p \angle)} = \lim_{P \to \infty} \frac{\tau(A_1^p PA_2^p \angle)}{\tau(B_2^p PB_2^p \angle)} = \frac{|A_1^p A_2^p|}{|B_1^p B_2^p|}(s_a - c_j)
\]
for both $j = 1, 2$. This contradicts $c_2 < c_1 = 0$, therefore $B_1 \equiv B_2$ that implies $A_1 \equiv A_2$.

Thus, B_1 and B_2 have exactly two common tangents a and b, $A = a \cap B_1 = a \cap B_2$ and $B = b \cap B_1 = b \cap B_2$. This implies that the boundaries $\mathcal{C}_i = \partial B_i$ ($i = 1, 2$) intersect each other only in the points A and B, because otherwise B_1 and B_2 will have common tangent intersecting $\ell_1 \parallel \ell_2$.

Let $B = B_1 \setminus B_2$ and $C = B_2 \setminus B_1$, and define $\phi_j: \overline{C} \cup \overline{D} \to \overline{C} \cup \overline{D}$ so that $\phi_j(\ell)$ is the straight line through the point $P = \ell \cap \ell_j$ that closes angle $S^{B_i}(P)$ with ℓ. It is easy to prove, that $\phi_j(\overline{C}) = \overline{D}$ and $\phi_j(\overline{D}) = \overline{C}$, and it is easily proved at the end of the proof of [5, Theorem 1] that $\phi_j (j = 1, 2)$ preserves the measure μ.

Let $\xi_j: \overline{C} \cup \overline{D} \to \mathbb{R}$ map the straight lines ℓ to the x-coordinate ℓ_j of the point $\ell \cap \ell_j$. Choose the real number x_1 so that $5\pi/6 < \beta_1((x, 0))$ for all $x > x_1$, and observe that then we also have $S^{B_i}((x, 0)) < \pi/6$ for all $x > x_1$ and $i \in \{1, 2\}$. Let $L_1 = \{ \ell \in \overline{D} : x_1 < \xi_1(\ell) \}$ and construct the sets $L'_k = \phi_1(L_k)$ and $L_{k+1} = \phi_2(L'_k)$ for every $k \in \mathbb{N}$. Clearly, $L_k \subseteq \overline{D}$ and $L'_k \subseteq \overline{C}$.

Let $x' = \xi_2(\phi_1(\ell((x, 0), \beta)))$ and $x'' = \xi_1(\phi_2(\phi_1(\ell((x, 0), \beta))))$ as on Figure 1.

Figure 1. Operation of ϕ_1 and ϕ_2 results $x'' = \xi_1(\phi_2(\phi_1(\ell))) > \xi_1(\ell) = x$

We have here $S^{B_i}((x', 0)) < S^{B_i}((x, 0)) < \pi/6$, and the strictly increasing sequence $x_k := \inf_{\ell \in L_k} \xi_1(\ell)$, and therefore the strictly shrinking sequence \mathcal{L}_k.
It is shown at the end in the proof of [5, Theorem 1] that $\mu(\bar{B}_1 \triangle \bar{B}_2)$ is finite, therefore $\mu(\mathcal{L}_k)$ is finite for every $k \in \mathbb{N}$. Further, as ϕ_j $(j = 1, 2)$ preserves the measure μ, we have $\mu(\mathcal{L}_1) = \cdots = \mu(\mathcal{L}_k) = \cdots$ also. These imply
\[
\mu(\{\ell \in \bar{D} : x_k \leq \xi_1(\ell) \leq x_{k+1}\}) \leq \mu(\mathcal{L}_k \setminus \mathcal{L}_{k+1}) = \mu(\mathcal{L}_k) - \mu(\mathcal{L}_{k+1}) = 0,
\]
hence the set $\{\ell \in \bar{D} : x_k \leq \xi_1(\ell) \leq x_{k+1}\}$ is empty. This contradicts the fact that $x_k < x_{k+1}$, therefore our assumption can not be valid.

The theorem is proved.

As a corollary one can remove the extra convexity condition in [5, Theorem 4].

Acknowledgement. The author wishes to express his gratitude to J. Kincses for his valuable discussions.

References

Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: kurusa@math.u-szeged.hu