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Orbital integrals on the Lorentz space

of curvature � 1

�Arp �ad Kurusa ∗

Abstract. We present a rotation symmetric model in the Euclidean space for

the Lorentzian of curvature � 1 in which the Lorentzian spheres around all the

points of an a priori fixed spacelike totalgeodesic are straightlines. Investigat-

ing the mean value operators in this model yields to various representations

of functions by means of their integrals over Lorentzian spheres.

1. Introduction

This article deals with the problem of recovering a function from its integrals
over the spheres in pseudo Riemannian spaces. As Helgason pointed out in [4],
and [5], formulas representing functions by their mean values play very important
role in the theory of di�erential operators on higher rank symmetric spaces. For
instance we refer the reader to Huygens’ principle in the solution of the Cauchy
problem.

To determine a function f from its spherical mean valuesM r f on Riemannian
manifolds is simply done by f = lim r → 0 M r f=M r 1, where we adapted the com-
monly accepted notation M r f (x) for the integral of f on the sphere aroundx of
radius r > 0. In Lorentzian spaces the situation changes considerable, because the
Lorentzian spheres do not shrink to their center as their radius approaches zero.
Other signi�cant di�erence is that the Lorentzian spheres are neither compact nor
connected.

In this paper we work on the Lorentz spaceL n of signature (1; n − 1) with
constant curvature − 1. We represent the functions by means of their integrals
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Orbital integrals on Lorentzian 3

Our model L n of the Lorentzian is the orthogonal projection of Qn
� 1 with its

structure into the hyperplane x1 = 0 along the axis x1. Let � : Qn
� 1 ! L n be this

projection. Obviously L n is rotation symmetric around the origin, becauseQn
� 1 is

axially symmetric.
Let us take a point P on Qn

� 1, and take the two dimensional subspace� of
Rn +1 containing P and the x1-axis. Clearly, the intersection of � with Qn

� 1 is a
hyperbola (two sheeted). Say, the hyperbola throughP intersects the subspace
x1 = 0 of Rn +1 in the point O. Let r denote the Lorentzian distance fromP to O.
Then r is also the Lorentzian distance ofP from the equator E , the intersection
of Qn

� 1 and the hyperplane x1 = 0. Let the coordinates of P be (p1; p2; : : : ; pn +1 )

in Rn +1 . Relative to � we may use the coordinates� 1 = p1 and � 2 =
q P n +1

i =2 p2
i .

These coordinates are functions ofr . For the arclength parameter r equation (2.1)
and the de�nition of Qn

� 1 imply

(2:2)
�

d� 1

dr

� 2

�
�

d� 2

dr

� 2

= +1 and � 2
1 � � 2

2 = � 1

that gives p1 = � 1 = sinh( r ) and � 2 = cosh(r ) by an easy calculation. Hence
j� (P)j = cosh r and the projection � (P) of P is in � . Figure 1 shows the situation
on the plane � .

Figure 1.

We parameterize L n so that (!; r ) means the point � (P) = ! coshr , where
! 2 Sn � 1. Identifying the points symmetric to the subspace x1 = 0, the map �
becomes one-to-one. This can be done without loosing information, because all the
objects under consideration will be symmetric to the hyperplanex1 = 0.

Let h:; :i � (P ) be the Lorentzian inner product on T� (P ) L n and let � (P) =
(!; coshr ) in the polarsystem of the hyperplanex1 = 0.

Obviously a vector v in TP Qn
� 1, the tangent space ofQn

� 1 at the point P,
orthogonal to � will be mapped by � � : TP Qn

� 1 ! T� (P ) L n , the induced map of � ,
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3. Spherical means on concentric spheres

In this section we represent the functions with their orbital integrals on
concentric spheres similarly to the Riemannian case. We call a function on the
Lorentzian space even resp. odd, if its representating functionf on Qn � 1

� 1 satis�es
f (x1; : : : ; xn ) = f (� x1; : : : ; xn ) resp. f (x1; : : : ; xn ) = � f (� x1; : : : ; xn ). The or-
bital integral of odd functions vanish on the spacelike spheres centered to points
on the equator. The timelike spheres centered to points on the equator never meet
with the equator, hence the formulas representing the functions by their orbital
integrals over timelike spheres can not depend on the parity. To make the mapping
� essentially one-to-one, we restrict the considerations onto the set of the even
functions. Keep in mind that the formulas on timelike spheres are all valid for any
type of functions.

First we introduce notations for the orbital integrals, that �t to our situ-
ation. Let Mf (!; p ) denote the integral of the integrable function f over the
sphere Ĥ (!; p ) with respect to the Lorentzian surface measure determined in
Lemma 2.2. Although more generality could be allowed, we point our attention to
the set C1

c (L n ) of in�nitely di�erentiable functions of compact support. Then by
Lemma 2.2 we have

(3:1) Mf (�!; p ) =
Z

Sn � 1
�!;p

f
�

!; arccosh
� p

h!; �! i

�� pn � 1
p

jp2 � 1j
h!; �! i n � 1(p2 � h !; �! i 2)1=2

d!;

where Sn � 1
�!;p = f ! 2 Sn � 1 : 0 < h!; �! i < p g, and we used the parameterization

of L n for parameterizing f . Note that both arguments of Mf (!; p ) are Euclidean
objects.

We shall frequently use the radially acting di�erential operators Dt resp. Ds

that is de�ned on the functions f 2 C1
c (L n ) as

(3:2) Dt f =
d
dr

� f (!; r )
sinhr coshr

�
and Dsf =

d
dr

� f (!; r )
sin r cosr

�

Theorem 3.1. Let f 2 C1
c (L 2). For timelike spheres

f (!; 0) = lim
r ! 0

� sinhr
2

Dt

�
coshrMf (!; coshr )

�

and for spacelike spheres

f (!; 0) = lim
r ! 0

� sin r Ds

�
cosrMf (!; cosr )

�
:

Before the proof note that sinhr as well as sinr could be replaced byr in
which case Theorem 3.1 reproduces Helgason's formula for time like spheres in [5].
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Proof of Theorem 3.3. Just like in the proof of Theorem 3.2, we need to work only
with functions rotation symmetric around ! . Therefore formula (3.1) simpli�es into

Mf (!; cosr ) = jSn � 2j
Z cos r

0
f

�
!; arccosh

� cosr
t

�� cosn � 1 r sin r (1 � t2) �

tn � 1(cos2 r � t2)1=2
dt;

where � = ( n � 3)=2. By substituting t = cos r= coshz we obtain

(3:8) Mf (!; cosr ) = jSn � 2j sin r
Z 1

0
f (!; z )(sinh2 z + sin 2 r ) � coshzdz:

Let

F� (r ) =
1

jSn � 2j sin r
Mf (!; cosr ) =

Z 1

0
f (!; z )(sinh2 z + sin 2 r ) � coshzdz:

A simple di�erentiation gives

(3:9) F 0
� (r ) =

�
0 if � = 0
2� cosr sinrF � � 1(r ) if � > 0.

Using this on (3.8) recursively, [n=2] � 1 steps will give either � = 0 for n odd or
� = � 1=2 for n even. From this latter case Theorem 3.1 gives the result.

As (3.9) clearly shows that no representation of the above kind can exist in
odd dimensions, becauseMf contains only some moments off . The idea to look
for other representations arises from this insu�ciency.

4. Spherical means on a restricted set of spheres

In this section we consider representation of functions by their spherical in-
tegrals on spheres centered to points of the equator. (Note that any spacelike
totalgeodesic can be chosen as equator by the homogenity of the spaceL n .) These
spheres are the hyperplanes in our model. As in the previous section, we restrict
the considerations onto the even functions, to make the mapping� essentially one-
to-one, but keep in mind that the timelike formulas again remain valid for functions
of any type.

We shall use now all the spherical integralsMf (!; p ), and from now on we
think Mf (!; p ) as a transform of the function f into a function on the set of spheres
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Proof. Using Proposition 4.1 it is easy to verify that

M t F (!; r ) = j sinhr j �R� G(!; coshr )

for G(!; p ) = F (Ĥ (!; p ))=j1� p2j, where �R� is the Euclidean dual Radon transform.
Substitute this and Theorem 4.2 into Helgason's Theorem 3.4 in [5].

This result shows that the inversion is local in odd dimensions contrary the
even dimensions, where the reconstruction needsMf on all the spheres. However
it hides the important aspect of the spherical integral transform, namely, that the
spherical integral transform is invertible even if only the timelike spheres are taken
into account.

To prove this, we need some facts about the spherical harmonics. Brie
y,
the spherical harmonics,Y`;m constitute a complete polynomial orthonormal sys-
tem in the Hilbert space L 2(Sn � 1). If f 2 C1 (Sn � 1 � R+ ) and f `;m (p) is the
corresponding coe�cient of Y`;m (! ) in the expansion of f (!; p ), ie. f `;m (p) =R

Sn � 1 f (!; p )Y`;m (! )d! , then the series
P 1

`;m f `;m (p)Y`;m (! ) converges uniformly
absolutely on compact subsets ofSn � 1 � R to f (!; p ). For further references,
including the Funk-Hecke theorem,

Y`;m (�! )
jSn � 2j
C �

m (1)

Z 1

� 1
C �

m (x)(1 � x2) � � 1
2 f (x)dx =

Z

Sn � 1
f (h!; �! i )Y`;m (! )d!;

where C �
m is the Gegenbauer polynomial of degreem and � = ( n � 2)=2, refer to

[9]. Below we shall use the expansions

(4:2) g('; p ) =
1X

m = �1

gm (p) exp(im' ) and g(!; p ) =
1X

`;m

g`;m (p)Y`;m (! )

in dimension two and in higher dimensions, respectively. In dimension two,' will
mean the angle of the respective unit vector to a �xed direction.

Now we give the spherical harmonic expansion of the spherical integral trans-
form.

Proposition 4.5. (i) If f ('; p ) 2 S(L 2), then

(Mf )m (p) = 2
Z 1

arccosh p
f m (q)

cos
�

m arccos
�

p
cosh q

�� p
p2 � 1

q
1 � p2=cosh2 q

dq

for p > 1 and
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Proof. (i) First we multiply ( Mf ) l;m (coshr ), using the appropriate formula of
Proposition 4.5 with

� C �
m

�
coshr
coshs

� �
cosh2 r

cosh2 s
� 1

� n � 3
2 coshn � 2 s

coshn � 1 r
sinhs

and integrate from s to 1 by r . Denoting the result by F`;m we get

F`;m (s) = �
Z 1

s
C �

m

�
coshr
coshs

� �
cosh2 r

cosh2 s
� 1

� n � 3
2 coshn � 2 s

coshn � 1 r
sinhs�

�
jSn � 2j
C �

m (1)

Z 1

r
f `;m (q)C �

m

�
coshr
coshq

� �
1 �

cosh2 r

cosh2 q

� n � 3
2

�

� coshn � 2 qsinhrdqdr:

Changing the order of the integrations we see

F`;m (s) =
�j Sn � 2j
C �

m (1)

Z 1

s
f `;m (q)(coshscoshq)n � 2 sinhs�

�
Z q

s
C �

m

�
coshr
coshs

�
C �

m

�
coshr
coshq

� �
cosh2 r

cosh2 s
� 1

� n � 3
2

�

�
�

1 �
cosh2 r

cosh2 q

� n � 3
2 sinhr

coshn � 1 r
drdq:

According to formula (4.4) we obtain

F`;m (s) =
Mj Sn � 2j

C �
m (1)

Z 1

s
f `;m (q)(coshq � coshs)n � 2 sinhsdq

that implies the formula by the observation

Dr � k (s) =
�

f (s) if k = 0
� k� k � 1 if k > 0,

where

� k (s) =
Z 1

s
f `;m (q)(coshq � coshs)k sinhsdq:

For (ii), we multiply the �rst formula of Proposition 4.5 with

cosh(m arccosh (p=coshs))

p
p

p2 � 1
q

p2=cosh2 s � 1
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