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BOUNDARY-RIGIDITY OF PROJECTIVE METRICS AND
THE GEODESIC X-RAY TRANSFORM

ÁRPÁD KURUSA AND TIBOR ÓDOR

Abstract. We prove that given a compact convex non-empty domainM in
the plane, a function δ : ∂M× ∂M → R+ can be extended to a projective
metric d onM if and only if δ(P,R)+ δ(Q,S)− δ(P, S)− δ(Q,R) > 0 for any
convex quadrangle �(PQRS) inscribed in ∂M. Moreover, this extension is
unique.

1. Introduction

The problem of boundary rigidity of Riemannian manifolds (see for example
[13, 14, 12, 15, 22]) has recently reached a general solution in [20] (see [7] for how
important consequences this may have in seismology). Obtaining similar results
without using differentiability properties is what motivates investigating the rigidity
of projective metrics.

Let M be a closed convex domain in the plane with non-empty interior. A
metric d : M×M→ R is called projective

(i) if every segment (i.e. convex hull of two points) inM is a geodesic of d,
(ii) triangle equality holds, i.e. d(P,Q) + d(Q,R) = d(P,R) if and only if

point Q is in the segment PR of points P,R, and
(iii) d is continuous with respect to the Euclidean topology.
According to Beltrami’s theorem [3] (see also [4, (29.3)]), a projective metric is

Riemannian if and only if it has constant curvature. On the other hand the class
of projective metrics is really huge (see [16, 1, 2, 21]).

We prove in Theorem 3.1 that for a compact convex non-empty domainM in the
plane a continuous distance δ : ∂M× ∂M→ R+ can be extended to a projective
metric d onM if and only if δ satisfies the quadrangle inequality (3.1).

Further, we prove in Theorem 4.1 that the above mentioned extension is unique,
what we call the boundary-rigidity of the projective metrics. Such phenomenon
was earlier independently observed by R. V. Ambartzumian in [1, 2. of Theorem]
and also by R. Alexandrov [2, Theorem 3] for polygonal domains.

Finally we prove some further rigidity results and discuss how our rigidity result
relates to the earlier results. Treatments similar to those made in this paper for
higher dimensions will be the subject of an other paper.
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2. Notations and preliminaries

Points of Rn are denoted as A,B, . . . , vectors as
−−→
AB or a, b, . . . . The latter

notations are also used for points if the origin is fixed. The affine line through A
and B is AB, and the closed segment with endpoints A and B is AB. The convex
hull of a point set P is denoted by ConvP, the interior of P is denoted by P◦, and
χP denotes the indicator function of P.

The n-dimensional projective space is denoted by Pn. We use P ∗ to denote the
set of hyperplanes through a point P ∈ Pn. Accordingly, the set of all hyperplanes
intersectingM⊆ Pn isM∗, and Pn∗ is the set of all hyperplanes of Pn.

Let de be a Euclidean metric on Rn+1, and 〈·, ·〉e be the corresponding Euclidean
product on the space of vectors of Rn+1. We denote the unit sphere and ball by
Sn−1
e and by Bne , respectively. The Euclidean metric de induces a metric dSe : Sn×
Sn → [0, π] by cos(dSe (u,v)) = 〈u,v〉e.

Modeling Pn as the set of straight lines through the origin O in Rn+1 shows that
the map ψ : Sn → Pn given by ψ(X) = OX is a double covering of Pn, because
ψ(X) = ψ(−X). The mapping ψ transforms metric dSe to dPe , a Riemannian elliptic
metric on Pn, by dPe(OX,OY ) = min(dSe (−X,Y ), dSe (X,Y )).

Let SPe (ψ(X)) denote the sphere with respect to dPe in Pn that is centered at ψ(X)
and has the greatest radius. This corresponds in Sn to the great circle Sn−1

e (X) =
Sn−1
e (−X), the “equator ”, that is, the set of points having equal distances from
X and −X. Let Rne (X) denote the n-dimensional subspace of Rn+1 that contains
Sn−1
e (X), and let Pn−1

e (ψ(X)) be the corresponding (n−1)-dimensional hyperplane
in Pn. Metric dPe induces a bijective pairing ε : Pn ↔ Pn∗, the elliptic polarity, by
ε(ψ(X)) = Rne (X) and ε(Rne (X)) = ψ(X)1. Further, ε(P ∗) = {ε(H) : P ∈ H ∈
Pn∗} = ε(P ) is a hyperplane in Pn∗, and ε(H) = {ε(P ) : P ∈ H} = ε(H)∗ for any
H ∈ Pn∗.

Fix a point S ∈ Sn−1. The tangent space TSSn is naturally identified with Rn by,
say, ı. Let R̂n be Rn supplemented with the ideal hyperplane. Then the mapping
τS : OX 7→ OX ∩ TSSn naturally extends to a bijective pairing τS : Pn ↔ R̂n. The
pairing τS maps hyperplanes into hyperplanes, so τS(ε(P )) is a hyperplane in R̂n.

TSSn ⊂ τS(Pn)

Sn

τS(e)

τS(f)

ψ(P )

τS(P )

τS(ε(P ))

τS(ε(e)) τS(ε(f))

S

O

τS(M)τS(M#)

Figure 2.1. Polarity and τS in work.
1This correspondence can be reversed by starting from a general elliptic polarity ε and deter-

mining the unique euclidean metric de for which ε(X) is the “equator”.
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We call a subsetM⊆ Pn convex, if it is either Pn, or, for a well chosen S ∈ Sn,
τS(M) is convex in TSSn ∼= Rn. With a slight abuse of notions, we call a subset
M ⊆ Pn compact, if for a well chosen S ∈ Sn, τS(M) is compact in TSSn ∼= Rn.
IfM is a compact convex set, then the setM# := Pn \ ε(M∗) is either empty, or
a compact convex set. IfM# is not empty, then the continuity of ε implies that

• a point P is on the boundary ∂M# if and only if ε(P ) supportsM, and
• a line ` supportsM# if and only if point ε(`) is on the boundary ∂M.

Observe that {ε(X∗) : X ∈ ε(P ∗)} = P ∗, hence a segment PQ given by points
P,Q ∈ Pn corresponds to the two-edge

ε(PQ
∗
) =

⋃
X∈PQ

ε(X∗) =
⋃

X∈PQ

ε(X) =: E(ε(P ), ε(Q)), (2.1) 〈5〉

that is bounded by the union of the hyperplanes ε(P ) and ε(Q). We say that a
two-edge supports a convex setM if it does not contain any inner point ofM, and
both of its bounding hyperplanes supportM.

We call a measure µ : 2M
∗ → R+ p-admissible if for every non-collinear triple

P,Q,R ∈M of points we have
(1) µ(P ∗) = 0 (µ is definite),
(2) µ

(⋃
X∈PQX

∗) > 0 (µ is positive), and
(3) µ

(⋃
X∈PQX

∗ ∩
⋃
Y ∈QR Y

∗) > 0 (µ is strict).

Lemma 2.1. Given an elliptic polarity ε : P2 ↔ P2∗ and a convex (maybe empty)
M ⊆ P2, a measure µ : 2M

∗ → R+ is p-admissible if and only if µ ◦ ε is a strictly
positive measure on P2 such that µ ◦ ε vanishes on straight lines.

The easy proof is left to the interested reader. Note however, that in higher
dimensions no such easy equivalence exists.

The following observation was originally made by Busemann [6].

Lemma 2.2. Let M be a convex non-empty domain in Pn, and let µ be a p-
admissible measure µ : 2M

∗ → R+. Then the function d : M×M → R+ defined
by d(P,Q) = µ(

⋃
X∈PQX

∗)/2 for every pair of points P,Q ∈ M is a projective
metric onM.

Proof. The function d is clearly non-negative and symmetric, it vanishes if P = Q,
and it is positive if P 6= Q, because µ is definite and positive. It also satisfies the
strict triangle inequality, because

2(d(P,Q) + d(Q,R)− d(P,R))

= µ
( ⋃
X∈PQ

X∗
)

+ µ
( ⋃
X∈QR

X∗
)
− µ

( ⋃
X∈PR

X∗
)

= 2µ
( ⋃
X∈PQ

X∗ ∩
⋃

Y ∈QR

Y ∗
)
,

and µ is strict. �

Given a set Ω, we call a class of its subsets R ⊂ 2Ω a semiring if
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• ∅ ∈ R,
• for any two sets A,B ∈ R the difference set B \ A is a finite union of

mutually disjoint sets in R, and
• the intersection set A ∩ B is in R.

The smallest σ-algebra containing R is said to be generated by R, and is denoted
by σ(R).

We say that a set function µ : R→ [0,∞] on a semiring R ⊂ 2Ω is
(i) additive if µ(A ∪ B) = µ(A) + µ(B) for any pair of disjoint sets A,B ∈ R,
(ii) σ-subadditive if µ(A) ≤

∑∞
i=1 µ(Ai) for any choice of countably many sets

A,A1, . . . ,Ai, . . . ∈ R, where A ⊂
⋃∞
i=1Ai, and

(iii) σ-finite if there exists a sequence A1,A2, . . . ∈ R, such that
⋃∞
i=1Ai = Ω

and µ(Ai) <∞ for every Ai.
A set function µ : R → [0,∞] on a semiring R ⊂ 2Ω is called extendible, if it is
additive, σ-subadditive, and σ-finite.

A major tool in this paper is the following variation of Carathéodory’s extension
theorem [23]. It uses slightly weaker assumptions.

Theorem 2.3 ([9, Theorem 1.53]). Let R be a semiring and let µ̄ : R → [0,∞] be
an extendible set function with µ̄(∅) = 0. Then there is a unique σ-finite measure
µ : σ(R)→ [0,∞], such that µ(R) = µ̄(R) for all R ∈ R.

3. Extendibility of boundary-metrics in dimension two

LetM be a compact convex non-empty domain in P2. By the triangle inequality,
because the diagonal point X = PR∩QS of any convex non-degenerate quadrangle
�(PQRS) inscribed in ∂M falls inM, every projective metric d : M×M→ R+

satisfies the quadrangle inequality

d(P,R) + d(Q,S)− d(P, S)− d(Q,R) ≥ 0, (3.1) 〈1, 4, 6〉

where equality happens only if quadrangle �(PQRS) degenerates to a segment.
Notice, that the quadrangle inequality implies immediately the triangle inequality.

The quadrangle inequality (3.1) plays a key role in the next extension theorem
on which the rigidity results of this paper are based.

Theorem 3.1. LetM⊂ P2 be a compact convex domain. If a continuous bounded
distance function δ : ∂M× ∂M→ R+ satisfies the quadrangle inequality (3.1) for
any convex non-degenerate quadrangle �(PQRS) inscribed in ∂M, then it extends
to a projective metric d : M×M→ R+.

Proof. By Lemma 2.1 and Lemma 2.2, it is enough to construct a measure µ : (R2\
M#)→ R+ such that δ(P,Q) = µ◦ε(

⋃
X∈PQX

∗)/2 for pairs of points P,Q ∈ ∂M.
Since the set ε

(⋃
X∈PQX

∗) is the two-edge E(ε(P ), ε(Q)), we need to construct µ
from knowing it only on two-edge sets supportingM#.
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First we define a positive set function ν on a semiring R in several steps. We
start with two-edges, triangles and convex quadrangles all of whose side lines sup-
portM#.

Observe that exactly those two-edges that support M# are given in the form
E(ε(P ), ε(Q)). So, by (2.1), if the requisite measure µ existed, then it should give
δ(P,Q) for the two-edge of form E(ε(P ), ε(Q)). Figure 3.1 shows what we have.

M#

E(p, q)

E(p, q)

p = ε(P )

q = ε(Q)

ε(PQ)

Figure 3.1. Two-edge of a chord PQ of ∂M supports M#.

Thus, we define

ν(E(ε(P ), ε(Q))) := δ(P,Q). (3.2) 〈5, 8〉

Let 4(ABC) be a triangle with side-lines p = AB = ε(P ), q = BC = ε(Q), and
r = CA = ε(R), such that E(p, q), E(q, r), and E(r, p) support M#. Figure 3.2
shows what we have.

M#

E(p, r)

E(p, r)

E(p, q)

E(q, r)

p

q
r

AB

C

Figure 3.2. A triangle the side-lines of which support M#.

Observe that, E(p, q), E(q, r) and R2 \ E(r, p) cover the interior of 4(ABC)
three times, while they cover lines p, q, r twice and every other point of the plane
only once. So, outside lines p, q, r, we have 2χ4(ABC) = χE(p,q) +χE(q,r)−χE(r,p).

Therefore, using (3.2), we define

ν(4(ABC)) := (δ(P,Q) + δ(Q,R)− δ(P,R))/2. (3.3) 〈6, 8〉

This is clearly non-negative, by the triangle inequality, and vanishes only ifQ ∈ PR.
Let �(ABCD) be a convex quadrangle with side-lines p = AB = ε(P ), q =

BC = ε(Q), r = CD = ε(R), and s = DA = ε(S), such that E(p, q), E(q, r), E(r, s),
and E(s, p) support ∂M#. Let the diagonal points of �(ABCD) be X = AC∩BD,
Y = p ∩ r, and Z = q ∩ s. Figure 3.3 shows what we have.

http://www.math.u-szeged.hu/tagok/kurusa
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p

r q

s

Y Z
C

D
A

B

M#

Figure 3.3. A quadrangle the side-lines of which support M#.

Observe, that the sidelines of triangles 4(Y BC), 4(ZDC), 4(Y AD), and
4(ZAB) also supportM#, hence, using

2ν(�(ABCD)) := ν(4(Y AD)) + ν(4(ZAB))− ν(4(Y BC))− ν(4(ZCD)),

we obtain from (3.3) that

2ν(�(ABCD))

= (δ(P,R) + δ(R,S)− δ(P, S))/2 + (δ(P,Q) + δ(Q,S)− δ(P, S))/2−
− (δ(P,R) + δ(R,Q)− δ(P,Q))/2− (δ(R,Q) + δ(Q,S)− δ(R,S))/2

= δ(P,Q) + δ(R,S)− δ(R,Q)− δ(P, S). (3.4) 〈8〉

Notice that this is non-negative because of the quadrangle inequality (3.1).
Let �(ABCD) be a closed quadrangle the side-lines of which supportM#. Then

exactly two of the side-lines of �(ABCD) are such that quadrangle �(ABCD) and
M# are on different sides of the side-line. Such a side-line is called separating side-
line. Let �̂(ABCD) denote the quadrangle obtained from �(ABCD) by removing
its edges laying on non-separating side-lines. We call these quadrangles half-closed.

Let Q be the set of the half-closed quadrangles all of whose side-lines support
M#. Let R be the smallest semiring containing Q. Then the sets in R are the
union of mutually disjoint connected half-closed polygons P all of whose side-lines
supportM# and includes its edge if and only if the side-line of the edge separates
M# and P in a small neighborhood of the edge. (See Figure 3.4!)

C

DB

M#

EF G

Figure 3.4. A half-closed supporting polygon BCDEGF .

The side-lines of any half-closed connected supporting polygon P cut P into
finitely many mutually disjoint half-closed supporting quadrangles Qi ∈ Q (i =
1, . . . , n), so we define

ν(P) :=

n∑
i=1

ν(Qi). (3.5)

http://www.math.u-szeged.hu/tagok/kurusa
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As every set R ∈ R is the union of such mutually disjoint closed polygons Pj ∈ R
(j = 1, . . . , `), we can finish defining ν by

ν(R) :=
∑̀
j=1

ν(Pi). (3.6)

Choose a point C outside M# and let r and q be the supporting lines of M#

through C. These two lines determine two two-edges one of which, say EC contains
M#. Let E†C be the quadrant in EC that does not contain M#. Let s be a
supporting line of M# that contains C and M# on the same side. Let p 6= s be
the supporting line of M# parallel to s. Let LC;s be the set of points, we call
it pointed lane, where E†C intersects the strip between s and p. Further, denote
D∞ = r ∩ s and B∞ = q ∩ p. Figure 3.5 shows what we have.

q

r

M#

ε(M∗)

s

p

D∞

B∞ LC;s

C

E†C

Figure 3.5. Pointed lane LC;s.

Let νC;s denote the restriction of ν onto RC;s = {R : R 3 R ⊂ LC;s}.
We claim that νC;s is extendable. The set function νC;s is clearly additive and

σ-subadditive, so we only need to prove that it is also σ-finite.
Let points Di ∈ CD∞ and Bi ∈ CB∞ (i = 1, . . . ,∞) be such that

−−−→
CB∞ =

i
−−−−→
BiB∞ and

−−−→
CD∞ = i

−−−−→
DiD∞, respectively. Let pi = ε(Pi) and pi = ε(Pi) be the

tangent lines of M# such that Di ∈ si 6= r and Bi ∈ pi 6= q, respectively. Let
Ai = pi ∩ si.

It is obvious that
⋃k
i=1 �(AiBiCDi) = �(AkBkCDk), and

⋃∞
i=1 �(AiBiCDi) =

LC;s, hence we obtain

2νC;s(LC;s) = 2 lim
k→∞

νC;s(�(AkBkCDk)) = 2 lim
k→∞

ν(�(AkBkCDk))

= lim
k→∞

(δ(Pk, R) + δ(Q,Sk)− δ(Pk, Sk)− δ(Q,R))

= δ(P,R) + δ(Q,S)− δ(P, S)− δ(Q,R) <∞

by the continuity of metric δ, P = limk→∞ Pk, and S = limk→∞ Sk, where q =
ε(Q), r = ε(R), p = ε(P ), and s = ε(S).

Thus, by Theorem 2.3, set function νC;s extends to a σ-finite measure µC;s on
σ(RC;s), the set of the Borel sets in LC;s.

Observe that µC;s(�(ABCD)) = ν(�(ABCD)) for every supporting half-closed
quadrangle �(ABCD) in RC;s, hence every measure µC;s takes the same value on

http://www.math.u-szeged.hu/tagok/kurusa
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every quadrangle �(ABCD) which is in the pointed lane LC;s, so all such measures
are equal on every Borel set in their common domains.

Now we can define the measure µ requested in the theorem as follows: Given a
Borel set, divide it to disjoint parts so that every part falls in a pointed lane LC;s,
then measure every such part by the appropriate µC;s, and sum up the values (this
summation is finite if the Borel set is covered by finitely many lanes, for example
if the Borel set is bounded).

To finish the proof we only have to check that δ is a restriction of the projective
metric d defined from µ ◦ ε by Lemma 2.2.

Let �(ABCD) be a convex quadrangle with side-lines p = AB = ε(P ), q =
BC = ε(Q), r = CD = ε(R), and s = DA = ε(S), such that E(p, q), E(q, r),
E(r, s), and E(s, p) support ∂M#. Observe that

δ(P,Q) + δ(R,S)− δ(R,Q)− δ(P, S)

= 2ν(�(ABCD)) = 2νC;s(�(ABCD)) = 2µC;s(�(ABCD)) = 2µ(�(ABCD))

= d(P,Q) + d(R,S)− d(R,Q)− d(P, S),

where the first and last equation are proved by the derivation of (3.4). Letting
Q → R and S → P in this equality, the continuity of δ and d implies 2δ(P,R) =
2d(P,R) that completes the proof. �

4. Rigidity by boundary-metrics in dimension two

In what follows we have a projective metric d : M×M → R+ on a compact
convex domain M. The restriction d �∂M: ∂M × ∂M → R+ of d defined by
d�∂M(P,Q) := d(P,Q) is called the boundary-metric. We consider how much of a
projective-metric is determined by some restrictions of its boundary-metric.

Theorem 4.1. A projective metric is determined by its boundary-metric.

Proof. By Theorem 3.1, we have a measure µ◦ε : 2M
∗ → R+, such that d(P,Q) =

µ(E(ε(P ), ε(Q))). So we only need to show that µ is determined by the boundary
metric.

Following (3.2), (3.3) and (3.4) we can calculate µ for two-edges, triangles and
quadrangles with side-lines supportingM#:

2µ(E(ε(P ), ε(Q)))=d�∂M(P,Q) (4.1) 〈9〉

2µ(4(ABC))=d�∂M(P,Q)+d�∂M(Q,R)−d�∂M(P,R), (4.2)
2µ(�(ABCD))=2(d�∂M(P,Q)+d�∂M(R,S)−d�∂M(R,Q)−d�∂M(P, S)), (4.3)

where P,Q,R, S ∈ ∂M.
Let Q be the set of the half-closed quadrangles all of whose side-lines support

M#. Let R be the smallest semiring containing Q. Then the sets in R are the
union of mutually disjoint half-closed connected polygons all of whose side lines
supportM#.

http://www.math.u-szeged.hu/tagok/kurusa
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The side-lines of any half-closed connected supporting polygon P cut P into
finitely many mutually disjoint half-closed supporting quadrangles Qi ∈ Q (i =
1, . . . , n). So we have µ(P) :=

∑n
i=1 µ(Qi). As every set R ∈ R is the union of

such mutually disjoint half-closed connected polygons Pj ∈ R (j = 1, . . . , `), we
also have µ(R) :=

∑`
j=1 µ(Pi). Since µ is a measure, it is σ-finite in every pointed

lane LC;s (see Figure 3.5 and the text above it), so µ is uniquely determined by its
values on R by the unicity part of Carathéodory’s Theorem 2.3.

This proves the theorem. �

We can sharpen Theorem 4.1 by digging a hole inM. The result resembles the
“peeling argument” of [20] in a way.

Theorem 4.2. Let N be a compact convex domain in the interior of M. A
projective metric d : M×M→ R+ is determined on M\N by the restriction of
its boundary-metric d�∂Mon chords avoiding N .

Proof. By Theorem 3.1, we have a measure µ◦ε : 2M
∗ → R+, such that d(P,Q) =

µ(E(ε(P ), ε(Q))). As d is given on ∂M× ∂M, we have (4.1) for every two-edge
E(ε(P ), ε(Q)) that supportsM# and has vertex in N#.

M

N

P

Q

N#

M#

E(p, q)

E(p, q)

p

q

ε(PQ)

Figure 4.1. A two-edge supporting M# and crossing in N#.

Just as in the proof of Theorem 4.1 we can calculate from this the µ-measure
of those triangles and quadrangles in N# \M# that supportM#. Denoting the
set of such half-closed quadrangles by Q and considering the semiring R generated
by Q one can finish the proof in the same way as the proof of Theorem 4.1 was
finished. �

We can also “ localize” Theorem 4.1 as follows.

Theorem 4.3. Let N be a compact convex domain in the interior of M. A
projective metric d : M×M→ R+ is determined on N ⊂M by the restriction of
the boundary-metric d�∂Mon chords intersecting N .

Proof. By Theorem 3.1, we have a p-admissible measure µ : 2M
∗ → R+, such that

d(P,Q) = µ(E(ε(P ), ε(Q))). As d is given on ∂M× ∂M, we have (4.1) for every
two-edge E(ε(P ), ε(Q)) that supportsM# and has vertex outside N#.

http://www.math.u-szeged.hu/tagok/kurusa
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M

N

P

Q

N#

M#

E(p, q)

E(p, q)

p

q

ε(PQ)

Figure 4.2. A two-edge supporting M# and crossing outside of N#.

Just as in the proof of Theorem 4.1 we can calculate from this the µ-measure
of those triangles and quadrangles outside of N# that supportM#. Denoting the
set of these quadrangles by Q and considering the semiring R generated by Q one
can finish the proof in the same way as the proof of Theorem 4.1 was finished. �

We can restrict the knowledge on the boundary-metric even more while being
able to deduce some partial information on the projective metric. This resembles
the Limited Data X-ray Tomography [19].

The following theorem is a clear consequence of Theorem 4.3.

Theorem 4.4. Let A be an open connected arc in ∂M. A projective metric d : M×
M→ R+ is determined on ConvA by the restriction of its boundary-metric d�∂M
on chords having an endpoint in A.

We have to make it clear here that the projective metric d is not determined on
M\ConvA. Let the endpoints of A be A±, and the dual lines for these points be
a± = ε(A±), as shown on Figure 4.3.

M

AA+

A−

P

Q

R

S A

M#

a− = ε(A−)

a+ = ε(A+)
E†−

ε(A∗)

r = ε(R) s = ε(S)

p = ε(P )

q = ε(Q)

Figure 4.3. Chords from an arc A and two-edges supporting an arc of ∂M#.

The two-edge E†, the complement of E(a−, a+), is separated by M# into two
connected domains E†±. Let E

†
+ be the one that is bounded by ε(A∗), and let E†− be

the other one, that is bounded by ∂M# \ε(A∗). Domain E†− is shown on Figure 4.3
with red color. It is clear, that the measure µ that corresponds to d is given exactly
for those two-edges that support M# in ε(A∗). Therefore, the only information
about how µ behaves on E†− is the function ∂M\A 3 S 7→ µ(4(AS+S−)), where A
is the vertex of E†−, and points S± are the intersections of tangents a± with tangent
s = ε(S).

http://www.math.u-szeged.hu/tagok/kurusa
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5. Generalized X-ray transform in dimension two

Let N ⊆ R2 be a compact connected domain such that a set C of continuous
curves in N exists, such that two curves intersect each other in at most one point,
and there is a unique curve CP,Q ∈ C for any two different points P,Q ∈ N
that contains both points P,Q. The generalized X-ray transform XC,µ maps the
functions f : R2 → R integrable on each curve CP,Q into

XC,µf(P,Q) =

∫
CP,Q

f(x) dµP,Q(x), (5.1)

where µP,Q is a distribution on CP,Q. Following [11], the curves CP,Q are called
petals, the set C is called flower, and µP,Q is called the weight on the petal CP,Q.
Identification of such Radon transforms by some partial data is a widely studied
subject (see for example [17, 18, 10, 11, 8] etc.). Among the many known results
[13, 14, 12, 15, 20] about the boundary-metric rigidity of Riemannian metrics, we
find the following to be of particular interest:

Theorem 5.1. Given a compact connected domain N ⊂ R2, XC,11 determines the
Riemannian metric the geodesics of which are the petals of the flower C.

From this point of view our results Theorem 3.1 and Theorem 4.1 can be ex-
pressed as follows:

Theorem 5.2. Given a compact convex domain M ⊂ R2, XC,d1 determines the
projective metric d : M×M→ R the geodesics of which are the petals of the flower
C, i.e. the petals are the chords of ∂M.

While these two results sound in a sense dual to each other, if the flower in
Theorem 5.1 satisfies the Desargues property [5, p. 67], then Theorem 5.1 follows
from Theorem 5.2. The proof is left to the interested reader, we only note that
Busemann’s [5, (11.2) Theorem] and [5, (13.1) Theorem] are crucial in he proof.
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