QUADRATIC HYPERBOLOIDS IN MINKOWSKI GEOMETRIES

ÁRPÁD KURUSA AND JÓZSEF KOZMA

Abstract

A Minkowski plane is Euclidean if and only if at least one hyperbola is a quadric. We discuss the higher dimensional consequences too.

1. Introduction

Let \mathcal{I} be an open, strictly convex, bounded domain in \mathbb{R}^{n}, (centrally) symmetric to the origin. Then a function $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
d(\boldsymbol{x}, \boldsymbol{y})=\inf \{\lambda>0:(\boldsymbol{y}-\boldsymbol{x}) / \lambda \in \mathcal{I}\}
$$

is a metric on \mathbb{R}^{n} [1, IV.24], and is called Minkowski metric on \mathbb{R}^{n}. It satisfies the strict triangle inequality, i.e. $d(A, B)+d(B, C)=d(A, C)$ is valid if and only if $B \in \overline{A C}$. A pair $\left(\mathbb{R}^{n}, d\right)$, where d is a Minkowski metric, is called Minkowski geometry, and \mathcal{I} is called the indicatrix of it. In a Minkowski geometry $\left(\mathbb{R}^{n}, d\right)$,
$\left(D_{1}\right)$ a set $\mathcal{H}_{d ; F_{1}, F_{2}}^{a}:=\left\{X: 2 a=\left|d\left(F_{1}, X\right)-d\left(F_{2}, X\right)\right|\right\}$, where $a<d\left(F_{1}, F_{2}\right) / 2$, is called a hyperbola if $n=2$, and a hyperboloid in higher dimensions, where $F_{1}, F_{2} \in \mathbb{R}^{n}$ are called the focuses, and $a>0$ is called the radius.

A hypersurface in \mathbb{R}^{n} is called a quadric if it is the zero set of an irreducible polynomial of degree two in n variables. We call a hypersurface quadratic if it is part of a quadric. Since every isometric mapping between two Minkowski geometries is a restriction of an affinity, and every affinity maps quadrics to quadrics, the quadraticity of a metrically defined hypersurface is a geometric property in each Minkowski geometry. Thus the question arises whether the metrically defined hypersurfaces are quadrics. This question is answered for conics in [6].

We prove that (Theorem 4.3) a Minkowski plane is a model of the Euclidean plane, which means that the indicatrix is a bounded quadric [1, IV.25.4], if and only if at least one of the hyperbolas is a quadric, and that (Theorem 4.4) a Minkowski plane is analytic if and only if at least one of the hyperbolas is analytic.

As for higher dimensions, we prove (Theorem 5.1) that a Minkowski geometry is a model of the Euclidean geometry if and only if every central planar section of at least one quadric is either a hyperbola or an ellipse.

Similar problems for the ellipsoids were solved in [7].

2. Notations and preliminaries

Points of \mathbb{R}^{n} are labeled as A, B, \ldots, vectors are denoted by $\overrightarrow{A B}$ or $\boldsymbol{a}, \boldsymbol{b}, \ldots$, but we use these latter notations also for points if the origin is fixed. The open

[^0]segment with endpoints A and B is denoted by $\overline{A B}$, while $\bar{A} B$ denotes the open ray starting from A passing through B, finally, $A B=\bar{A} B \cup A \bar{B}$.

On an affine plane the affine ratio $(A, B ; C)$ of collinear points A, B and C satisfies $(A, B ; C) \overrightarrow{B C}=\overrightarrow{A C} \quad[1$, III.15.10], and the cross ratio of the collinear points A, B and C, D is $(A, B ; C, D)=(A, B ; C) /(A, B ; D)$ [1, VI.40.17].

It is easy to observe in $\left(D_{1}\right)$ that a hyperboloid intersects line $F_{1} F_{2}$, the main axis, in exactly two points, whose distance is twice the radius. Further notions are the (linear) eccentricity $c=d\left(F_{1}, F_{2}\right) / 2$, the numerical eccentricity $\varepsilon=c / a$. The metric midpoint of the segment $\overline{F_{1} F_{2}}$ is called the center.

Notations $\boldsymbol{u}_{\varphi}=(\cos \varphi, \sin \varphi)$ and $\boldsymbol{u}_{\varphi}^{\perp}:=(\cos (\varphi+\pi / 2), \sin (\varphi+\pi / 2))$ are frequently used. It is worth noting that, by these, we have $\frac{\mathrm{d}}{\mathrm{d} \varphi} \boldsymbol{u}_{\varphi}=\boldsymbol{u}_{\varphi}^{\perp}$.

A quadric in the plane has the equation of the form

$$
\mathcal{Q}_{\mathfrak{s}}^{\sigma}:=\left\{(x, y): \begin{array}{ll}
1=x^{2}+\sigma y^{2} & \text { if } \sigma \in\{-1,1\} \tag{q}\\
x=y^{2} & \text { if } \sigma=0,
\end{array}\right\}
$$

in a suitable affine coordinate system \mathfrak{s}, and we call it elliptic, parabolic, or hyperbolic, if $\sigma=1, \sigma=0$, or $\sigma=-1$, respectively.

We usually polar parameterize the boundary $\partial \mathcal{D}$ of a non-empty domain \mathcal{D} in \mathbb{R}^{2} starlike with respect to a point $P \in \mathcal{D}$ so that $r:[-\pi, \pi) \rightarrow \mathbb{R}^{2}$ is defined by $\boldsymbol{r}(\varphi)=r(\varphi) \boldsymbol{u}_{\varphi}$, where r is the radial function of \mathcal{D} with base point P.

We call a curve analytic if the coordinates of its points depend on its arc length analytically.

3. Utilities

In this section, the underlying plane is Euclidean.
Lemma 3.1. The border of a convex domain is an analytic curve if and only if any one of its radial functions is analytic.

Proof. Let \mathcal{D} be an open convex domain containing the origin $O=(0,0)$. Let $s \mapsto \boldsymbol{p}(s)$ be an arc length parametrization of $\partial \mathcal{D}$, where $s \geq 0$, and let $\varphi \mapsto \boldsymbol{r}(\varphi)=$ $r(\varphi) \boldsymbol{u}_{\varphi}$ be a polar parametrization of $\partial \mathcal{D}$ on $[-\pi, \pi)$ such that $\boldsymbol{p}(0)=\boldsymbol{r}(-\pi)$. Then

$$
\begin{equation*}
s(\xi)=\int_{-\pi}^{\xi}|\dot{\boldsymbol{r}}(\varphi)| d \varphi=\int_{-\pi}^{\xi} \sqrt{\dot{r}^{2}(\varphi)+r^{2}(\varphi)} d \varphi \tag{3.1}
\end{equation*}
$$

hence the function $s: \xi \mapsto s(\xi)$ is strictly monotonously increasing, and therefore its inverse function $\sigma: s(\xi) \mapsto \xi$ exists and is strictly monotonously increasing.

First, assume the analyticity of r. Then, as r is bounded from below by a positive number, the integrand on the right-hand side of (3.1) is analytic, and therefore s is analytic. As $\dot{s}(\xi)$ is positive by (3.1), the analyticity of σ follows from the analytic inverse function theorem [3, Theorem 4.2], and this implies the analyticity of $\boldsymbol{p}(s)=\boldsymbol{r}(\sigma(s))=r(\sigma(s)) \boldsymbol{u}_{\sigma(s)}$.

Conversely, assume that \boldsymbol{p} is analytic. As the derivatives of the cosine and sine functions do not vanish simultaneously, $\boldsymbol{u}_{\sigma(s)}=\boldsymbol{p}(s) /|\boldsymbol{p}(s)|$ proves that σ is analytic. As the derivative $\dot{\sigma}(t)=1 / \dot{s}(\sigma(t))$ vanishes nowhere, the analyticity of s follows again by the analytic inverse function theorem [3, Theorem 4.2]. Then the analyticity of $r(\xi)=\left\langle\boldsymbol{p}(s(\xi)), \boldsymbol{u}_{\xi}\right\rangle$ follows.

The lemma is proved.
Notice that the differentiation of the last formula in the proof and then the substitution of the derivative of (3.1) give

$$
\begin{equation*}
\dot{r}(\xi)=\left\langle\dot{\boldsymbol{p}}(s(\xi)), \boldsymbol{u}_{\xi}\right\rangle \sqrt{\dot{r}^{2}(\xi)+r^{2}(\xi)} . \tag{3.2}
\end{equation*}
$$

Let \mathcal{H} be a hyperbola with center O and focuses F_{1} and F_{2}. Let us label the intersection points of $F_{1} F_{2}$ and \mathcal{H} so that $A \in \overline{F_{1} B}$. We clearly have $O \in \overline{A B} \subset$ $\overline{F_{1} F_{2}}$, so we can choose a point W on $F_{1} F_{2}$ such that $F_{2} \in \overline{B W}$.

There exists an angle $\Phi \in(0, \pi / 2)$ such that a unique point H exists on \mathcal{H} for every $\varphi \in[0, \Phi) \cup(\pi-\Phi, \pi)$, such that $\angle W O H=\varphi$.

Given $\varphi_{0} \in(0, \Phi)$, let $H_{0}=H\left(\varphi_{0}\right), \alpha_{0}=\angle W F_{1} H_{0}$ and $\beta_{0}=\angle W F_{2} H_{0}$. Assuming that $H_{2 i}$ is defined for an $i \in \mathbb{N}$, we define sequences recursively as follows (see Figure 3.1): $H_{2 i+1}:=\overline{F_{1} H_{2 i}} \cap \mathcal{H}, \alpha_{2 i+1}:=\alpha_{2 i}$, and $\beta_{2 i+1}:=\angle W F_{2} H_{2 i+1}$; then $H_{2 i+2}:=\overline{F_{2} H_{2 i+1}} \cap \mathcal{H}, \alpha_{2 i+2}=\angle W F_{1} H_{2 i+2}$, and $\beta_{2 i+2}:=\beta_{2 i+1}$. We clearly have $\varphi_{2 i} \in(0, \Phi)$ and $\varphi_{2 i+1} \in(\pi-\Phi, \pi)$ for every $i \in \mathbb{N}$.

Figure 3.1. Sequence of angles
Lemma 3.2. If $i \rightarrow \infty$, then $\alpha_{2 i}$ and $\varphi_{2 i}$ tend to zero, $\beta_{2 i}, \beta_{2 i+1}$, and $\varphi_{2 i+1}$ tend to π, and $\alpha_{2 i+2} / \alpha_{2 i}$ tends to $\left(F_{1}, F_{2} ; A, B\right)$.

Proof. We clearly have $\varphi_{2 i}<\Phi<\pi / 2$ and $\varphi_{2 i+1}>\pi-\Phi>\pi / 2$, and therefore

$$
\begin{aligned}
& \alpha_{2 i}<\pi-\beta_{2 i} \quad \text { and } \pi-\beta_{2 i+1}<\alpha_{2 i+1} \quad\left(\text { or } \pi-\beta_{2 i+2}<\alpha_{2 i}\right. \text {), } \\
& \alpha_{2 i+2}<\pi-\beta_{2 i+2} \text { and } \pi-\beta_{2 i+1}<\alpha_{2 i},
\end{aligned}
$$

hence $\beta_{2 i+2}>\beta_{2 i}, \alpha_{2 i+2}<\alpha_{2 i}$, and $\pi-\beta_{2 i+2}<\alpha_{2 i}<\pi-\beta_{2 i}$.
Thus, the sequences $\beta_{2 i}, \beta_{2 i+1}$ increase monotonously, while the sequences $\alpha_{2 i}$, $\alpha_{2 i+1}$ decrease monotonously. As these sequences are bounded, they are convergent.

Assuming $\lim _{i \rightarrow \infty} \beta_{2 i}<\pi$, i.e. $\lim _{i \rightarrow \infty}\left(\pi-\beta_{2 i}\right)>0, \lim _{i \rightarrow \infty} \frac{\pi-\beta_{2 i+2}}{\pi-\beta_{2 i}}=1$, and $\lim _{i \rightarrow \infty} \frac{\alpha_{2 i}}{\pi-\beta_{2 i}}=1$ follow, hence the sinus law for triangle $\triangle F_{1} F_{2} H_{2 i}$ implies

$$
\lim _{i \rightarrow \infty} \frac{d\left(F_{2}, H_{2 i}\right)}{d\left(H_{2 i}, F_{1}\right)}=\lim _{i \rightarrow \infty} \frac{\sin \alpha_{2 i}}{\sin \left(\pi-\beta_{2 i}\right)} \cdot \lim _{i \rightarrow \infty} \frac{\pi-\beta_{2 i}}{\alpha_{2 i}}=1
$$

which, by the continuity of d, gives $d\left(F_{2}, B\right)=d\left(B, F_{1}\right)$, a contradiction.
Thus $\lim _{i \rightarrow \infty} \beta_{2 i}=\pi$, hence $\beta_{2 i+1}$, and $\varphi_{2 i+1}$ also tend to π, and $\alpha_{2 i}, \alpha_{2 i+1}$, and $\varphi_{2 i}$ tend to zero.

So, observing Figure 3.1, we see that

$$
\begin{array}{ll}
h_{1}\left(\alpha_{2 i}\right):=d\left(F_{1}, H_{2 i}\right) \rightarrow d\left(F_{1}, B\right), & h_{1}\left(\alpha_{2 i+1}\right):=d\left(F_{1}, H_{2 i+1}\right) \rightarrow d\left(F_{1}, A\right), \\
h_{2}\left(\beta_{2 i}\right):=d\left(F_{2}, H_{2 i}\right) \rightarrow d\left(F_{2}, B\right), & h_{2}\left(\beta_{2 i+1}\right):=d\left(F_{2}, H_{2 i+1}\right) \rightarrow d\left(F_{2}, A\right) .
\end{array}
$$

The sine law for triangles $\triangle F_{1} F_{2} H_{2 i}$ and $\triangle F_{1} F_{2} H_{2 i+1}$ gives

$$
\frac{h_{2}\left(\beta_{2 i+1}\right)}{h_{1}\left(\alpha_{2 i+1}\right)}=\frac{\sin \alpha_{2 i+1}}{\sin \left(\pi-\beta_{2 i+1}\right)} \quad \text { and } \quad \frac{h_{2}\left(\beta_{2 i+2}\right)}{h_{1}\left(\alpha_{2 i+2}\right)}=\frac{\sin \alpha_{2 i+2}}{\sin \left(\pi-\beta_{2 i+2}\right)}
$$

respectively. Multiplying these by $\cos \beta_{2 i+1} / \cos \alpha_{2 i+1}$ and $\cos \beta_{2 i+2} / \cos \alpha_{2 i+2}$, respectively, and taking the ratio of the resulting fractions, we obtain

$$
\frac{\tan \alpha_{2 i+2}}{\tan \alpha_{2 i}}=\frac{h_{2}\left(\beta_{2 i+2}\right) \cos \beta_{2 i+2}}{h_{1}\left(\alpha_{2 i+2}\right) \cos \alpha_{2 i+2}} \frac{h_{1}\left(\alpha_{2 i+1}\right) \cos \alpha_{2 i+1}}{h_{2}\left(\beta_{2 i+1}\right) \cos \beta_{2 i+1}} .
$$

By (3.3), the right-hand side tends to $\left(F_{1}, F_{2} ; A, B\right)$, so the proof is complete.
Let \boldsymbol{r}_{1} and \boldsymbol{r}_{2} be curves in the plane with analytic arc length parametrizations on $[-1,1]$ such that $\boldsymbol{r}_{1}(0)=\boldsymbol{r}_{2}(0)$ and $\dot{\boldsymbol{r}}_{1}(0)=\dot{\boldsymbol{r}}_{2}(0)$. Let ℓ be the line through $\boldsymbol{r}_{1}(0)$ that is orthogonal to $\dot{\boldsymbol{r}}_{1}(0)$, and let F_{1}, F_{2}, and B be different points on ℓ such that $B \in \overline{F_{1} F_{2}}$ and $\boldsymbol{r}_{1}(0) \notin\left\{B, F_{1}, F_{2}\right\}$. Let \boldsymbol{h} be an analytic arc length parameterization of a curve such that $B=\boldsymbol{h}(0)$ and $\dot{\boldsymbol{h}}(0)=\boldsymbol{u}_{\pi / 2}$. Every point $H=\boldsymbol{h}(s)$ determines two straight lines $\ell_{1}:=F_{1} H$ and $\ell_{2}:=F_{2} H$ forming small angles α and $\gamma=\pi-\beta$ with ℓ, respectively. Let the straight line $\bar{\ell}_{j}(j=1,2)$ through the midpoint O of the segment $\overline{F_{1} F_{2}}$ be parallel to ℓ_{j}. See Figure 3.2.

Figure 3.2. Specially placed curves with different lines

Denote the intersections of ℓ_{1} and ℓ_{2} with \boldsymbol{r}_{1} and \boldsymbol{r}_{2} by \bar{C}_{1}, \bar{D}_{1} and \bar{C}_{2}, \bar{D}_{2}, respectively. Let s_{i} be the arc length parameters of $\boldsymbol{r}_{i}(i=1,2)$, and define $\delta(\alpha)=\left\langle C_{1}-D_{1}, \boldsymbol{u}_{\alpha}\right\rangle$ and $\delta(\gamma)=\left\langle C_{2}-D_{2}, \boldsymbol{u}_{\gamma}\right\rangle$, where $\gamma=\beta-\pi$.
Lemma 3.3. If the curves \boldsymbol{r}_{1} and \boldsymbol{r}_{2} are different in every neighborhood of the point $K:=\boldsymbol{r}_{1}(0)$, and H tends to B on the curve \boldsymbol{h}, then

$$
\begin{equation*}
\frac{\delta(\alpha)}{\delta(\gamma)} \rightarrow\left(F_{2}, F_{1} ; B\right)^{k}, \quad \text { for an integer } k \geq 2 \tag{3.4}
\end{equation*}
$$

Proof. If $\boldsymbol{r}_{1}^{(i)}(0)=\boldsymbol{r}_{2}^{(i)}(0)$ for every $i \in \mathbb{N}$, then, by the analyticity of \boldsymbol{r}_{1} and \boldsymbol{r}_{2}, $\boldsymbol{r}_{1}=\boldsymbol{r}_{2}$ in a neighborhood of K, so $k:=\min \left\{i \in \mathbb{N}: \boldsymbol{r}_{1}^{(i)}(0) \neq \boldsymbol{r}_{2}^{(i)}(0)\right\}$ is well defined and is at least two.

Letting H^{\perp} be the orthogonal projection of H onto ℓ, L'Hôpital's rule gives

$$
\begin{equation*}
\frac{\left|F_{2}-B\right|}{\left|F_{1}-B\right|}=\lim _{s \rightarrow 0} \frac{\left|F_{2}-H^{\perp}\right|}{\left|F_{1}-H^{\perp}\right|}=\lim _{s \rightarrow 0} \frac{\tan \alpha}{-\tan \gamma}=-\lim _{s \rightarrow 0} \frac{\dot{\alpha}}{\dot{\gamma}} \tag{3.5}
\end{equation*}
$$

If $\lim _{s \rightarrow 0} \frac{\delta(\alpha)}{\delta(\gamma)}$ exists, then L'Hôpital's rule can be used, so we get
$\lim _{s \rightarrow 0} \frac{\delta(\alpha)}{\delta(\gamma)}=\lim _{s \rightarrow 0} \frac{\dot{\delta}(\alpha) \dot{\alpha}}{\dot{\delta}(\gamma) \dot{\gamma}}=\lim _{s \rightarrow 0} \frac{\dot{\delta}(\alpha)}{\dot{\delta}(\gamma)} \lim _{s \rightarrow 0} \frac{\dot{\alpha}}{\dot{\gamma}}=\cdots=\lim _{s \rightarrow 0} \frac{\delta^{(k)}(\alpha)}{\delta^{(k)}(\gamma)}\left(\lim _{s \rightarrow 0} \frac{\dot{\alpha}}{\dot{\gamma}}\right)^{k}=\left(\lim _{s \rightarrow 0} \frac{\dot{\alpha}}{\dot{\gamma}}\right)^{k}$.
This proves the lemma.

4. One hyperbola in a Minkowski plane

We start by considering the Minkowski plane $\left(\mathbb{R}^{2}, d_{\mathcal{I}}\right)$ with indicatrix \mathcal{I}.
By [4, (ii) of Theorem 3] every straight line parallel to the main axis intersects a hyperbola in exactly two points, hence if a hyperbola is a quadric, then it is a hyperbolic quadric.

Figure 4.1. A hyperbola in a Minkowski plane
Let A, B be the intersections of line $F_{1} F_{2}$ with $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ such that $A \in \overline{F_{1} B}$ and $B \in \overline{A F_{2}}$. Let \mathcal{I}_{O} be the translate of the indicatrix centered at the midpoint O of $\overline{F_{1} F_{2}}$, and let I, J be the intersections of line $F_{1} F_{2}$ with $\partial \mathcal{I}_{O}$, so that $I \in O \overline{F_{1}}$
and $J \in O \overline{F_{2}}$. Furthermore, let t_{A}, t_{B} and t_{I}, t_{J}, respectively, denote the tangents of the appropriate curve $\mathcal{H}_{d_{\mathcal{T}} ; F_{1}, F_{2}}^{a}$ or $\partial \mathcal{I}_{O}$ at A, B and I, J. See Figure 4.1.

Given the Euclidean metric d_{e}, we let r be the radial function of \mathcal{I}_{O} with respect to $O, \alpha=\angle\left(H F_{1} O\right), \gamma=\angle\left(H F_{2} B\right)(\beta:=\pi-\gamma)$ and $\varphi=\angle(H O B)$ for the points H on the B-branch (that contains B) of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$. Finally, we define the lengths $h_{1}(\alpha):=d_{e}\left(F_{1}, H\right), h_{2}(\beta):=d_{e}\left(F_{2}, H\right)$, and $h(\varphi):=d_{e}(O, H)$. Then $d_{\mathcal{I}}\left(F_{1}, H\right)=h_{1}(\alpha) / r(\alpha)$, and $d_{\mathcal{I}}\left(F_{2}, H\right)=h_{2}(\beta) / r(\beta)$, so we have

$$
\begin{equation*}
2 a=\frac{h_{1}(\alpha)}{r(\alpha)}-\frac{h_{2}(\beta)}{r(\beta)} . \tag{4.1}
\end{equation*}
$$

Lemma 4.1. If the hyperbola $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is a quadric, then $t_{A}\left\|t_{B}\right\| t_{I} \| t_{J}$.
Proof. Since $\mathcal{H}_{d_{\mp} ; F_{1}, F_{2}}^{a}$ is a quadric, φ and H are bijectively related, hence the functions $\alpha(\varphi), \beta(\varphi)$ are well defined.

The symmetry of \mathcal{I} entails that $t_{I} \| t_{J}$, and it also follows that the affine center of the quadric $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ coincides with its metric center O, hence $t_{A} \| t_{B}$ too.

Choose a Euclidean metric d_{e} so that $t_{A} \perp F_{1} F_{2} \perp t_{B}$.
Differentiating (4.1) with respect to φ leads to

$$
\begin{equation*}
0=\frac{\frac{d h_{1}(\alpha)}{d \alpha} r(\alpha)-h_{1}(\alpha) \frac{d r(\alpha)}{d \alpha}}{r^{2}(\alpha)} \frac{d \alpha}{d \varphi}-\frac{\frac{d h_{2}(\beta)}{d \beta} r(\beta)-h_{2}(\beta) \frac{d r(\beta)}{d \beta}}{r^{2}(\beta)} \frac{d \beta}{d \varphi} \tag{4.2}
\end{equation*}
$$

As $\varphi=0$ implies $\alpha=0=\pi-\beta$, and $\frac{d h_{1}}{d \alpha}(0)=\frac{d h_{2}}{d \beta}(\pi)=0$ by $t_{A} \perp F_{1} F_{2} \perp t_{B}$, (4.2) gives at $\varphi=0$ that

$$
r^{\prime}(0)\left[-h_{1}(0) \frac{d \alpha}{d \varphi}(0)+h_{2}(\pi) \frac{d \beta}{d \varphi}(0)\right]=0
$$

Applying (3.5) for the present configuration, we obtain that the second factor in the left-hand side is negative, hence $r^{\prime}(0)=0$. Thus $t_{J} \perp F_{1} F_{2}$, so the lemma follows.

Lemma 4.2. If the hyperbola $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is an analytic curve in a neighborhood of A and B, then the curve $\partial \mathcal{I}_{O}$ is analytic in a neighborhood of I and J.
Proof. By Lemma 3.1 and its proof, the functions h_{1}, h_{2}, the angles $\alpha(s), \beta(s)$, and the inverses of the angles, where s is the arc length parameter, are clearly analytic, hence we deduce that $\beta(\alpha)$ and $\alpha(\beta)$ are also analytic functions.

As $x \mapsto 1 / x$ is analytic in a neighborhood of 1 , in order to prove that $r(\alpha)$ is analytic in a neighborhood of 0 , it is enough to prove that $\bar{r}(\alpha):=1 / r(\alpha)$ is analytic in some neighborhood of 0 . Bearing this in mind, we reformulate (4.1) as

$$
\begin{equation*}
\bar{r}(\alpha)=\frac{h_{2}(\gamma(\alpha))}{h_{1}(\alpha)} \bar{r}(\gamma(\alpha))+\frac{2 a}{h_{1}(\alpha)} . \tag{4.3}
\end{equation*}
$$

Introduce the functions $f(\alpha):=\gamma(\alpha), g(\alpha):=\frac{h_{2}(\gamma(\alpha))}{h_{1}(\alpha)}$, and $e(\alpha):=\frac{2 a}{h_{1}(\alpha)}$. Then f, g and e are analytic in a neighborhood of $0, f(0)=0, \frac{d f}{d \alpha}(0)=\frac{h_{2}(0)}{h_{1}(0)}<1$,
$g(0)=\frac{h_{2}(0)}{h_{1}(0)}<1$, and $h(0)=\frac{2 a}{h_{1}(0)}<1$. Furthermore, by (4.3), the function $\phi(\alpha):=\bar{r}(\alpha)$ solves the functional equation $\phi(\alpha)=g(\alpha) \phi(f(\alpha))+h(\alpha)$. However, by [3, Theorem 4.6], such a functional equation has a unique solution, which additionally is analytic in a neighborhood of 0 . Consequently, $r(\alpha)$ is the reciprocal of that unique analytic solution, so $\partial \mathcal{I}_{O}$ is analytic around J, and, by its symmetry, around I too.

Theorem 4.3. A Minkowski plane is a model of the Euclidean plane if and only if at least one hyperbola is a quadric.
Proof. As every hyperbola is a quadric in the Euclidean plane, we only have to prove that a Minkowski plane is Euclidean if at least one hyperbola is a quadric.

Assume that $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is a quadric.
We have $t_{A}\left\|t_{I}\right\| t_{J} \| t_{B}$ by Lemma 4.1, and, as every (planar) quadric is an analytical curve, the border $\partial \mathcal{I}_{O}$ is analytic in a neighborhood of I and J by Lemma 4.2, where O is the midpoint of $\overline{F_{1} F_{2}}$. Furthermore, by the central symmetry of \mathcal{I}_{O} and the definition of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$, we have $c=d_{\mathcal{I}}\left(F_{1}, O\right), \overrightarrow{A F_{1}}=\overrightarrow{F_{2} B}$ and $\overrightarrow{I A}=\overrightarrow{B J}$, so O is the (affine) midpoint of both $\overline{I J}$ and $\overrightarrow{A B}$. Additionally, we have $a \cdot d_{\mathcal{I}}(O, J)=d_{\mathcal{I}}(O, B)$, because the definition of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ implies

$$
\begin{aligned}
2 d_{\mathcal{I}}(O, B) & =2 d_{\mathcal{I}}\left(O, F_{2}\right)-2 d_{\mathcal{I}}\left(F_{2}, B\right) \\
& =d_{\mathcal{I}}\left(F_{1}, O\right)+d_{\mathcal{I}}\left(O, F_{2}\right)-d_{\mathcal{I}}\left(F_{2}, B\right)+2 a-d_{\mathcal{I}}\left(F_{1}, B\right)=2 a
\end{aligned}
$$

Being a hyperbolic quadric, $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ has two asymptotes ℓ_{+}and ℓ_{-}through O. Let C_{1} and C_{2} be the points where they intersect the straight line t_{A}.

Fix the affine coordinate system such as $O=(0,0), J=(1,0)$, and $C_{1}=$ $\left(c, \sqrt{c^{2}-a^{2}}\right)$, and choose the Euclidean metric d_{e} so that $\{(1,0),(0,1)\}$ is an orthonormal basis.

Let \mathcal{C} denote the unit circle of d_{e}. See Figure 4.2.

Figure 4.2. Coinciding hyperbolas $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a} \equiv \mathcal{H}_{d_{e} ; F_{1}, F_{2}}^{a}$
Then both $\mathcal{H}_{d_{e} ; F_{1}, F_{2}}^{a}$ and $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ are hyperbolic quadrics, and have two common tangents t_{A} and t_{B}, two common asymptotes, and two common points A and B, hence they coincide.

By the definition of $\mathcal{H}_{d_{e} ; F_{1}, F_{2}}^{a}$ we have $h_{1}(\alpha)-h_{2}(\beta)=2 a$, which together with (4.1) implies

$$
\begin{equation*}
\delta(\alpha)=\delta(\beta) \frac{h_{2}(\beta)}{h_{1}(\alpha)+2 a \delta(\beta)} \tag{4.4}
\end{equation*}
$$

where $\delta(\alpha)=1-r(\alpha)$ is the radial difference of \mathcal{C} and $\partial \mathcal{I}_{O}$.
If in every neighborhood of I curves \mathcal{C} and $\partial \mathcal{I}_{O}$ differ, then (4.4) implies

$$
\lim _{\varphi \rightarrow 0} \frac{\delta(\alpha)}{\delta(\beta)}=\frac{c-a}{c+a}=\left(F_{2}, F_{1} ; B\right)
$$

which, by (3.4), implies $\left(F_{2}, F_{1} ; B\right)=1$. This contradicts $a>0$, so the curves \mathcal{C} and $\partial \mathcal{I}_{O}$ coincide in a neighborhood of I.

However, if $\delta\left(\beta_{0}\right) \neq 0$ for a β_{0}, then no value of the 0 -convergent sequence $\beta_{2 i}$ constructed in Lemma 3.2 can vanish by (4.4), therefore no β_{0} can exist for which $\delta\left(\beta_{0}\right) \neq 0$. Similarly follows that no α exists for which $\delta(\alpha) \neq 0$, hence \mathcal{C} and $\partial \mathcal{I}_{O}$ coincide.

This kind of implication extends over to analyticity too.
Theorem 4.4. The indicatrix of a Minkowski plane is analytic if and only if one of the hyperbolas of the Minkowski plane is analytic.

Proof. First, assume that the Minkowski plane $\left(\mathbb{R}^{2}, d_{\mathcal{I}}\right)$ is analytic.
We use the notations introduced in the previous sections, and consider the hyperbola $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$.

Fix an arbitrary point $H_{0} \in \mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$, and let the point $R_{i} \in \mathcal{I}(i=1,2)$ be such that $O \overline{R_{i}} \| F_{i} \overline{H_{0}}$. Let the straight line $t_{i}(i=1,2)$ be tangent to \mathcal{I} at R_{i}. Let d_{e} be the Euclidean metric which satisfies $t_{2} \perp O R_{2}, d_{e}\left(O, R_{1}\right)=d_{e}\left(O, R_{2}\right)$, and $d_{e}(O, J)=1$. Then we have

$$
h_{2}^{2}(\beta)=h_{1}^{2}(\alpha)+4 c^{2}-4 h_{1}(\alpha) c \cos \alpha, \quad \text { and } \quad \beta=\arcsin \frac{h_{1}(\alpha) \sin \alpha}{h_{2}(\beta)}
$$

Substituting this into (4.1) results in the analytic equation

$$
F\left(\alpha, h_{1}(\alpha)\right):=\left(2 a-\frac{h_{1}(\alpha)}{r(\alpha)}\right)^{2}-\frac{h_{1}^{2}(\alpha)+4 c^{2}-4 h_{1}(\alpha) c \cos \alpha}{r^{2}\left(\arcsin \frac{h_{1}(\alpha) \sin \alpha}{\sqrt{h_{1}^{2}(\alpha)+4 c^{2}-4 h_{1}(\alpha) c \cos \alpha}}\right)}=0 .
$$

Since

$$
\begin{aligned}
\partial_{2} F\left(\alpha, h_{1}(\alpha)\right)= & 2 \frac{-h_{2}(\beta)}{r(\beta)} \frac{-1}{r(\alpha)}-\frac{2 h_{1}(\alpha)-4 c \cos \alpha}{r^{2}(\beta)}+ \\
& +2 \frac{h_{2}^{2}(\beta)}{r^{3}(\beta)} \frac{\dot{r}(\beta)}{\cos \beta}\left(\frac{\sin \alpha}{h_{2}(\beta)}-\frac{1}{2} \frac{h_{1}(\alpha) \sin \alpha\left(2 h_{1}(\alpha)-4 c \cos \alpha\right)}{h_{2}^{3}(\beta)}\right),
\end{aligned}
$$

$\partial_{2} F\left(\alpha, h_{1}(\alpha)\right)$ vanishes if and only if

$$
-\frac{h_{2}(\beta)}{r(\alpha)}+\frac{h_{1}(\alpha)-2 c \cos \alpha}{r(\beta)}=\frac{h_{2}(\beta) \sin \alpha}{r(\beta) \cos \beta} \frac{\dot{r}(\beta)}{r(\beta)}\left(1-\frac{h_{1}(\alpha)\left(h_{1}(\alpha)-2 c \cos \alpha\right)}{h_{2}^{2}(\beta)}\right) .
$$

By (3.2), we have $\frac{\dot{r}(\beta)}{r(\beta)}=\cot \theta$, where θ is the angle between $F_{1} \bar{H}$ and the tangent vector at H of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$. Furthermore, it can be easily seen that $h_{1}(\alpha)-2 c \cos \alpha=$ $h_{2}(\beta) \cos (\beta-\alpha)$. Thus, the above equation is equivalent to

$$
-\frac{h_{2}(\beta)}{r(\alpha)}+\frac{h_{2}(\beta) \cos (\beta-\alpha)}{r(\beta)}=\frac{\cot \theta}{r(\beta) \cos \beta}\left(h_{2}(\beta) \sin \alpha-h_{1}(\alpha) \cos (\beta-\alpha) \sin \alpha\right) .
$$

Since $h_{2}(\beta) \sin \beta=h_{1}(\alpha) \sin \alpha$, this equation simplifies to

$$
\frac{-1}{r(\alpha)}+\frac{\cos (\beta-\alpha)}{r(\beta)}=\frac{\cot \theta}{r(\beta)} \frac{\sin \alpha-\sin \beta \cos (\beta-\alpha)}{\cos \beta}=-\sin (\beta-\alpha) \frac{\cot \theta}{r(\beta)} .
$$

In sum, $\partial_{2} F\left(\alpha, h_{1}(\alpha)\right)$ vanishes if and only if

$$
\begin{equation*}
\frac{-r(\beta)}{r(\alpha)}+\sin (\beta-\alpha)(\cot \theta+\cot (\beta-\alpha))=0 \tag{4.5}
\end{equation*}
$$

At H_{0} we have $\theta=\pi / 2$, and $r(\beta)=r(\alpha)$, therefore (4.5) reduces to $\cos (\beta-\alpha)=1$, resulting $\beta=\alpha$, a contradiction. Thus $\partial_{2} F\left(\alpha, h_{1}(\alpha)\right) \neq 0$ at H_{0}, hence the analytic implicit function theorem [3, Theorem 4.1] implies the analyticity of h_{1} in a neighborhood of α. As the point H_{0} was chosen arbitrarily on $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$, this proves that $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is analytic.

Assuming now that the hyperbola is analytic, Lemma 4.2 proves the analyticity of the boundary of the indicatrix, where $F_{1} F_{2}$ intersects it. By (4.3) we have

$$
\bar{r}(\beta(\alpha))=\frac{h_{1}(\alpha)}{-h_{2}(\beta(\alpha))} \bar{r}(\alpha)+\frac{2 a}{h_{2}(\beta(\alpha))} .
$$

This shows that if \bar{r} is analytic in an interval $(-\varepsilon, \varepsilon)$, then it is also analytic in the interval $(-\beta(\varepsilon), \beta(\varepsilon))$. According to Lemma 3.2, this means that the boundary of the indicatrix is analytic at all the directions.

5. Quadrics in a Minkowski geometry

Before presenting the proof of Theorem 5.1, let us rephrase its statement for the planar case: if one hyperbola is a quadric, then the Minkowski plane is a model of the Euclidean geometry.

In a Minkowski geometry $\left(\mathbb{R}^{n}, d\right)$
$\left(D_{2}\right)$ a set $\mathcal{E}_{d ; F_{1}, F_{2}}^{a}:=\left\{E: 2 a=d\left(F_{1}, E\right)+d\left(E, F_{2}\right)\right\}$, where $a>d\left(F_{1}, F_{2}\right) / 2$, is called an ellipse if $n=2$, and an ellipsoid in higher dimensions,
where $F_{1}, F_{2} \in \mathcal{M}$ are called the focuses, and $a>0$ is called the radius.

Theorem 5．1．A Minkowski geometry is a model of the Euclidean geometry if and only if through a point every planar section of at least one quadric is either a hyperbola or an ellipse．

Proof．As every planar section of each hyperbolic quadric is either a hyperbola or an ellipse in the Euclidean geometry，it is enough to prove that a Minkowski geometry is Euclidean if every planar section of at least one quadric is either a hyperbola or an ellipse．

Let the quadric \mathcal{Q} be such that its every planar section is either a hyperbola or an ellipse．If the planar section is a hyperbola，then Theorem 4.3 implies，that the parallel central planar section of the indicatrix is an ellipse．If the planar section is an ellipse，then［7，Theorem 4．3］implies，that the parallel central planar section of the indicatrix is an ellipse．Thus，the statement of the theorem follows immediately from［2，II．16．12］，which states for any integers $1<k<n$ that the border $\partial \mathcal{K}$ of a convex body $\mathcal{K} \subset \mathbb{R}^{n}$ is an ellipsoid if and only if every k－plane through an inner point of \mathcal{K} intersects $\partial \mathcal{K}$ in a k－dimensional ellipsoid．

We omit the easy proof of the following result that closes this paper．
Theorem 5．2．A Minkowski geometry is a model of the Euclidean geometry if and only if there is a hyperplane and a point in it such that every line in the hyperplane through the point is parallel to main axis of some ellipsoid that is a quadric．

References

［1］H．Busemann and P．J．Kelly，Projective Geometries and Projective Metrics，Academic Press，New York，1953．〈1，2〉
［2］H．Busemann，The Geometry of Geodesics，Academic Press，New York，1955．〈10〉
［3］S．S．Cheng and W．Li，Analytic Solutions of Functional Equations，World Scientific，New Jersey，2008．$\langle 2,3,7,9\rangle$
［4］Á．G．Horvâth and H．Martinı，Conics in normed planes，Extracta Math．，26：1（2011）， 29－43；available also at arXiv：1102．3008．$\langle 5\rangle$
［5］J．W．P．Hirschfeld，Projective Geometries Over Finite Fields，Clarendon Press，Oxford， 1979.
［6］Á．Kurusa，Conics in Minkowski geometry，Aequationes Math．， 92 （2018），949－961； DOI：https：／／dx．doi．org／10．1007／s00010－018－0592－1．$\langle 1\rangle$
［7］Á．Kurusa，Quadratic ellipses in Minkowski geometries，manuscript，submitted．$\langle 1,10\rangle$
Á．Kurusa，Bolyai Institute，University of Szeged，Aradi vértanúk tere 1，H－6725 Szeged， Hungary E－mail：kurusa＠math．u－szeged．hu．

J．Kozma，Bolyai Institute，University of Szeged，Aradi vértanúk tere 1， 6725 Szeged，Hun－ gary； $\mathrm{E}-$ mail：kozma＠math．u－szeged．hu．

[^0]: 1991 Mathematics Subject Classification. 46B20; 53C70, 52A20.
 Key words and phrases. Minkowski geometry, quadrics, hyperboloids, hyperbola.
 This research was supported by the Ministry for Innovation and Technology of Hungary (MITH) under grant TUDFO/47138-1/2019-ITM.

