QUADRATIC HYPERBOLOIDS IN MINKOWSKI GEOMETRIES

ÁRPÁD KURUSA AND JÓZSEF KOZMA

ABSTRACT. A Minkowski plane is Euclidean if and only if at least one hyperbola is a quadric. We discuss the higher dimensional consequences too.

1. Introduction

Let \mathcal{I} be an open, strictly convex, bounded domain in \mathbb{R}^n , (centrally) symmetric to the origin. Then a function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d(\boldsymbol{x}, \boldsymbol{y}) = \inf\{\lambda > 0 : (\boldsymbol{y} - \boldsymbol{x})/\lambda \in \mathcal{I}\}\$$

is a metric on \mathbb{R}^n [1, IV.24], and is called *Minkowski metric on* \mathbb{R}^n . It satisfies the strict triangle inequality, i.e. d(A,B)+d(B,C)=d(A,C) is valid if and only if $B\in \overline{AC}$. A pair (\mathbb{R}^n,d) , where d is a Minkowski metric, is called *Minkowski geometry*, and \mathcal{I} is called the *indicatrix* of it. In a Minkowski geometry (\mathbb{R}^n,d) ,

 (D_1) a set $\mathcal{H}^a_{d;F_1,F_2} := \{X : 2a = |d(F_1,X) - d(F_2,X)|\}$, where $a < d(F_1,F_2)/2$, is called a *hyperbola* if n = 2, and a *hyperboloid* in higher dimensions,

where $F_1, F_2 \in \mathbb{R}^n$ are called the *focuses*, and a > 0 is called the *radius*.

A hypersurface in \mathbb{R}^n is called a *quadric* if it is the zero set of an irreducible polynomial of degree two in n variables. We call a hypersurface *quadratic* if it is part of a quadric. Since every isometric mapping between two Minkowski geometries is a restriction of an affinity, and every affinity maps quadrics to quadrics, the quadraticity of a metrically defined hypersurface is a geometric property in each Minkowski geometry. Thus the question arises whether the metrically defined hypersurfaces are quadrics. This question is answered for conics in [6].

We prove that (Theorem 4.3) a Minkowski plane is a model of the Euclidean plane, which means that the indicatrix is a bounded quadric [1, IV.25.4], if and only if at least one of the hyperbolas is a quadric, and that (Theorem 4.4) a Minkowski plane is analytic if and only if at least one of the hyperbolas is analytic.

As for higher dimensions, we prove (Theorem 5.1) that a Minkowski geometry is a model of the Euclidean geometry if and only if every central planar section of at least one quadric is either a hyperbola or an ellipse.

Similar problems for the ellipsoids were solved in [7].

2. Notations and preliminaries

Points of \mathbb{R}^n are labeled as A, B, \ldots , vectors are denoted by \overrightarrow{AB} or a, b, \ldots , but we use these latter notations also for points if the origin is fixed. The open

¹⁹⁹¹ Mathematics Subject Classification. 46B20; 53C70, 52A20.

Key words and phrases. Minkowski geometry, quadrics, hyperboloids, hyperbola.

This research was supported by the Ministry for Innovation and Technology of Hungary (MITH) under grant TUDFO/47138-1/2019-ITM.

segment with endpoints A and B is denoted by \overline{AB} , while \overline{AB} denotes the open ray starting from A passing through B, finally, $AB = \overline{AB} \cup A\overline{B}$.

On an affine plane the affine ratio (A, B; C) of collinear points A, B and C satisfies $(A, B; C)\overrightarrow{BC} = \overrightarrow{AC}$ [1, III.15.10], and the cross ratio of the collinear points A, B and C, D is (A, B; C, D) = (A, B; C)/(A, B; D) [1, VI.40.17].

It is easy to observe in (D_1) that a hyperboloid intersects line F_1F_2 , the main axis, in exactly two points, whose distance is twice the radius. Further notions are the (linear) eccentricity $c = d(F_1, F_2)/2$, the numerical eccentricity $\varepsilon = c/a$. The metric midpoint of the segment $\overline{F_1F_2}$ is called the center.

Notations $\boldsymbol{u}_{\varphi} = (\cos \varphi, \sin \varphi)$ and $\boldsymbol{u}_{\varphi}^{\perp} := (\cos(\varphi + \pi/2), \sin(\varphi + \pi/2))$ are frequently used. It is worth noting that, by these, we have $\frac{\mathrm{d}}{\mathrm{d}\varphi}\boldsymbol{u}_{\varphi} = \boldsymbol{u}_{\varphi}^{\perp}$.

A quadric in the plane has the equation of the form

$$\mathcal{Q}_{\mathfrak{s}}^{\sigma} := \left\{ (x,y) : \begin{array}{l} 1 = x^2 + \sigma y^2 & \text{if } \sigma \in \{-1,1\}, \\ x = y^2 & \text{if } \sigma = 0, \end{array} \right\}$$
 (D_q)

in a suitable affine coordinate system \mathfrak{s} , and we call it *elliptic*, *parabolic*, or *hyperbolic*, if $\sigma = 1$, $\sigma = 0$, or $\sigma = -1$, respectively.

We usually polar parameterize the boundary $\partial \mathcal{D}$ of a non-empty domain \mathcal{D} in \mathbb{R}^2 starlike with respect to a point $P \in \mathcal{D}$ so that $\mathbf{r} \colon [-\pi, \pi) \to \mathbb{R}^2$ is defined by $\mathbf{r}(\varphi) = r(\varphi)\mathbf{u}_{\varphi}$, where r is the radial function of \mathcal{D} with base point P.

We call a curve *analytic* if the coordinates of its points depend on its arc length analytically.

3. Utilities

In this section, the underlying plane is Euclidean.

Lemma 3.1. The border of a convex domain is an analytic curve if and only if any one of its radial functions is analytic.

Proof. Let \mathcal{D} be an open convex domain containing the origin O = (0,0). Let $s \mapsto p(s)$ be an arc length parametrization of $\partial \mathcal{D}$, where $s \geq 0$, and let $\varphi \mapsto r(\varphi) = r(\varphi)u_{\varphi}$ be a polar parametrization of $\partial \mathcal{D}$ on $[-\pi, \pi)$ such that $p(0) = r(-\pi)$. Then

$$s(\xi) = \int_{-\pi}^{\xi} |\dot{\boldsymbol{r}}(\varphi)| d\varphi = \int_{-\pi}^{\xi} \sqrt{\dot{r}^2(\varphi) + r^2(\varphi)} d\varphi, \tag{3.1}$$

hence the function $s: \xi \mapsto s(\xi)$ is strictly monotonously increasing, and therefore its inverse function $\sigma: s(\xi) \mapsto \xi$ exists and is strictly monotonously increasing.

First, assume the analyticity of r. Then, as r is bounded from below by a positive number, the integrand on the right-hand side of (3.1) is analytic, and therefore s is analytic. As $\dot{s}(\xi)$ is positive by (3.1), the analyticity of σ follows from the analytic inverse function theorem [3, Theorem 4.2], and this implies the analyticity of $p(s) = r(\sigma(s)) = r(\sigma(s)) u_{\sigma(s)}$.

Conversely, assume that \boldsymbol{p} is analytic. As the derivatives of the cosine and sine functions do not vanish simultaneously, $\boldsymbol{u}_{\sigma(s)} = \boldsymbol{p}(s)/|\boldsymbol{p}(s)|$ proves that σ is analytic. As the derivative $\dot{\sigma}(t) = 1/\dot{s}(\sigma(t))$ vanishes nowhere, the analyticity of s follows again by the analytic inverse function theorem [3, Theorem 4.2]. Then the analyticity of $r(\xi) = \langle \boldsymbol{p}(s(\xi)), \boldsymbol{u}_{\xi} \rangle$ follows.

The lemma is proved.

Notice that the differentiation of the last formula in the proof and then the substitution of the derivative of (3.1) give

$$\dot{r}(\xi) = \langle \dot{\boldsymbol{p}}(s(\xi)), \boldsymbol{u}_{\xi} \rangle \sqrt{\dot{r}^{2}(\xi) + r^{2}(\xi)}. \tag{3.2}$$

Let \mathcal{H} be a hyperbola with center O and focuses F_1 and F_2 . Let us label the intersection points of F_1F_2 and \mathcal{H} so that $A \in \overline{F_1B}$. We clearly have $O \in \overline{AB} \subset \overline{F_1F_2}$, so we can choose a point W on F_1F_2 such that $F_2 \in \overline{BW}$.

There exists an angle $\Phi \in (0, \pi/2)$ such that a unique point H exists on \mathcal{H} for every $\varphi \in [0, \Phi) \cup (\pi - \Phi, \pi)$, such that $\angle WOH = \varphi$.

Given $\varphi_0 \in (0, \Phi)$, let $H_0 = H(\varphi_0)$, $\alpha_0 = \angle WF_1H_0$ and $\beta_0 = \angle WF_2H_0$. Assuming that H_{2i} is defined for an $i \in \mathbb{N}$, we define sequences recursively as follows (see Figure 3.1): $H_{2i+1} := \overline{F_1H_{2i}} \cap \mathcal{H}$, $\alpha_{2i+1} := \alpha_{2i}$, and $\beta_{2i+1} := \angle WF_2H_{2i+1}$; then $H_{2i+2} := \overline{F_2H_{2i+1}} \cap \mathcal{H}$, $\alpha_{2i+2} = \angle WF_1H_{2i+2}$, and $\beta_{2i+2} := \beta_{2i+1}$. We clearly have $\varphi_{2i} \in (0, \Phi)$ and $\varphi_{2i+1} \in (\pi - \Phi, \pi)$ for every $i \in \mathbb{N}$.

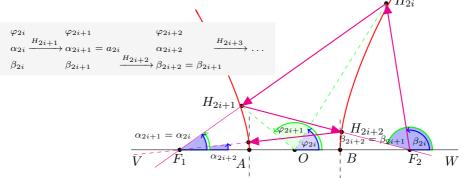


Figure 3.1. Sequence of angles

Lemma 3.2. If $i \to \infty$, then α_{2i} and φ_{2i} tend to zero, β_{2i} , β_{2i+1} , and φ_{2i+1} tend to π , and $\alpha_{2i+2}/\alpha_{2i}$ tends to $(F_1, F_2; A, B)$.

Proof. We clearly have $\varphi_{2i} < \Phi < \pi/2$ and $\varphi_{2i+1} > \pi - \Phi > \pi/2$, and therefore $\alpha_{2i} < \pi - \beta_{2i}$ and $\pi - \beta_{2i+1} < \alpha_{2i+1}$ (or $\pi - \beta_{2i+2} < \alpha_{2i}$), $\alpha_{2i+2} < \pi - \beta_{2i+2}$ and $\pi - \beta_{2i+1} < \alpha_{2i}$,

hence $\beta_{2i+2} > \beta_{2i}$, $\alpha_{2i+2} < \alpha_{2i}$, and $\pi - \beta_{2i+2} < \alpha_{2i} < \pi - \beta_{2i}$.

Thus, the sequences β_{2i} , β_{2i+1} increase monotonously, while the sequences α_{2i} , α_{2i+1} decrease monotonously. As these sequences are bounded, they are convergent.

Assuming $\lim_{i\to\infty} \beta_{2i} < \pi$, i.e. $\lim_{i\to\infty} (\pi - \beta_{2i}) > 0$, $\lim_{i\to\infty} \frac{\pi - \beta_{2i+2}}{\pi - \beta_{2i}} = 1$, and $\lim_{i\to\infty} \frac{\alpha_{2i}}{\pi - \beta_{2i}} = 1$ follow, hence the sinus law for triangle $\triangle F_1 F_2 H_{2i}$ implies

$$\lim_{i \to \infty} \frac{d(F_2, H_{2i})}{d(H_{2i}, F_1)} = \lim_{i \to \infty} \frac{\sin \alpha_{2i}}{\sin(\pi - \beta_{2i})} \cdot \lim_{i \to \infty} \frac{\pi - \beta_{2i}}{\alpha_{2i}} = 1,$$

which, by the continuity of d, gives $d(F_2, B) = d(B, F_1)$, a contradiction.

Thus $\lim_{i\to\infty} \beta_{2i} = \pi$, hence β_{2i+1} , and φ_{2i+1} also tend to π , and α_{2i} , α_{2i+1} , and φ_{2i} tend to zero.

So, observing Figure 3.1, we see that

$$h_1(\alpha_{2i}) := d(F_1, H_{2i}) \to d(F_1, B), \quad h_1(\alpha_{2i+1}) := d(F_1, H_{2i+1}) \to d(F_1, A), h_2(\beta_{2i}) := d(F_2, H_{2i}) \to d(F_2, B), \quad h_2(\beta_{2i+1}) := d(F_2, H_{2i+1}) \to d(F_2, A).$$

$$(3.3) \quad \langle 4 \rangle$$

The sine law for triangles $\triangle F_1F_2H_{2i}$ and $\triangle F_1F_2H_{2i+1}$ gives

$$\frac{h_2(\beta_{2i+1})}{h_1(\alpha_{2i+1})} = \frac{\sin \alpha_{2i+1}}{\sin(\pi - \beta_{2i+1})} \quad \text{and} \quad \frac{h_2(\beta_{2i+2})}{h_1(\alpha_{2i+2})} = \frac{\sin \alpha_{2i+2}}{\sin(\pi - \beta_{2i+2})},$$

respectively. Multiplying these by $\cos \beta_{2i+1}/\cos \alpha_{2i+1}$ and $\cos \beta_{2i+2}/\cos \alpha_{2i+2}$, respectively, and taking the ratio of the resulting fractions, we obtain

$$\frac{\tan \alpha_{2i+2}}{\tan \alpha_{2i}} = \frac{h_2(\beta_{2i+2})\cos \beta_{2i+2}}{h_1(\alpha_{2i+2})\cos \alpha_{2i+2}} \frac{h_1(\alpha_{2i+1})\cos \alpha_{2i+1}}{h_2(\beta_{2i+1})\cos \beta_{2i+1}}.$$

By (3.3), the right-hand side tends to $(F_1, F_2; A, B)$, so the proof is complete. \square

Let \mathbf{r}_1 and \mathbf{r}_2 be curves in the plane with analytic arc length parametrizations on [-1,1] such that $\mathbf{r}_1(0) = \mathbf{r}_2(0)$ and $\dot{\mathbf{r}}_1(0) = \dot{\mathbf{r}}_2(0)$. Let ℓ be the line through $\mathbf{r}_1(0)$ that is orthogonal to $\dot{\mathbf{r}}_1(0)$, and let F_1, F_2 , and B be different points on ℓ such that $B \in \overline{F_1F_2}$ and $\mathbf{r}_1(0) \notin \{B, F_1, F_2\}$. Let \mathbf{h} be an analytic arc length parameterization of a curve such that $B = \mathbf{h}(0)$ and $\dot{\mathbf{h}}(0) = \mathbf{u}_{\pi/2}$. Every point $H = \mathbf{h}(s)$ determines two straight lines $\ell_1 := F_1H$ and $\ell_2 := F_2H$ forming small angles α and $\gamma = \pi - \beta$ with ℓ , respectively. Let the straight line $\bar{\ell}_j$ (j = 1, 2) through the midpoint O of the segment $\overline{F_1F_2}$ be parallel to ℓ_j . See Figure 3.2.

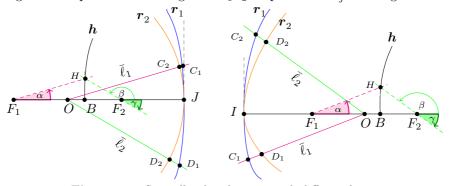


Figure 3.2. Specially placed curves with different lines

Denote the intersections of ℓ_1 and ℓ_2 with \mathbf{r}_1 and \mathbf{r}_2 by \bar{C}_1 , \bar{D}_1 and \bar{C}_2 , \bar{D}_2 , respectively. Let s_i be the arc length parameters of \mathbf{r}_i (i=1,2), and define $\delta(\alpha) = \langle C_1 - D_1, \mathbf{u}_{\alpha} \rangle$ and $\delta(\gamma) = \langle C_2 - D_2, \mathbf{u}_{\gamma} \rangle$, where $\gamma = \beta - \pi$.

Lemma 3.3. If the curves \mathbf{r}_1 and \mathbf{r}_2 are different in every neighborhood of the point $K := \mathbf{r}_1(0)$, and H tends to B on the curve \mathbf{h} , then

$$\frac{\delta(\alpha)}{\delta(\gamma)} \to (F_2, F_1; B)^k$$
, for an integer $k \ge 2$. (3.4) $\langle 8 \rangle$

Proof. If $\mathbf{r}_1^{(i)}(0) = \mathbf{r}_2^{(i)}(0)$ for every $i \in \mathbb{N}$, then, by the analyticity of \mathbf{r}_1 and \mathbf{r}_2 , $\mathbf{r}_1 = \mathbf{r}_2$ in a neighborhood of K, so $k := \min\{i \in \mathbb{N} : \mathbf{r}_1^{(i)}(0) \neq \mathbf{r}_2^{(i)}(0)\}$ is well defined and is at least two.

Letting H^{\perp} be the orthogonal projection of H onto ℓ , L'Hôpital's rule gives

$$\frac{|F_2 - B|}{|F_1 - B|} = \lim_{s \to 0} \frac{|F_2 - H^{\perp}|}{|F_1 - H^{\perp}|} = \lim_{s \to 0} \frac{\tan \alpha}{-\tan \gamma} = -\lim_{s \to 0} \frac{\dot{\alpha}}{\dot{\gamma}}.$$
 (3.5) \(\delta \)

If $\lim_{s\to 0} \frac{\delta(\alpha)}{\delta(\gamma)}$ exists, then L'Hôpital's rule can be used, so we get

$$\lim_{s\to 0} \frac{\delta(\alpha)}{\delta(\gamma)} = \lim_{s\to 0} \frac{\dot{\delta}(\alpha)\dot{\alpha}}{\dot{\delta}(\gamma)\dot{\gamma}} = \lim_{s\to 0} \frac{\dot{\delta}(\alpha)}{\dot{\delta}(\gamma)} \lim_{s\to 0} \frac{\dot{\alpha}}{\dot{\gamma}} = \dots = \lim_{s\to 0} \frac{\delta^{(k)}(\alpha)}{\delta^{(k)}(\gamma)} \left(\lim_{s\to 0} \frac{\dot{\alpha}}{\dot{\gamma}}\right)^k = \left(\lim_{s\to 0} \frac{\dot{\alpha}}{\dot{\gamma}}\right)^k.$$
This proves the lemma.

4. One hyperbola in a Minkowski plane

We start by considering the Minkowski plane $(\mathbb{R}^2, d_{\mathcal{I}})$ with indicatrix \mathcal{I} .

By [4, (ii)] of Theorem 3] every straight line parallel to the main axis intersects a hyperbola in exactly two points, hence if a hyperbola is a quadric, then it is a hyperbolic quadric.

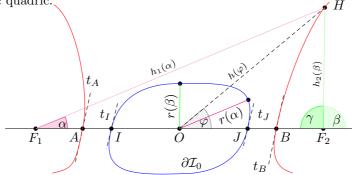


Figure 4.1. A hyperbola in a Minkowski plane

Let A, B be the intersections of line F_1F_2 with $\mathcal{H}^a_{d_{\mathcal{I}}; F_1, F_2}$ such that $A \in \overline{F_1B}$ and $B \in \overline{AF_2}$. Let \mathcal{I}_O be the translate of the indicatrix centered at the midpoint O of $\overline{F_1F_2}$, and let I, J be the intersections of line F_1F_2 with $\partial \mathcal{I}_O$, so that $I \in O\overline{F_1}$

and $J \in O\overline{F_2}$. Furthermore, let t_A , t_B and t_I , t_J , respectively, denote the tangents of the appropriate curve $\mathcal{H}^a_{d_T:F_1,F_2}$ or $\partial \mathcal{I}_O$ at A, B and I, J. See Figure 4.1.

Given the Euclidean metric d_e , we let r be the radial function of \mathcal{I}_O with respect to O, $\alpha = \angle(HF_1O)$, $\gamma = \angle(HF_2B)$ ($\beta := \pi - \gamma$) and $\varphi = \angle(HOB)$ for the points H on the B-branch (that contains B) of $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$. Finally, we define the lengths $h_1(\alpha) := d_e(F_1,H)$, $h_2(\beta) := d_e(F_2,H)$, and $h(\varphi) := d_e(O,H)$. Then $d_{\mathcal{I}}(F_1,H) = h_1(\alpha)/r(\alpha)$, and $d_{\mathcal{I}}(F_2,H) = h_2(\beta)/r(\beta)$, so we have

$$2a = \frac{h_1(\alpha)}{r(\alpha)} - \frac{h_2(\beta)}{r(\beta)}.$$
(4.1) $\langle 6, 8 \rangle$

Lemma 4.1. If the hyperbola $\mathcal{H}_{d_T:F_1,F_2}^a$ is a quadric, then $t_A \parallel t_B \parallel t_I \parallel t_J$.

Proof. Since $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ is a quadric, φ and H are bijectively related, hence the functions $\alpha(\varphi)$, $\beta(\varphi)$ are well defined.

The symmetry of \mathcal{I} entails that $t_I \parallel t_J$, and it also follows that the affine center of the quadric $\mathcal{H}^a_{d_{\mathcal{I}}:F_1,F_2}$ coincides with its metric center O, hence $t_A \parallel t_B$ too.

Choose a Euclidean metric d_e so that $t_A \perp F_1 F_2 \perp t_B$.

Differentiating (4.1) with respect to φ leads to

$$0 = \frac{\frac{dh_1(\alpha)}{d\alpha}r(\alpha) - h_1(\alpha)\frac{dr(\alpha)}{d\alpha}}{r^2(\alpha)}\frac{d\alpha}{d\alpha} - \frac{\frac{dh_2(\beta)}{d\beta}r(\beta) - h_2(\beta)\frac{dr(\beta)}{d\beta}}{r^2(\beta)}\frac{d\beta}{d\omega}. \tag{4.2}$$

As $\varphi = 0$ implies $\alpha = 0 = \pi - \beta$, and $\frac{dh_1}{d\alpha}(0) = \frac{dh_2}{d\beta}(\pi) = 0$ by $t_A \perp F_1 F_2 \perp t_B$, (4.2) gives at $\varphi = 0$ that

$$r'(0)\Big[-h_1(0)\frac{d\alpha}{d\varphi}(0)+h_2(\pi)\frac{d\beta}{d\varphi}(0)\Big]=0.$$

Applying (3.5) for the present configuration, we obtain that the second factor in the left-hand side is negative, hence r'(0) = 0. Thus $t_J \perp F_1 F_2$, so the lemma follows.

Lemma 4.2. If the hyperbola $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ is an analytic curve in a neighborhood of A and B, then the curve $\partial \mathcal{I}_O$ is analytic in a neighborhood of I and J.

Proof. By Lemma 3.1 and its proof, the functions h_1 , h_2 , the angles $\alpha(s)$, $\beta(s)$, and the inverses of the angles, where s is the arc length parameter, are clearly analytic, hence we deduce that $\beta(\alpha)$ and $\alpha(\beta)$ are also analytic functions.

As $x \mapsto 1/x$ is analytic in a neighborhood of 1, in order to prove that $r(\alpha)$ is analytic in a neighborhood of 0, it is enough to prove that $\bar{r}(\alpha) := 1/r(\alpha)$ is analytic in some neighborhood of 0. Bearing this in mind, we reformulate (4.1) as

$$\bar{r}(\alpha) = \frac{h_2(\gamma(\alpha))}{h_1(\alpha)}\bar{r}(\gamma(\alpha)) + \frac{2a}{h_1(\alpha)}.$$
(4.3) $\langle 7, 9 \rangle$

Introduce the functions $f(\alpha) := \gamma(\alpha)$, $g(\alpha) := \frac{h_2(\gamma(\alpha))}{h_1(\alpha)}$, and $e(\alpha) := \frac{2a}{h_1(\alpha)}$. Then f, g and e are analytic in a neighborhood of $0, f(0) = 0, \frac{df}{d\alpha}(0) = \frac{h_2(0)}{h_1(0)} < 1$,

 $g(0) = \frac{h_2(0)}{h_1(0)} < 1$, and $h(0) = \frac{2a}{h_1(0)} < 1$. Furthermore, by (4.3), the function $\phi(\alpha) := \bar{r}(\alpha)$ solves the functional equation $\phi(\alpha) = g(\alpha)\phi(f(\alpha)) + h(\alpha)$. However, by [3, Theorem 4.6], such a functional equation has a unique solution, which additionally is analytic in a neighborhood of 0. Consequently, $r(\alpha)$ is the reciprocal of that unique analytic solution, so $\partial \mathcal{I}_O$ is analytic around J, and, by its symmetry, around I too.

Theorem 4.3. A Minkowski plane is a model of the Euclidean plane if and only if at least one hyperbola is a quadric.

Proof. As every hyperbola is a quadric in the Euclidean plane, we only have to prove that a Minkowski plane is Euclidean if at least one hyperbola is a quadric.

Assume that $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ is a quadric.

We have $t_A \parallel t_I \parallel t_J \parallel t_B$ by Lemma 4.1, and, as every (planar) quadric is an analytical curve, the border $\partial \mathcal{I}_O$ is analytic in a neighborhood of I and J by Lemma 4.2, where O is the midpoint of $\overline{F_1F_2}$. Furthermore, by the central symmetry of \mathcal{I}_O and the definition of $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$, we have $c = d_{\mathcal{I}}(F_1,O)$, $\overline{AF_1} = \overline{F_2B}$ and $\overrightarrow{IA} = \overrightarrow{BJ}$, so O is the (affine) midpoint of both \overline{IJ} and \overline{AB} . Additionally, we have $a \cdot d_{\mathcal{I}}(O,J) = d_{\mathcal{I}}(O,B)$, because the definition of $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ implies

$$2d_{\mathcal{I}}(O,B) = 2d_{\mathcal{I}}(O,F_2) - 2d_{\mathcal{I}}(F_2,B)$$

= $d_{\mathcal{I}}(F_1,O) + d_{\mathcal{I}}(O,F_2) - d_{\mathcal{I}}(F_2,B) + 2a - d_{\mathcal{I}}(F_1,B) = 2a.$

Being a hyperbolic quadric, $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ has two asymptotes ℓ_+ and ℓ_- through O. Let C_1 and C_2 be the points where they intersect the straight line t_A .

Fix the affine coordinate system such as O=(0,0), J=(1,0), and $C_1=(c,\sqrt{c^2-a^2})$, and choose the Euclidean metric d_e so that $\{(1,0),(0,1)\}$ is an orthonormal basis.

Let \mathcal{C} denote the unit circle of d_e . See Figure 4.2.

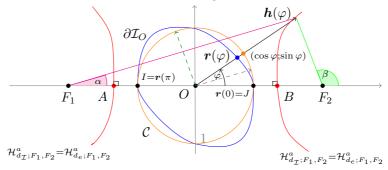


Figure 4.2. Coinciding hyperbolas $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2} \equiv \mathcal{H}^a_{d_e;F_1,F_2}$

Then both $\mathcal{H}^a_{d_e;F_1,F_2}$ and $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ are hyperbolic quadrics, and have two common tangents t_A and t_B , two common asymptotes, and two common points A and B, hence they coincide.

By the definition of $\mathcal{H}_{d_e;F_1,F_2}^a$ we have $h_1(\alpha) - h_2(\beta) = 2a$, which together with (4.1) implies

$$\delta(\alpha) = \delta(\beta) \frac{h_2(\beta)}{h_1(\alpha) + 2a\delta(\beta)},\tag{4.4}$$

where $\delta(\alpha) = 1 - r(\alpha)$ is the radial difference of \mathcal{C} and $\partial \mathcal{I}_O$.

If in every neighborhood of I curves \mathcal{C} and $\partial \mathcal{I}_O$ differ, then (4.4) implies

$$\lim_{\varphi \to 0} \frac{\delta(\alpha)}{\delta(\beta)} = \frac{c-a}{c+a} = (F_2, F_1; B),$$

which, by (3.4), implies $(F_2, F_1; B) = 1$. This contradicts a > 0, so the curves C and $\partial \mathcal{I}_O$ coincide in a neighborhood of I.

However, if $\delta(\beta_0) \neq 0$ for a β_0 , then no value of the 0-convergent sequence β_{2i} constructed in Lemma 3.2 can vanish by (4.4), therefore no β_0 can exist for which $\delta(\beta_0) \neq 0$. Similarly follows that no α exists for which $\delta(\alpha) \neq 0$, hence \mathcal{C} and $\partial \mathcal{I}_O$ coincide.

This kind of implication extends over to analyticity too.

Theorem 4.4. The indicatrix of a Minkowski plane is analytic if and only if one of the hyperbolas of the Minkowski plane is analytic.

Proof. First, assume that the Minkowski plane $(\mathbb{R}^2, d_{\mathcal{I}})$ is analytic.

We use the notations introduced in the previous sections, and consider the hyperbola $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$.

Fix an arbitrary point $H_0 \in \mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$, and let the point $R_i \in \mathcal{I}$ (i=1,2) be such that $O\overline{R_i} \parallel F_i\overline{H_0}$. Let the straight line t_i (i=1,2) be tangent to \mathcal{I} at R_i . Let d_e be the Euclidean metric which satisfies $t_2 \perp OR_2$, $d_e(O,R_1) = d_e(O,R_2)$, and $d_e(O,J) = 1$. Then we have

$$h_2^2(\beta) = h_1^2(\alpha) + 4c^2 - 4h_1(\alpha)c\cos\alpha, \text{ and } \beta = \arcsin\frac{h_1(\alpha)\sin\alpha}{h_2(\beta)}.$$

Substituting this into (4.1) results in the analytic equation

$$F(\alpha, h_1(\alpha)) := \left(2a - \frac{h_1(\alpha)}{r(\alpha)}\right)^2 - \frac{h_1^2(\alpha) + 4c^2 - 4h_1(\alpha)c\cos\alpha}{r^2\left(\arcsin\frac{h_1(\alpha)\sin\alpha}{\sqrt{h_1^2(\alpha) + 4c^2 - 4h_1(\alpha)c\cos\alpha}}\right)} = 0.$$

Since

$$\begin{split} \partial_2 F(\alpha,h_1(\alpha)) = & 2\frac{-h_2(\beta)}{r(\beta)}\frac{-1}{r(\alpha)} - \frac{2h_1(\alpha) - 4c\cos\alpha}{r^2(\beta)} + \\ & + 2\frac{h_2^2(\beta)}{r^3(\beta)}\frac{\dot{r}(\beta)}{\cos\beta}\Big(\frac{\sin\alpha}{h_2(\beta)} - \frac{1}{2}\frac{h_1(\alpha)\sin\alpha(2h_1(\alpha) - 4c\cos\alpha)}{h_2^3(\beta)}\Big), \end{split}$$

 $\partial_2 F(\alpha, h_1(\alpha))$ vanishes if and only if

$$-\frac{h_2(\beta)}{r(\alpha)} + \frac{h_1(\alpha) - 2c\cos\alpha}{r(\beta)} = \frac{h_2(\beta)\sin\alpha}{r(\beta)\cos\beta} \frac{\dot{r}(\beta)}{r(\beta)} \Big(1 - \frac{h_1(\alpha)(h_1(\alpha) - 2c\cos\alpha)}{h_2^2(\beta)}\Big).$$

By (3.2), we have $\frac{\dot{r}(\beta)}{r(\beta)} = \cot \theta$, where θ is the angle between $F_1\overline{H}$ and the tangent vector at H of $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$. Furthermore, it can be easily seen that $h_1(\alpha) - 2c\cos \alpha = h_2(\beta)\cos(\beta - \alpha)$. Thus, the above equation is equivalent to

$$-\frac{h_2(\beta)}{r(\alpha)} + \frac{h_2(\beta)\cos(\beta - \alpha)}{r(\beta)} = \frac{\cot\theta}{r(\beta)\cos\beta}(h_2(\beta)\sin\alpha - h_1(\alpha)\cos(\beta - \alpha)\sin\alpha).$$

Since $h_2(\beta) \sin \beta = h_1(\alpha) \sin \alpha$, this equation simplifies to

$$\frac{-1}{r(\alpha)} + \frac{\cos(\beta - \alpha)}{r(\beta)} = \frac{\cot \theta}{r(\beta)} \frac{\sin \alpha - \sin \beta \cos(\beta - \alpha)}{\cos \beta} = -\sin(\beta - \alpha) \frac{\cot \theta}{r(\beta)}.$$

In sum, $\partial_2 F(\alpha, h_1(\alpha))$ vanishes if and only if

$$\frac{-r(\beta)}{r(\alpha)} + \sin(\beta - \alpha)(\cot \theta + \cot(\beta - \alpha)) = 0. \tag{4.5}$$

At H_0 we have $\theta = \pi/2$, and $r(\beta) = r(\alpha)$, therefore (4.5) reduces to $\cos(\beta - \alpha) = 1$, resulting $\beta = \alpha$, a contradiction. Thus $\partial_2 F(\alpha, h_1(\alpha)) \neq 0$ at H_0 , hence the analytic implicit function theorem [3, Theorem 4.1] implies the analyticity of h_1 in a neighborhood of α . As the point H_0 was chosen arbitrarily on $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$, this proves that $\mathcal{H}^a_{d_{\mathcal{I}};F_1,F_2}$ is analytic.

Assuming now that the hyperbola is analytic, Lemma 4.2 proves the analyticity of the boundary of the indicatrix, where F_1F_2 intersects it. By (4.3) we have

$$\bar{r}(\beta(\alpha)) = \frac{h_1(\alpha)}{-h_2(\beta(\alpha))}\bar{r}(\alpha) + \frac{2a}{h_2(\beta(\alpha))}.$$

This shows that if \bar{r} is analytic in an interval $(-\varepsilon, \varepsilon)$, then it is also analytic in the interval $(-\beta(\varepsilon), \beta(\varepsilon))$. According to Lemma 3.2, this means that the boundary of the indicatrix is analytic at all the directions.

5. Quadrics in a Minkowski geometry

Before presenting the proof of Theorem 5.1, let us rephrase its statement for the planar case: if one hyperbola is a quadric, then the Minkowski plane is a model of the Euclidean geometry.

In a Minkowski geometry (\mathbb{R}^n, d)

 (D_2) a set $\mathcal{E}^a_{d;F_1,F_2} := \{E : 2a = d(F_1,E) + d(E,F_2)\}$, where $a > d(F_1,F_2)/2$, is called an *ellipse* if n=2, and an *ellipsoid* in higher dimensions,

where $F_1, F_2 \in \mathcal{M}$ are called the *focuses*, and a > 0 is called the *radius*.

Theorem 5.1. A Minkowski geometry is a model of the Euclidean geometry if and only if through a point every planar section of at least one quadric is either a hyperbola or an ellipse.

Proof. As every planar section of each hyperbolic quadric is either a hyperbola or an ellipse in the Euclidean geometry, it is enough to prove that a Minkowski geometry is Euclidean if every planar section of at least one quadric is either a hyperbola or an ellipse.

Let the quadric \mathcal{Q} be such that its every planar section is either a hyperbola or an ellipse. If the planar section is a hyperbola, then Theorem 4.3 implies, that the parallel central planar section of the indicatrix is an ellipse. If the planar section is an ellipse, then [7, Theorem 4.3] implies, that the parallel central planar section of the indicatrix is an ellipse. Thus, the statement of the theorem follows immediately from [2, II.16.12], which states for any integers 1 < k < n that the border $\partial \mathcal{K}$ of a convex body $\mathcal{K} \subset \mathbb{R}^n$ is an ellipsoid if and only if every k-plane through an inner point of \mathcal{K} intersects $\partial \mathcal{K}$ in a k-dimensional ellipsoid.

We omit the easy proof of the following result that closes this paper.

Theorem 5.2. A Minkowski geometry is a model of the Euclidean geometry if and only if there is a hyperplane and a point in it such that every line in the hyperplane through the point is parallel to main axis of some ellipsoid that is a quadric.

References

- [1] H. Busemann and P. J. Kelly, Projective Geometries and Projective Metrics, Academic Press, New York, 1953. $\langle 1, 2 \rangle$
- [2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. (10)
- [3] S. S. Cheng and W. Li, Analytic Solutions of Functional Equations, World Scientific, New Jersey, 2008. (2, 3, 7, 9)
- [4] Á. G. HORVÁTH and H. MARTINI, Conics in normed planes, Extracta Math., 26:1 (2011), 29–43; available also at arXiv: 1102.3008. (5)
- [5] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, Clarendon Press, Oxford, 1979.
- [6] Á. Kurusa, Conics in Minkowski geometry, Aequationes Math., 92 (2018), 949–961;
 DOI: https://dx.doi.org/10.1007/s00010-018-0592-1. (1)
- [7] Á. Kurusa, Quadratic ellipses in Minkowski geometries, manuscript, submitted. (1, 10)
- Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6725 Szeged, Hungary E-mail: kurusa@math.u-szeged.hu.
- J. Kozma, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725 Szeged, Hungary; E-mail: kozma@math.u-szeged.hu.