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Characterizations of balls
by sections and caps

Arpad Kurusa and Tibor Odor

Abstract. Among others, we prove that if a convex body K and a ball B have
equal constant volumes of caps and equal constant areas of sections with re-
spect to the supporting planes of a sphere, then I = B.

1 Introduction

If the convex body M, the kernel, contains the origin O, let firq(u) denote the
supporting hyperplane of M that is perpendicular to the unit vector v € S*~! and
contains in its same half space hy,(u) the origin O and the kernel M. Its other
half space is denoted by il (w).

If the convex body K contains the kernel M in its interior, we define the
functions

(1.1) S (u) = KN hpa(u)], (section function')
(1.2) Capx(w) = [K N R ()], (cap function)
where | - | is the appropriate Lebesgue measure.

The goal of this article is to investigate the problem of determining K if some
functions of the form (1.1) and (1.2) are given for a kernel M.

AMS Subject Classification (2012): 52A40.

Key words and phrases: sections, caps, ball, sphere, characterization, isoperimetric in-
equality, floating body.

IThis is usually called chord function in the plane.
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Two convex bodies K and K’ are called M-equicapped if Camx = Cpyxrs and
they are M-equisectioned if S ;. = Sp.xr- A convex body K is called M-isocapped
if C .k 1s constant. It is said to be M-isosectioned if S 4.y is constant.

First we prove in the plane that

(a) two convex bodies coincide if they are M-equicapped and M-equisectioned,
no matter what M is (Theorem 3.1), and

(b) any disc-isocapped convex body is a disc concentric to the kernel (Theo-
rem 3.22).

Then, in higher dimensions we consider only such convex bodies that are sphere-
equisectioned and sphere-equicapped with a ball, and prove that

(1) a convex body that is sphere-equicapped and sphere-equisectioned with a
ball, is itself a ball (Theorem 5.3);

(2) a convex body that is twice sphere-equicapped (for two different concentric
spheres) with a ball is itself a ball (Theorem 5.1);

(3) a convex body that is twice sphere-equisectioned (for two different concen-
tric spheres) with a ball is itself a ball (Theorem 5.2, but dimension n = 3
excluded).

For more information about the subject we refer the reader to [1, 3] etc.

2 Preliminaries

We work with the n-dimensional real space R™, its unit ball is B = B™ (in the
plane the unit disc is D), its unit sphere is S*~! and the set of its hyperplanes is H.
The ball (resp. disc) of radius ¢ > 0 centred to the origin is denoted by o8B = oBB"
(resp. oD).

Using the spherical coordinates & = (1,...,&,—1) every unit vector can be
written in the form uge = (cos&y,siné; cos&s, siné; sins cosés, .. .), the i-th coor-
dinate of which is ué = (H;;ll sing;) cos&; (&, := 0). In the plane we even use
the ug = (cos¢,siné) and ug- = Ug /2 = (—sing, cos ) notations and in analogy
to this latter one, we introduce the notation &+ = (£1,...,&p—2,&n_1 + 7/2) for
higher dimensions.

A hyperplane i € H is parametrized so that A(ug,r) means the one that
is orthogonal to the unit vector ug € S"~! and contains the point rug, where
r € R3. For convenience we also frequently use A(P, ug) to denote the hyperplane
through the point P € R™ with normal vector ug € S"~1. For instance, h(P, ug) =
R(ue, (O.}%, ug)), where O = 0 is the origin and (.,.) is the usual inner product.

2[1, Theorem 1] gives the same conclusion in the plane for disc-isosectioned convex bodies.
3 Athough I(ug,r) = h(—ug, —r) this parametrization is locally bijective.
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On a convex body we mean a convex compact set £ C R™ with non-
empty interior K° and with piecewise C' boundary K. For a convex body
K we let pe: S"! — R denote support function of K, which is defined by
Pic(Ue) = supgex(ue, ). We also use the notation Aix(u) = hA(u, p(u)). If the
origin is in K°, another useful function of a convex body K is its radial function
or: S"! — R, which is defined by o, (u) = [{ru:r >0} N IK]|.

We need the special functions I, (a,b), the regularized incomplete beta func-
tion, B(x;a,b), the incomplete beta function, B(a,b), the beta function, and I'(y),
Euler’s Gamma function, where 0 < a,b € R, x € [0,1] and y € R. We introduce
finally the notation |S¥| := 27%/2/I'(k/2) as the standard surface measure of the
k-dimensional sphere. For the special functions we refer the reader to [11,12].

We shall frequently use the utility function y that takes relations as argument
and gives 1 if its argument fulfilled. For example x(1 > 0) = 1, but x(1 <0) =0
and x(z > y) is 1 if z > y and it is zero if < y. Nevertheless we still use x also
as the indicator function of the set given in its subscript.

A strictly positive integrable function w: R™ \ B — R is called weight and
the integral

= [ S

of an integrable function f: R™ — R is called the volume of f with respect to the
weight w or simply the w-volume of f. For the volume of the indicator function
Xg of a set S CR™ we use the notation V,(S) := V,(xs) as a shorthand. If more
weights are indexed by ¢ € N, then we use the even shorter notation V;(S) :=

Vi (8) = Vilxs) = Vi, (Xs)-

3 In the plane

We heard the following easy result from Kincses [5].

Theorem 3.1. Assume that the border of the strictly convexr plane bodies M and
K are differentiable of class C' and we are given M and the functions Smc and
Caic- Then IC can be uniquely determined.

Proof. Fix the origin 0 in M°. In the plane us = (cos¢,sin§), therefore we
consider the functions

(&) = Saprc(ue) = [Apa(ug), ueg) NK|
9(&) == Cpaxc(ue) = [hF (pag(ug), ug) N K|

where At is the appropriate halfplane bordered by h.
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Let h(£) be the point, where h(p,,(§), u¢) touches M. Then, as it is well
known, h (&) — pa(§)ue = phy(§)ug. Let a(§) and b(§) be the two intersections of
I(prs(§), ue) and OK taken so that a(§) = h(f)—&—a(é)ugl and b(§) = h(§)—b(§)u§,
where a(€) and b(§) are positive functions.

Then f(£) = a(§) + b(¢)-

In the other hand, we have

/2 Qg(C)
g(6) = / (@, ue) > pag(€)) d = / rdrdc,
K\M —m/2J0

where h(€) + 0,(Q)u¢ € OK. Since dgjg(o = dgjéo, this leads to

/ w2 g, re© e /
(= [ ([ rar)ac= [T 200 - e -

that implies

This clearly determines K. -

If the kernel M is known to be a disc oD, then any one of the functions S ,p.x
and C,p, can determine concentric discs by its constant value.

Theorem 3.2. Assume that one of the functions S,p.c and C,p. is constant,
where D is the unit disc. Then K is a disc centred to the origin.

Proof. If S,p  is constant, then this theorem is [1, Theorem 1].

If C oDk 18 constant, the derivative of C oDk 18 zero, hence —using the nota-
tions of the previous proof— a(¢) = b(&) for every ¢ € [0,27), that is, the point
h(§) is the midpoint of the segment a(£)b(§) on hi(o, ue).

Let us consider the chord-map C': 9K — 9K, that is defined by C'(b(¢)) = a(&)
for every € € [0, 2m). This is clearly a bijective map. If £y € 9K, then by a(§) = b(§)
the whole sequence £; = C*(£), where C* means the i consecutive usage of C, are on
a concentric circle of radius |[€y|. Moreover, every point €; (i > 0) is the concentric
rotation of £;_y with angle A = 2arccos(o/|€y]). It is well known [4, Proposition
1.3.3] that such a sequence is dense in OK if A/ is irrational, or it is finitely periodic
in OK if /7 is rational. However, if K is not a disc, then there is surely a point
£ € OK for which 2arccos(o/|€p|)/7 is irrational, hence K must be a concentric

disc.
]
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4 Measures of convex bodies

In this section the dimension of the space is n = 2,3,.... As a shorthand we
introduce the notations

SQ;IC(U’) = SQB;K(h(Q’ 'LL)) = |IC N h’(ga u)|7
CQ;IC(U‘) = CQB;IC(h(Q7 ’LL)) = |’C N h+(Q7 ’LL)|,

,\,\
=R
[N

where poB™ is the ball of radius ¢ > 0 centred to the origin and AT is the appropriate
halfspace bordered by A.

Lemma 4.1. If the convez body IC in R™ contains in its interior the ball oB™, then

/2 n—11
4.3 O, dézi/ Lo (=2 da,.
( ) gn—1 Q”C( 5) F(n/?) K\eB 17@( 2 2)

Proof. We have

/Sn_ng;/c(UE)dE = /Sn_1 /n Xic(@)x (@, ue) > 0) dedé
:/ic\gs /Sn_lx(<; > E |)d£dw

The inner integral is the surface of the hyperspherical cap. The height of this
hyperspherical cap is h = 1 — p/|x|, hence by the well-known formula [13] we

obtain
n/2

/Sn,lx(<;ﬁ’“5> 2 %) A o) ';—((nT_l%)

This proves the lemma. -

Note that the weight in (4.3) is 757, ) 2 (3,3) = 2arccos(o/|z|) for dimen-
o

)= ( — o/|z|) for dimension n = 3.

N}\»—A

sion n = 2, and it is F(;/Q)Il_j(

Lemma 4.2. Let the convex body IC contain in its interior the ball oBB™. Then the
integral of the section function is
n-3

. @2 — 0?)"3
(4.4) / S g (e)d€ = [S"7?| %d”
§n—1 K\oB™ |{B‘
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Proof. Observe, that using (4.3) we have for any ¢ > 0 that

n/2)
7('77452 / / 0+8:K u5)d€d5
I'(n/2)
P /S L / Sorask(ue)dodg

I'(n/2)
= n/2 / CQ’C U£ Cg+s;l€(u£)d€
n—11

—11
Lo p2 )dw—/ Imz,gﬂ(—ﬁ) da
/'C\QB = 2 12 K\(ete)B R 2 2

\EIZ

—-11
/ I‘w@ 02 (L ) dx—
o+e)B\eB Im\2 2 2

-11 —11
_/ T \w2 (o402 (L, *) — L2 2 (L, 7) dx,
K\(o+¢)B EER 2 2 |z |2 2 2
hence
5;)0 5 ﬂ-n/Q / / Q+5 K Ug)dfdé
11
= hm Ig2- <7 )dm—
e=0E J(gre)B\oB  IeT 2
1 -11 ~-11
o / lim — (I\fﬂl2 (o+e)? (L7 7) - I\wl2792 (L; *)> dx
K\eo Bfﬂo EN T @z N 2 2 FoEo N 2 72
S 1| n—11
= Ehi% Lo (F5g) dre

_/,C\QB do (I ol e (HT_I%))M
_ 7)_

= [S" Mo T e

(n 11
B 2 2
1 2 ( n=3 2\ —1/2 —9
T Bn=1 1 / (1_%) 2 (972) zgdw
B("57,3) Jx\eB || || ||
2 n=3
Y 7 1
B("34, 3) /IC\QB( |z[? ||
As
/2 2 272 ol or T _(n— e _ 52

[(n/2) B(2%51, 1) - r(e4Hra) @P("T—l) Y

the statement is proved.
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Note that the weight in (4.4) is

— in the plane, and 27 /|| in dimen-

sion n = 3, which is independent from p!
A version of the following lemma first appeared in [9].

Lemma 4.3. Letw; (i = 1,2) be weights and let K and L be convez bodies containing
the unit ball B. If V1(K) < Vi(L) and
> .
(1) either wa/wy is a constant cx on OK and ﬁ(X){ ; Ez: Zf{ i Z: where
equality may occur in a set of measure zero at most,

< .
(2) orws/wy is a constant cg on OL and :"Jf(X){ See, ¥XEL

where equalit
>cp, if X €L, auanty

may occur in a set of measure zero at most,
then Vo(K) < Va(L), where equality is if and only if K = L.

Proof. We have
Va(L) — Va(K)
:pya\m-waﬁ\ﬁyié wﬂ@wﬂ@@%ié w2(@) | ()da

e wi() 2 wi()
—0, if KAL =0,
> ec(Vi(L\K) =Vi(K\ £)) = ecx(VA(L) = Vi(K)), if KAL #( and (1),
>ce(VI(L\K) = Vi(K\ L)) =cc(Vi(L) — V1(K)), if KAL #D and (2),

that proves the theorem.

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher
dimensions.

Theorem 5.1. Let 0 < 01 < g2 < 7 and let K be a convex body having p2B in its
interior. If Cgl;/C = Cm;fl’ﬁ‘ and ng;,c = ng;f‘B? then K = 7B, where B is the unit
ball.

Proof. Let @i(r) = I,2_,2(%5%, 3) and @o(r) = I,2_,3(%5+, 3) for every non-

it 3 S
vanishing r € R, where T is the regularized incomplete beta function, and define
wi(x) == @1(Jz|) and wa(x) := @a(|x|).
By formula (4.3) in Lemma 4.1 we have

2)
/ wi(x)de = :52 / Cyp, . (ug)d€ = wi(x) dzx,
7B\ o1B™ m K\o1B"
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and similarly

I 2
/B\ngn wp(x) dw = 7(;{2) /Sni1 ng;lc(ug)ds = wo(x) de.

K\o2B™

With the notations in Lemma 4.3, these mean V3 (K) = V1 (7B) and V2(K) = V2 (7B).
Further, one can easily see that

_wi@) _ @ial)

= =: qgn(|x|), n is the dimension
)~ Gallal) O )

is constant on every sphere, especially on #S™ 1.
As @y and w9 are both strictly increasing, g, is strictly decreasing if and only if

wi(r) _ wi(r)
o1 Z50) < @)

First calculate for any n € N that

B 2 no3, .2, 202 n—3
wir) (-7 (B)PE P -d)T o
- - 2 2 2 — ;
S -BTETeE (P e
then consider for n > 4 that
2
Q1

Il
S—
AR
»
v
w
/N
—
|
»
/
—
|
*E‘fc
o=
N———
v
/—\
AL
D | =
N
jsW

Il
|
[N}
7N
=
|
3
N
w
S—
o
»
‘3
|
o
N
—
|
/N
=)
DN
~—
~—
[N
QL
~__

,
201 (n—3 Los 2 3
:r< 5 /052 (Q—%(l—s)—i—s) ds—1].

From the two equations above we deduce

wi(r) wh(r) 2%(1 — é nd (” 3f0 1—s)+s)2 ds—l) (r2 gg)n;392
@2(r) &4 (r) B 2%(1_75 (n 3fo = r2(1—8)+5)2d5—1>( Q%)%Ql
_L_Bfo = (%(1 )+8)2ds—1>1
3]0 %(1 s)+s)2ds—1 ’

where in the last inequality we used g1 < g2. Thus, for n > 4 we have proved (5.1).
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Assume now, that n < 4. It is easy to see that

( ) ( ) 1 /1_Q§/T‘2 7173( ) 1/2
(I}lT_JJQTZT t7z (1—1¢)" dt7
B(Tl’%) 1—03/r?
hence differentiation leads to
—-11
0 -ete0a( )
@) - @) B(*5— 3
o\ 7" [of\~1/220% 03\ =" (03 /2203
(-2 (k) S 0-2) () R
2 n—3 n—3
= a1 ((7"2 —0)) 7 o — (" —03) 2 @2)-
This is clearly negative for all v if n = 2 and n = 3, hence
0r) (1) _ onlr) (&40 Z51() 1) 5 @a0)
wo(r) wi(r) — wa(r) @i (r) wa(r)

proving (5.1) for n < 3.
Thus, g;g:g is strictly monotone decreasing in any dimension, hence K = 7B

follows from Lemma 4.3. -

Theorem 5.2. Let 0 < 91 < g2 < T and the dimension be n # 3. If K is a convex
body having o288 in its interior, and S, . =S, 785 Spyc = Sg,.ris then K =7B.

Proof. Let w(r) = (r? — g%)nge‘r%” and wo(r) = (r? — g%)%gr%” for every

non-vanishing » € R, and define wy () := @1 (Jz|) and wa(x) := w2 (|x|).
By formula (4.4) in Lemma 4.2 we have

1
/ wi(x)dx = W/ Soyc(ue)d€ = w1 (x) de,
7B\ o1 B™ |S | Sn—1 K\e1B™

and similarly

1
/ wa(x) dex = ﬁ/ Senkc(ug)dé = wo(x) de.
fB\QQB" |S | Sn—1 )C\QQB"

With the notations in Lemma 4.3, these mean V3 (K) = V1 (7B) and V2(K) = V2(7B).

The ratio i;gg = g; Em; is obviously constant on every sphere, especially on

7S*~ 1 and it is

V- 1 e-e

_ r2—0% r2—g}’ if n =2,
@) _ ifn=3
@2(7’) ' 5 5 ? 7

(1+44) 7, ifn > 3.

Beitr. Algebra Geom., 56:2 (2015), 459-471. © A. Kurusa and T. Odor http://www.math.u-szeged.hu/tagok/kurusa


http://www.math.u-szeged.hu/tagok/kurusa

10 A. Kurusa anp T. Opor

Thus, g;g:; is strictly monotone if the dimension n # 3, hence K = 7B follows

from Lemma 4.3 for dimensions other than 3. -

This theorem leaves the question open in dimension 3 if S, . =S, .75 and
Sesiic = Sg,.rp Imply K = 75. We have not yet tried to find an answer.

The following generalizes Theorem 3.1 for most dimensions, but only for
spheres.

Theorem 5.3. Let 01,02 € (0,7) and let K be a convex body in R™ having
max(g1, 02)B in its interior. If S, ., =S, .5 and C,,x = C,,.:5, and

(1) n=2o0rn=3, or

(2) n>4 and 01 < 02,
then K = 7B.

Proof. Let @ (r) = (1% — 02 )T >~" and and @(r) = I,2_,3 (251, 1) for every
2
)-

2
non-vanishing r € R, and define wy (z) := @1 (Jz|) and ws(x) = @y (|l
By formula (4.4) in Lemma 4.2 we have

1
/ wi(x) dw = ﬁ/ Soy:kc(ug)d€ = wi () de,
7B\ o1 B™ |S | Sn—1 K\o1B"

and by formula (4.3) in Lemma 4.1 we have

n/2)
/ wo(x) de = n?Q / Coyixc(ug)d€ = wo(x) de.
7B\ 028" T K\o2B™

With the notations in Lemma 4.3, these mean V1 (K) = V1(7B) and V2(K) = V2(7B).

The ratio ifg; = % is obviously constant on every sphere, especially

on 7S™ 1, and it is

1 n _
@a(r) _ Jo Tt (1—t)= dt
w1 (r) (r2 —p2)" = r2-n
21— 8)"5 (252 [} 5™ (5 (1—5) + )} ds — 1)

(93
%(1_%)n;
r2— o2\ (n—3 [! r 3
:29( 2) < /57(—175 +5) d51>

=) et gh

2

n—3 1 1
03 —03\"= (n—3 n=5 (T z
=20 (1+ ) < /52 (—1—5 —|—s) ds—1>
' 7"2_91 2 0 Q%( )

by (5.2)

3
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if n > 3. For other values of n we have

@(r)ifol_fgt (1—1)7 dt

w1 (r) (r2 — o2 )Tr2—n

—gl TR0 d, ifn=2,

fo T(1—t)z dt, ifn=3.

Thus, ©2(r) jg strictly monotone increasing if n = 2,3 and it is also strictly mono-
w1 (r)

tone increasing if n > 3 and g; < g2. In these cases Lemma 4.3 implies K = 7. -

This theorem leaves open the case when g1 > ps in dimensions n > 3. We
have not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [1, Conjecture 2| that in the plane M-
equisectioned convex bodies coincide, but they were unable to justify this in full*.
Nevertheless they proved, among others, that a D-isosectioned convex body K in
the plane is a disc concentric to the disc D.

Having a convex body K that is sphere-isocapped with respect to two concen-
tric spheres raises the problem if there is a concentric ball #3 —obviously sphere-
isocapped with respect to that two concentric spheres— that is sphere-equicapped
to K with respect to that two concentric spheres. The very same problem exists
also for bodies that are sphere-isosectioned with respect to two concentric spheres.
So we have the following range characterization problems: Let 0 < 97 < 02 and let
c1 > ¢ > 0 be positive constants. Is there a convex body K containing the ball
0283 in its interior and satisfying

(i) e1 =C,,.x and ¢z = C,, x (raised by Theorem 5.1)7
(ii) e1 =8,, x and c2 =S,  (raised by Theorem 5.2)?
(iii) e1 =8, and ¢1 = C,, ¢ (raised by Theorem 5.3)?

In the plane if M is allowed to shrink to a point (empty interior), then S,
is the X-ray picture at a point source [3] investigated by Falconer in [2]. The
method used in Falconer’s article made Barker and Larman mention in [1] that in
dimension 2 the convex body K can be determined from S, and Sy, if OM
and M’ are intersecting each other in a suitable manner. The method in the

4Recently J. Kincses informed the authors in detail [5] that he is very close to finish the construc-
tion of two different D-equisectioned convex bodies K1 and 2 in the plane for a disk D.
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anticipated proof presented in [1] decisively depends on the condition of proper
intersection.

Finally we note that determining a convex body by its constant width and
constant brightness [8] sounds very similar a problem as the ones investigated in
this paper. Moreover also the result is analogous to Theorem 5.3.
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