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Characterizations of balls
by sections and caps

Árpád Kurusa and Tibor Ódor

Abstract. Among others, we prove that if a convex body K and a ball B have
equal constant volumes of caps and equal constant areas of sections with re-
spect to the supporting planes of a sphere, then K ≡ B.

1 Introduction

If the convex body M, the kernel, contains the origin O, let ~M(u) denote the
supporting hyperplane ofM that is perpendicular to the unit vector u ∈ Sn−1 and
contains in its same half space ~−M(u) the origin O and the kernel M. Its other
half space is denoted by ~+

M(u).
If the convex body K contains the kernel M in its interior, we define the

functions

SM;K(u) = |K ∩ ~M(u)|, (section function1)(1.1)

CM;K(u) = |K ∩ ~+
M(u)|, (cap function)(1.2)

where | · | is the appropriate Lebesgue measure.

MK

~+
M(u)

~M(u)

SM;K(u)

CM;K(u)

The goal of this article is to investigate the problem of determining K if some
functions of the form (1.1) and (1.2) are given for a kernelM.

AMS Subject Classification (2012): 52A40.
Key words and phrases: sections, caps, ball, sphere, characterization, isoperimetric in-
equality, floating body.
1This is usually called chord function in the plane.
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Two convex bodies K and K′ are calledM-equicapped if CM;K ≡ CM;K′ , and
they areM-equisectioned if SM;K ≡ SM;K′ . A convex body K is calledM-isocapped
if CM;K is constant. It is said to beM-isosectioned if SM;K is constant.

First we prove in the plane that
(a) two convex bodies coincide if they areM-equicapped andM-equisectioned,

no matter whatM is (Theorem 3.1), and
(b) any disc-isocapped convex body is a disc concentric to the kernel (Theo-

rem 3.22).
Then, in higher dimensions we consider only such convex bodies that are sphere-
equisectioned and sphere-equicapped with a ball, and prove that
(1) a convex body that is sphere-equicapped and sphere-equisectioned with a

ball, is itself a ball (Theorem 5.3);
(2) a convex body that is twice sphere-equicapped (for two different concentric

spheres) with a ball is itself a ball (Theorem 5.1);
(3) a convex body that is twice sphere-equisectioned (for two different concen-

tric spheres) with a ball is itself a ball (Theorem 5.2, but dimension n = 3

excluded).
For more information about the subject we refer the reader to [1, 3] etc.

2 Preliminaries

We work with the n-dimensional real space Rn, its unit ball is B = Bn (in the
plane the unit disc is D), its unit sphere is Sn−1 and the set of its hyperplanes is H.
The ball (resp. disc) of radius % > 0 centred to the origin is denoted by %B = %Bn
(resp. %D).

Using the spherical coordinates ξ = (ξ1, . . . , ξn−1) every unit vector can be
written in the form uξ = (cos ξ1, sin ξ1 cos ξ2, sin ξ1 sin ξ2 cos ξ3, . . .), the i-th coor-
dinate of which is uiξ = (

∏i−1
j=1 sin ξj) cos ξi (ξn := 0). In the plane we even use

the uξ = (cos ξ, sin ξ) and u⊥ξ = uξ+π/2 = (− sin ξ, cos ξ) notations and in analogy
to this latter one, we introduce the notation ξ⊥ = (ξ1, . . . , ξn−2, ξn−1 + π/2) for
higher dimensions.

A hyperplane ~ ∈ H is parametrized so that ~(uξ, r) means the one that
is orthogonal to the unit vector uξ ∈ Sn−1 and contains the point ruξ, where
r ∈ R3. For convenience we also frequently use ~(P,uξ) to denote the hyperplane
through the point P ∈ Rn with normal vector uξ ∈ Sn−1. For instance, ~(P,uξ) =

~(uξ, 〈
−−→
OP,uξ〉), where O = 0 is the origin and 〈., .〉 is the usual inner product.

2[1, Theorem 1] gives the same conclusion in the plane for disc-isosectioned convex bodies.
3Athough ~(uξ, r) = ~(−uξ,−r) this parametrization is locally bijective.

http://www.math.u-szeged.hu/tagok/kurusa


Beitr. Algebra Geom., 56:2 (2015), 459–471. c© Á. Kurusa and T. Ódor http://www.math.u-szeged.hu/tagok/kurusa

Characterizations of balls by sections and caps 3

On a convex body we mean a convex compact set K ⊆ Rn with non-
empty interior K◦ and with piecewise C1 boundary ∂K. For a convex body
K we let pK : Sn−1 → R denote support function of K, which is defined by
pK(uξ) = supx∈K〈uξ, x〉. We also use the notation ~K(u) = ~(u, pK(u)). If the
origin is in K◦, another useful function of a convex body K is its radial function
%K : Sn−1 → R+ which is defined by %K(u) = |{ru : r > 0} ∩ ∂K|.

We need the special functions Ix(a, b), the regularized incomplete beta func-
tion, B(x; a, b), the incomplete beta function, B(a, b), the beta function, and Γ(y),
Euler’s Gamma function, where 0 < a, b ∈ R, x ∈ [0, 1] and y ∈ R. We introduce
finally the notation |Sk| := 2πk/2/Γ(k/2) as the standard surface measure of the
k-dimensional sphere. For the special functions we refer the reader to [11,12].

We shall frequently use the utility function χ that takes relations as argument
and gives 1 if its argument fulfilled. For example χ(1 > 0) = 1, but χ(1 ≤ 0) = 0

and χ(x > y) is 1 if x > y and it is zero if x ≤ y. Nevertheless we still use χ also
as the indicator function of the set given in its subscript.

A strictly positive integrable function ω : Rn \ B → R+ is called weight and
the integral

Vω(f) :=

∫
Rn\B

f(x)ω(x)dx

of an integrable function f : Rn → R is called the volume of f with respect to the
weight ω or simply the ω-volume of f . For the volume of the indicator function
χS of a set S ⊆ Rn we use the notation Vω(S) := Vω(χS) as a shorthand. If more
weights are indexed by i ∈ N, then we use the even shorter notation Vi(S) :=

Vωi(S) = Vi(χS) := Vωi(χS).

3 In the plane

We heard the following easy result from Kincses [5].

Theorem 3.1. Assume that the border of the strictly convex plane bodies M and
K are differentiable of class C1 and we are given M and the functions SM;K and
CM;K. Then K can be uniquely determined.

Proof. Fix the origin 0 in M◦. In the plane uξ = (cos ξ, sin ξ), therefore we
consider the functions

f(ξ) := SM;K(uξ) = |~(pM(uξ),uξ) ∩ K|
g(ξ) := CM;K(uξ) = |~+(pM(uξ),uξ) ∩ K|

where ~+ is the appropriate halfplane bordered by ~.

http://www.math.u-szeged.hu/tagok/kurusa
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Let h(ξ) be the point, where ~(pM(ξ),uξ) touches M. Then, as it is well
known, h(ξ)− pM(ξ)uξ = p′M(ξ)u⊥ξ . Let a(ξ) and b(ξ) be the two intersections of
~(pM(ξ),uξ) and ∂K taken so that a(ξ) = h(ξ)+a(ξ)u⊥ξ and b(ξ) = h(ξ)−b(ξ)u⊥ξ ,
where a(ξ) and b(ξ) are positive functions.

Then f(ξ) = a(ξ) + b(ξ).
In the other hand, we have

g(ξ) =

∫
K\M

χ(〈x,uξ〉 ≥ pM(ξ)) dx =

∫ π/2

−π/2

∫ %ξ(ζ)

0

r dr dζ,

where h(ξ) + %ξ(ζ)uζ ∈ ∂K. Since
d%ξ(ζ)

dξ =
d%ξ(ζ)

dζ , this leads to

2g′(ξ) =

∫ π/2

−π/2

d

dξ

(∫ %ξ(ζ)

0

2r dr
)
dζ =

∫ π/2

−π/2
2%ξ(ζ)%′ξ(ζ) dζ = a2(ξ)− b2(ξ)

that implies

a(ξ) =

2g′(ξ)
f(ξ) + f(ξ)

2
=

2g′(ξ) + f2(ξ)

2f(ξ)
.

This clearly determines K.

If the kernelM is known to be a disc %D, then any one of the functions S%D;K
and C%D;K can determine concentric discs by its constant value.

Theorem 3.2. Assume that one of the functions S%D;K and C%D;K is constant,
where D is the unit disc. Then K is a disc centred to the origin.

Proof. If S%D;K is constant, then this theorem is [1, Theorem 1].
If C%D;K is constant, the derivative of C%D;K is zero, hence —using the nota-

tions of the previous proof— a(ξ) = b(ξ) for every ξ ∈ [0, 2π), that is, the point
h(ξ) is the midpoint of the segment a(ξ)b(ξ) on ~(%,uξ).

Let us consider the chord-map C : ∂K → ∂K, that is defined by C(b(ξ)) = a(ξ)

for every ξ ∈ [0, 2π). This is clearly a bijective map. If `0 ∈ ∂K, then by a(ξ) = b(ξ)

the whole sequence `i = Ci(`), where Ci means the i consecutive usage of C, are on
a concentric circle of radius |`0|. Moreover, every point `i (i > 0) is the concentric
rotation of `i−1 with angle λ = 2 arccos(%/|`0|). It is well known [4, Proposition
1.3.3] that such a sequence is dense in ∂K if λ/π is irrational, or it is finitely periodic
in ∂K if λ/π is rational. However, if K is not a disc, then there is surely a point
` ∈ ∂K for which 2 arccos(%/|`0|)/π is irrational, hence K must be a concentric
disc.

http://www.math.u-szeged.hu/tagok/kurusa
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4 Measures of convex bodies

In this section the dimension of the space is n = 2, 3, . . . . As a shorthand we
introduce the notations

S%;K(u) := S%B;K(~(%,u)) = |K ∩ ~(%,u)|,(4.1)

C%;K(u) := C%B;K(~(%,u)) = |K ∩ ~+(%,u)|,(4.2)

where %Bn is the ball of radius % > 0 centred to the origin and ~+ is the appropriate
halfspace bordered by ~.

Lemma 4.1. If the convex body K in Rn contains in its interior the ball %Bn, then

(4.3)
∫
Sn−1

C%;K(uξ)dξ =
πn/2

Γ(n/2)

∫
K\%B

I
1− %2

|x|2

(n− 1

2
,

1

2

)
dx, .

Proof. We have∫
Sn−1

C%;K(uξ)dξ =

∫
Sn−1

∫
Rn
χK(x)χ(〈x,uξ〉 ≥ %) dxdξ

=

∫
K\%B

∫
Sn−1

χ
(〈 x
|x|

,uξ

〉
≥ %

|x|

)
dξdx

The inner integral is the surface of the hyperspherical cap. The height of this
hyperspherical cap is h = 1 − %/|x|, hence by the well-known formula [13] we
obtain ∫

Sn−1

χ
(〈 x
|x|

,uξ

〉
≥ %

|x|

)
dξ =

πn/2

Γ(n/2)
I |x|2−%2
|x|2

(n− 1

2
,

1

2

)
.

This proves the lemma.

Note that the weight in (4.3) is π
Γ(1)I1− %2

|x|2
( 1

2 ,
1
2 ) = 2 arccos(%/|x|) for dimen-

sion n = 2, and it is π3/2

Γ(3/2)I1− %2

|x|2
(1, 1

2 ) = 2π(1− %/|x|) for dimension n = 3.

Lemma 4.2. Let the convex body K contain in its interior the ball %Bn. Then the
integral of the section function is∫

Sn−1
S%;K(uξ)dξ = |Sn−2|

∫
K\%Bn

(x2 − %2)
n−3
2

|x|n−2
dx.(4.4)

http://www.math.u-szeged.hu/tagok/kurusa
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Proof. Observe, that using (4.3) we have for any ε > 0 that

Γ(n/2)

πn/2

∫ ε

0

∫
Sn−1

S%+δ;K(uξ)dξdδ

=
Γ(n/2)

πn/2

∫
Sn−1

∫ ε

0
S%+δ;K(uξ)dδdξ

=
Γ(n/2)

πn/2

∫
Sn−1

C%;K(uξ)− C%+ε;K(uξ)dξ

=

∫
K\%B

I |x|2−%2
|x|2

(n− 1

2
,

1

2

)
dx−

∫
K\(%+ε)B

I |x|2−(%+ε)2

|x|2

(n− 1

2
,

1

2

)
dx

=

∫
(%+ε)B\%B

I |x|2−%2
|x|2

(n− 1

2
,

1

2

)
dx−

−
∫
K\(%+ε)B

I |x|2−(%+ε)2

|x|2

(n− 1

2
,

1

2

)
− I |x|2−%2

|x|2

(n− 1

2
,

1

2

)
dx,

hence

lim
ε→0

1

ε

Γ(n/2)

πn/2

∫ ε

0

∫
Sn−1

S%+δ;K(uξ)dξdδ

= lim
ε→0

1

ε

∫
(%+ε)B\%B

I |x|2−%2
|x|2

(n− 1

2
,

1

2

)
dx−

−
∫
K\%B

lim
ε→0

1

ε

(
I |x|2−(%+ε)2

|x|2

(n− 1

2
,

1

2

)
− I |x|2−%2

|x|2

(n− 1

2
,

1

2

))
dx

= lim
ε→0

|Sn−1|
ε

∫ %+ε

%

rn−1I r2−%2
r2

(n− 1

2
,

1

2

)
dr−

−
∫
K\%B

d

d%

(
I |x|2−%2
|x|2

(n− 1

2
,

1

2

))
dx

= |Sn−1|%n−1I %2−%2
%2

(n− 1

2
,

1

2

)
−

− 1

B(n−1
2 , 1

2 )

∫
K\%B

(
1− %2

|x|2
)n−3

2
( %2

|x|2
)−1/2−2%

|x|2
dx

=
2

B(n−1
2 , 1

2 )

∫
K\%B

(
1− %2

|x|2
)n−3

2 1

|x|
dx.

As

πn/2

Γ(n/2)

2

B(n−1
2 , 1

2 )
=

2πn/2

Γ(n−1
2 )Γ( 1

2 )
=

n−1
2

n−1
2

2π
n−1
2

Γ(n−1
2 )

=
(n− 1)π

n−1
2

Γ(n−1
2 + 1)

= |Sn−2|,

the statement is proved.

http://www.math.u-szeged.hu/tagok/kurusa
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Note that the weight in (4.4) is 2√
x2−%2

in the plane, and 2π/|x| in dimen-

sion n = 3, which is independent from %!
A version of the following lemma first appeared in [9].

Lemma 4.3. Let ωi (i = 1, 2) be weights and let K and L be convex bodies containing
the unit ball B. If V1(K) ≤ V1(L) and

(1) either ω2/ω1 is a constant cK on ∂K and ω2

ω1
(X)

{
≥ cK, if X /∈ K,
≤ cK, if X ∈ K,

where

equality may occur in a set of measure zero at most,

(2) or ω2/ω1 is a constant cL on ∂L and ω2

ω1
(X)

{
≤ cL, if X /∈ L,
≥ cL, if X ∈ L,

where equality

may occur in a set of measure zero at most,
then V2(K) ≤ V2(L), where equality is if and only if K = L.

Proof. We have

V2(L)− V2(K)

= V2(L \ K)− V2(K \ L) =

∫
L\K

ω2(x)

ω1(x)
ω1(x)dx−

∫
K\L

ω2(x)

ω1(x)
ω1(x)dx

= 0, if K4L = ∅,
> cK(V1(L \ K)− V1(K \ L)) = cK(V1(L)− V1(K)), if K4L 6= ∅ and (1),
> cL(V1(L \ K)− V1(K \ L)) = cL(V1(L)− V1(K)), if K4L 6= ∅ and (2),

that proves the theorem.

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher
dimensions.

Theorem 5.1. Let 0 < %1 < %2 < r̄ and let K be a convex body having %2B in its
interior. If C%1;K = C%1;r̄B and C%2;K = C%2;r̄B, then K ≡ r̄B, where B is the unit
ball.

Proof. Let ω̄1(r) = I r2−%21
r2

(n−1
2 , 1

2 ) and ω̄2(r) = I r2−%22
r2

(n−1
2 , 1

2 ) for every non-

vanishing r ∈ R, where I is the regularized incomplete beta function, and define
ω1(x) := ω̄1(|x|) and ω2(x) := ω̄2(|x|).

By formula (4.3) in Lemma 4.1 we have∫
r̄B\%1Bn

ω1(x) dx =
Γ(n/2)

πn/2

∫
Sn−1

C%1;K(uξ)dξ =

∫
K\%1Bn

ω1(x) dx,

http://www.math.u-szeged.hu/tagok/kurusa
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and similarly∫
r̄B\%2Bn

ω2(x) dx =
Γ(n/2)

πn/2

∫
Sn−1

C%2;K(uξ)dξ =

∫
K\%2Bn

ω2(x) dx.

With the notations in Lemma 4.3, these mean V1(K) = V1(r̄B) and V2(K) = V2(r̄B).
Further, one can easily see that

1 <
ω1(x)

ω2(x)
=
ω̄1(|x|)
ω̄2(|x|)

=: qn(|x|), (n is the dimension)

is constant on every sphere, especially on r̄Sn−1.
As ω̄1 and ω̄2 are both strictly increasing, qn is strictly decreasing if and only if

(5.1)
ω̄′1(r)

ω̄′2(r)
<
ω̄1(r)

ω̄2(r)
.

First calculate for any n ∈ N that

ω̄′1(r)

ω̄′2(r)
=

(1− %21
r2 )

n−3
2 (

%21
r2 )−1/2 2%21

r3

(1− %22
r2 )

n−3
2 (

%22
r2 )−1/2 2%22

r3

=
(r2 − %2

1)
n−3
2 %1

(r2 − %2
2)

n−3
2 %2

,

then consider for n ≥ 4 that

ω̄1(r)B
(
n−1

2 , 1
2

)
(
1− %21

r2

)n−3
2

=
(

1− %2
1

r2

) 3−n
2

∫ 1− %
2
1
r2

0

t
n−3
2 (1− t)

−1
2 dt

=

∫ 1

0

s
n−3
2

(
1− s

(
1− %2

1

r2

))−1
2
(

1− %2
1

r2

)
ds

= −2

∫ 1

0

s
n−3
2

d

ds

((
1− s

(
1− %2

1

r2

)) 1
2

)
ds

= −2

(
%1

r
− n− 3

2

∫ 1

0

s
n−5
2

(
1− s

(
1− %2

1

r2

)) 1
2

ds

)
=

2%1

r

(
n− 3

2

∫ 1

0

s
n−5
2

( r2

%2
1

(1− s) + s
) 1

2

ds− 1

)
.

(5.2)

From the two equations above we deduce

ω̄1(r)

ω̄2(r)

ω̄′2(r)

ω̄′1(r)
=

2%1
r (1− %21

r2 )
n−3
2

(
n−3

2

∫ 1

0
s
n−5
2 ( r

2

%21
(1− s) + s)

1
2 ds− 1

)
2%2
r (1− %22

r2 )
n−3
2

(
n−3

2

∫ 1

0
s
n−5
2 ( r

2

%22
(1− s) + s)

1
2 ds− 1

) (r2 − %2
2)

n−3
2 %2

(r2 − %2
1)

n−3
2 %1

=

n−3
2

∫ 1

0
s
n−5
2 ( r

2

%21
(1− s) + s)

1
2 ds− 1

n−3
2

∫ 1

0
s
n−5
2 ( r

2

%22
(1− s) + s)

1
2 ds− 1

≥ 1,

where in the last inequality we used %1 < %2. Thus, for n ≥ 4 we have proved (5.1).

http://www.math.u-szeged.hu/tagok/kurusa
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Assume now, that n < 4. It is easy to see that

ω̄1(r)− ω̄2(r) =
1

B(n−1
2 , 1

2 )

∫ 1−%21/r
2

1−%22/r2
t
n−3
2 (1− t)−1/2 dt,

hence differentiation leads to

(ω̄′1(r)− ω̄′2(r))B
(n− 1

2
,

1

2

)
=
(

1− %2
1

r2

)n−3
2
(%2

1

r2

)−1/2 2%2
1

r3
−
(

1− %2
2

r2

)n−3
2
(%2

2

r2

)−1/2 2%2
2

r3

=
2

rn−1

(
(r2 − %2

1)
n−3
2 %1 − (r2 − %2

2)
n−3
2 %2

)
.

This is clearly negative for all r if n = 2 and n = 3, hence

ω̄1(r)

ω̄2(r)

ω̄′2(r)

ω̄′1(r)
=
ω̄1(r)

ω̄2(r)

( ω̄′2(r)− ω̄′1(r)

ω̄′1(r)
+ 1
)
≥ ω̄1(r)

ω̄2(r)
≥ 1

proving (5.1) for n ≤ 3.
Thus, ω̄1(r)

ω̄2(r) is strictly monotone decreasing in any dimension, hence K ≡ r̄B
follows from Lemma 4.3.

Theorem 5.2. Let 0 < %1 < %2 < r̄ and the dimension be n 6= 3. If K is a convex
body having %2B in its interior, and S%1;K ≡ S%1;r̄B, S%2;K ≡ S%2;r̄B, then K ≡ r̄B.

Proof. Let ω̄1(r) = (r2 − %2
1)

n−3
2 r2−n and ω̄2(r) = (r2 − %2

2)
n−3
2 r2−n for every

non-vanishing r ∈ R, and define ω1(x) := ω̄1(|x|) and ω2(x) := ω̄2(|x|).
By formula (4.4) in Lemma 4.2 we have∫

r̄B\%1Bn
ω1(x) dx =

1

|Sn−2|

∫
Sn−1

S%1;K(uξ)dξ =

∫
K\%1Bn

ω1(x) dx,

and similarly∫
r̄B\%2Bn

ω2(x) dx =
1

|Sn−2|

∫
Sn−1

S%2;K(uξ)dξ =

∫
K\%2Bn

ω2(x) dx.

With the notations in Lemma 4.3, these mean V1(K) = V1(r̄B) and V2(K) = V2(r̄B).
The ratio ω1(x)

ω2(x) = ω̄1(|x|)
ω̄2(|x|) is obviously constant on every sphere, especially on

r̄Sn−1, and it is

ω̄1(r)

ω̄2(r)
=



√
r2−%22√
r2−%21

=
√

1− %21−%22
r2−%21

, if n = 2,

1, if n = 3,(
1 +

%22−%
2
1

r2−%22

)n−3
2

, if n > 3.
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Thus, ω̄1(r)
ω̄2(r) is strictly monotone if the dimension n 6= 3, hence K ≡ r̄B follows

from Lemma 4.3 for dimensions other than 3.

This theorem leaves the question open in dimension 3 if S%1;K ≡ S%1;r̄B and
S%2;K ≡ S%2;r̄B imply K ≡ r̄B. We have not yet tried to find an answer.

The following generalizes Theorem 3.1 for most dimensions, but only for
spheres.

Theorem 5.3. Let %1, %2 ∈ (0, r̄) and let K be a convex body in Rn having
max(%1, %2)B in its interior. If S%1;K ≡ S%1;r̄B and C%2;K ≡ C%2;r̄B, and
(1) n = 2 or n = 3, or
(2) n ≥ 4 and %1 ≤ %2,

then K ≡ r̄B.

Proof. Let ω̄1(r) = (r2 − %2
1)

n−3
2 r2−n and and ω̄2(r) = I r2−%22

r2

(n−1
2 , 1

2 ) for every

non-vanishing r ∈ R, and define ω1(x) := ω̄1(|x|) and ω2(x) := ω̄2(|x|).
By formula (4.4) in Lemma 4.2 we have∫

r̄B\%1Bn
ω1(x) dx =

1

|Sn−2|

∫
Sn−1

S%1;K(uξ)dξ =

∫
K\%1Bn

ω1(x) dx,

and by formula (4.3) in Lemma 4.1 we have∫
r̄B\%2Bn

ω2(x) dx =
Γ(n/2)

πn/2

∫
Sn−1

C%2;K(uξ)dξ =

∫
K\%2Bn

ω2(x) dx.

With the notations in Lemma 4.3, these mean V1(K) = V1(r̄B) and V2(K) = V2(r̄B).
The ratio ω2(x)

ω1(x) = ω̄2(|x|)
ω̄1(|x|) is obviously constant on every sphere, especially

on r̄Sn−1, and it is

ω̄2(r)

ω̄1(r)
=

∫ 1− %
2
2
r2

0 t
n−3
2 (1− t)−1

2 dt

(r2 − %2
1)

n−3
2 r2−n

=

2%2
r (1− %22

r2 )
n−3
2 (n−3

2

∫ 1

0
s
n−5
2 ( r

2

%22
(1− s) + s)

1
2 ds− 1)

1
r (1− %21

r2 )
n−3
2

by (5.2)

= 2%1

(r2 − %2
2

r2 − %2
1

)n−3
2

(
n− 3

2

∫ 1

0

s
n−5
2

( r2

%2
2

(1− s) + s
) 1

2

ds− 1

)
= 2%1

(
1 +

%2
1 − %2

2

r2 − %2
1

)n−3
2

(
n− 3

2

∫ 1

0

s
n−5
2

( r2

%2
2

(1− s) + s
) 1

2

ds− 1

)
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if n > 3. For other values of n we have

ω̄2(r)

ω̄1(r)
=

∫ 1− %
2
2
r2

0 t
n−3
2 (1− t)−1

2 dt

(r2 − %2
1)

n−3
2 r2−n

=

(r2 − %2
1)

1
2

∫ 1− %
2
2
r2

0 t
−1
2 (1− t)−1

2 dt, if n = 2,

r
∫ 1− %

2
2
r2

0 (1− t)−1
2 dt, if n = 3.

Thus, ω̄2(r)
ω̄1(r) is strictly monotone increasing if n = 2, 3 and it is also strictly mono-

tone increasing if n > 3 and %1 ≤ %2. In these cases Lemma 4.3 implies K ≡ r̄B.

This theorem leaves open the case when %1 > %2 in dimensions n > 3. We
have not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [1, Conjecture 2] that in the plane M-
equisectioned convex bodies coincide, but they were unable to justify this in full4.
Nevertheless they proved, among others, that a D-isosectioned convex body K in
the plane is a disc concentric to the disc D.

Having a convex body K that is sphere-isocapped with respect to two concen-
tric spheres raises the problem if there is a concentric ball r̄B —obviously sphere-
isocapped with respect to that two concentric spheres— that is sphere-equicapped
to K with respect to that two concentric spheres. The very same problem exists
also for bodies that are sphere-isosectioned with respect to two concentric spheres.
So we have the following range characterization problems: Let 0 < %1 < %2 and let
c1 > c2 > 0 be positive constants. Is there a convex body K containing the ball
%2B in its interior and satisfying
(i) c1 ≡ C%1;K and c2 ≡ C%2;K (raised by Theorem 5.1)?
(ii) c1 ≡ S%1;K and c2 ≡ S%2;K (raised by Theorem 5.2)?
(iii) c1 ≡ S%1;K and c1 ≡ C%1;K (raised by Theorem 5.3)?

In the plane ifM is allowed to shrink to a point (empty interior), then SM;K
is the X-ray picture at a point source [3] investigated by Falconer in [2]. The
method used in Falconer’s article made Barker and Larman mention in [1] that in
dimension 2 the convex body K can be determined from SM;K and SM′;K if ∂M
and ∂M′ are intersecting each other in a suitable manner. The method in the
4Recently J. Kincses informed the authors in detail [5] that he is very close to finish the construc-
tion of two different D-equisectioned convex bodies K1 and K2 in the plane for a disk D.

http://www.math.u-szeged.hu/tagok/kurusa
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anticipated proof presented in [1] decisively depends on the condition of proper
intersection.

Finally we note that determining a convex body by its constant width and
constant brightness [8] sounds very similar a problem as the ones investigated in
this paper. Moreover also the result is analogous to Theorem 5.3.
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