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Identifying rotational Radon transforms

�Arp �ad Kurusa ∗

Abstract. We show classes of test functions so that dilational and rotational

invariances of the image RS,µf of such a test function f determines dilational

and rotational invariances of rotational Radon transform RS,µ. Then we de-

termine the defining flower S and weight � of a conformal Radon transform

RS,µ in terms of the image RS,µf of an unknown function that is a sum of

an L2-function and finitely many Dirac distributions if the flower S is not

selftangent.

1. Introduction

Let Sω be a set of hypersurfaces Sω,t in Rn so that ω ∈ Sn−1 and t ∈ [0,∞).

The Radon transform RS,µ of functions f :Rn → R integrable on each Sω,t is defined

by

(1.1) RS,µf(ω, t) =

Z

S!;t

f(x)µω,t(x) dx,

where dx is the natural surface measure on Sω,t and µω,t is a strictly positive

continuous function on Sω,t that depends continuously on ω and t. In this definition,

the hypersurfaces Sω,t are called the petals, the set S =
S
ω∈Sn � 1 Sω of them is called

flower and µω,t is called the weight on the petal Sω,t.

In terms of this definition the “classic” Radon transform RH,µ is defined by

the flower H = {Hω,t : ω ∈ Sn−1, t ∈ [0,∞)} of the petals Hω,t = {x : 〈x, ω〉 = t}
with weight µω,t ≡ 1.
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Identifying rotational Radon transforms 3

• dilational if t̄Sω,t = tSω,t̄ for all t, t̄ > 0, i.e., any homogeneous dilation with

the origin as homothetic centre takes a petal into a petal with the same first

parameter and dilated second parameter.

Observe, that in dimensions n ≥ 3 the petals Sω,t of a rotational flower S are

rotationally symmetric around the straight line through the origin with direction ω

and therefore they are also symmetric. If a flower is rotational and dilational, then

we call it conformal.

A weight µ on a flower S is called

• symmetric if S is symmetric and µω,t(x) = µω,t(2〈x, ω〉ω−x) for all x ∈ Sω,t,

• rotational if S is rotational and µΦω,t(Φx) = µω,t(x) for all Φ ∈ SO(n),

ω ∈ Sn−1, t ∈ R and x ∈ Sω,t, and

• dilational if S is dilational and µω,pt(px) = µω,t(x) for all p > 0.

If a weight is rotational and dilational, then it is called conformal. Observe, that

a rotational weight µ has necessarily the form

(2.1) µω,r(x) =

{
µ̄r

(
|x| 〈x,ω? 〉

|〈x,ω? 〉|

)
, if n = 2,

µ̄r(|x|), if n > 2 or it is symmetric in n = 2,

for a suitable function µ̄:R+ × R → R.
We call a Radon transform of form (1.1) symmetric, rotational, dilational or

conformal if both the flower and the weight are symmetric, rotational, dilational or

conformal, respectively. To mention some examples, the classic Radon transform

is symmetric conformal, while the exponential Radon transform is symmetric and

rotational but not dilational.

A piecewise differentiable image cr of an interval in the plane is called an

inner (outer) nice curve if in a coordinate system

(1) cr has a unique point Pr farthest from (closest to) the origin, so that Pr =

(r, 0),

(2) each point c+r (%) of the curve cr in the closed upper halfplane is uniquely

determined by its distance % = |c+r (%)| ≥ 0 to the origin,

(3) each point c−r (%) of the curve cr in the closed downward halfplane is uniquely

determined by its distance % = |c−r (%)| ≥ 0 to the origin, and

(4) the signed angle ϕ±
r (%) of c±r (%) to the x-axis as a function is such that

ϕ±
r (%)/

√
|r − %| is piecewise C2 on suppϕ±

r = (inf∃c�
r (%) %, r] (suppϕ±

r =

[r, sup∃c�
r (%) %)).

We call a nice curve symmetric(2:1) if the curves c±r are the reflection of each other

with respect to the x-axis. If this happens, we define ϕr(%) := ±ϕ±
r (%).

(2:1) This corresponds to the symmetry term defined at the beginning of this section.
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6 �A. K URUSA

If � r (y) 6= 0, then � r does not vanish on an open intervalI 3 y, and on that
interval one can multiply (2.6) by

� r (y) := exp
� Z

� r (y) � _� r (y)
� r (y)

dy
�

to arrive at the equivalent di�erential equation

@y (� r (y)� r (y)gr (y)) = @y (� r (y)� r (y))gr (y) + � r (y)� r (y) _gr (y)

= � r (y)� r (y)gr (y) + � r (y)� r (y) _gr (y) � 0:

This means that � r (y)� r (y)gr (y) does not depend ony in the interval I , therefore
if � r vanishes on any endpoint ofI , then � r (y)� r (y)gr (y) � 0 on the wholeI .

Thus, if � r has a root in [0; 1], then � r � r gr vanishes on the whole [0; 1]. If on
the contrary � r has no root in [0; 1], then gr (1) = 0 implies the vanishing of � r � r gr

on the whole [0; 1].
As � r � r gr vanishes on the whole interval [0; 1], if � r (y) 6= 0 then � r (y) > 0

implies gr (y) = 0. If on the contrary � r (y) = 0, then equation (2.6) implies
gr (y) = 0, because� r (y) > 0.

We concludegr � 0 that means @r (' r (yr )) � 0. The proof is complete.

In the following theorem both inner and outer nice owers appear. It shows
that the petals of the ower of the dual of a rotational Radon transform R S;� are
the inversions of the petals ofS in the unit sphere, which is a generalization of
Cormack's observation in [3].

In the theorem and its proof we identify the functions f; g : Rn ! R by their
counterparts f � M and g � M on Sn � 1 � R+ , respectively, by the map M : Sn � 1 �
R+ ! Rn with ( !; r ) 7! r! .

Theorem 2.2. Let S be a conformal ower de�ned by the curvesc�
r (%) = %!' �

r (%) ,
where (� 2 � ), and de�ne the ower S� by the curvesc��

% (r ) = r!  �
%( r ) , where

 �
%(r ) = � ' �

r (%). Let � be a rotational weight on the ower S and de�ne the weight
� � on S� by %��!;% (r �! ) = r� �!;r (%!). Then the Radon transform RS � ;� � is the dual
R�

S;� of the Radon transform RS;� .

Proof. Since the ower S is dilational, we observe that

(2:7) r _ %(r ) = r
@
@r

�
� ' 1

� %
r

��
= _' 1

� %
r

� %
r

= %
@
@%

�
' 1

� %
r

��
= %_' r (%):

We are proving that hRS;� f; g i = hf; RS � ;� � gi .
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Identifying rotational Radon transforms 9

Proof. We have only to prove that the weight µ is rotational.

If the dimension n is at least 3, then equation (2.3) and the conditions give

for any g` that

(3.1)

RS,µg`(Φω̄, r)

=

∫ r

0

∫
Sn−2
ω̄

g`(%Φ(ω sinϕr(%) + ω̄ cosϕr(%)))×

× µω̄,r(%(ω sinϕr(%) + ω̄ cosϕr(%)))×

× (% sinϕr(%))
n−2

√
1 + %2ϕ̇2

r(%) dω d%

=

∫ r

0

∫
Sn−1

f%(Φω)δcosϕr(%)
(〈ω, ω̄〉)µω̄,r(%ω) dω×

× (% sinϕr(%))
n−2

√
1 + %2ϕ̇2

r(%) %
` d%,

where δcosϕr(%)
is the Dirac delta distribution supported at cosϕr(%) and 〈., .〉

denotes the usual inner product on Rn.
By the Stone–Weierstrass Theorem the set of functions %` (` ∈ N) is a com-

plete base in L2[0, r], whence equations (3.1) (` ∈ N) determine the function

ψ(Φω̄, r, %) :=

∫
Sn−1

f%(Φω)δcosϕr(%)
(〈ω, ω̄〉)µω̄,r(%ω) dω (0 < % ≤ r).

Substituting ω̄ = Φ−1ω̂ and ω = Φ−1ω̃ results in

(3.2) ψ(ω̂, r, y) =

∫
Sn−2
ω̂

f%(ω)µΦ−1ω̂,r(%(Φ
−1ω sinϕr(%) + Φ−1ω̂ cosϕr(%))) dω.

Considering Φ in Knω̄ := {Φ ∈ SO(n) : Φω̂ = ω̂} ∼= SO(n− 1), we arrive at

(3.3) ψ(ω̂, r, y) =

∫
Sn−2
ω̂

f%(ω)µω̂,r(%(Φω sinϕr(%) + ω̂ cosϕr(%))) dω

for all Φ ∈ Knω̄. Since f% has the attenuated hyper Pompeiu property, its restriction

on any great sphere in an everywhere dense set of great spheres Sn−2
ω̂ has the Pom-

peiu property, which means that µω̂,r(%(Φω sinϕr(%)+ ω̂ cosϕr(%))) is independent

from Φ ∈ Knω̂ on an everywhere dense set of ω̂ ∈ Sn−1. Since µ is continuous, this

implies that the function µω̂,r(%(ω sinϕr(%) + ω̂ cosϕr(%))) is independent from ω

for every ω̂ ∈ Sn−1. By this and equation (3.2) we conclude

ψ(ω̂, r, y) = µΦ−1ω̂,r(%Φ
−1(ω̂⊥ sinϕr(%) + ω̂ cosϕr(%)))

∫
Sn−2
ω̂

f%(ω) dω
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12 �A. K URUSA

for all %2 (0; r ]. By condition (1) the coe�cients f %(! � + i' r (%) ) � f %(! � � i' r (%) ) in
(3.23) may only vanish for �nitely many � , therefore except for �nitely many �
we have� ! � ;r (%!� + ' r (%) ) = � ! � ;r (%!� � ' r (%) ). As � is continuous, this proves the
theorem.

Theorem 3.3. Let RS;� be a symmetric rotational Radon transform, and let f 2
L2

� (Rn ) be a radial function of compact support without vanishing moments so that
RS;� f (�!; pr ) = pn � 1RS;� f p(�!; r ) for all p > 0. If either S or � is dilational, then
RS;� is conformal.

Proof. Since � is a rotational weight, we have a real function �� r so that (2.1) is
ful�lled. Since f is radial, there is a real function f̂ that satis�es f (x) = f̂ (jx j) for
all x 2 Rn .

As S is rotational and symmetric, equations (2.3) and (2.2) give

(3:10)

RS;� f (�!; pr )

= pn � 1RS;� f p(�!; r )

= jSn � 2j pn � 1
Z r

0
f̂ (p%)�� r (%)(%sin ' r (%))n � 2

p
1 + %2 _' 2

r (%) d%

for all p; r 2 [0; 1 ), where we setjS0j = 2.
Integrating (3.10) over [0; 1 ) with respect to q� k dq (2 � k 2 N), where

q = rp, then substituting t = p%and �nally substituting %= yr we get

1
jSn � 2j

Z 1

0
RS;� f (�!; q )q� k dq

=
Z 1

0
f̂ (t)tn � 1� k dt

Z 1

0
�� r (yr )yk � 2 sinn � 2 ' r (yr )

p
1 + ( yr )2 _' 2

r (yr ) dy :

Dividing the equation by
R1

0 f (t)tn � 1� k dt results in

ck =
Z 1

0
yk � 2 �� r (yr ) sinn � 2 ' r (yr )

p
1 + y2r 2 _' 2

r (yr ) dy; 2 � k 2 N;

where ck is a real number for eachk.
By the Stone{Weierstrass Theorem the set of functionsyk (k 2 N) is a com-

plete base in L2[0; 1], whence the constantsck (k 2 N) determine the function
 (y) := �� r (yr ) sinn � 2 ' r (yr )

p
1 + y2r 2 _' 2

r (yr ) (0 < y � 1) which is therefore inde-
pendent from r .
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Since this is valid for all integers k ≥ 2, again the Stone–Weierstrass Theorem gives

that ∫
Sn−1

∫ ∞

0

q`f(qΦω) dq δcosϕ1(y)
(〈ω, ω̄〉)µω̄,r(yrω) dω

depends only on y ∈ [0, 1] and on Φω̄, hence it is a function h∗` (Φω̄, y) (this can

be determined from the functions hk,k(Φω̄) by (3.13)). We thus have for any

polynomial p̂ on R the function

(3.14) h∗〈p̂〉(Φω̄, y) =

∫
Sn−1

∫ ∞

0

p̂(q)f(qΦω) dq δcosϕ1(y)
(〈ω, ω̄〉)µω̄,r(yrω) dω,

where (ω̄, y) ∈ Sn−1 × [0, 1]. Substituting Φ = Ψ−1, ω̄ = Ψω̂, ω = Ψω̃, then ω̂ = ω̄

and finally ω̃ = ω, equation (3.14) can be written as

(3.15) h∗〈p̂〉(ω̄, y) =

∫
Sn−1

F〈p̂〉(ω)δcosϕ1(y)
(〈ω, ω̄〉)µΨω̄,r(ryΨω) dω,

where F〈p̂〉(ω) =
∫∞
0
p̂(q)f(qω) dq. Taking into account the left-hand side’s inde-

pendence from Ψ we get

0 =

∫
Sn−1

F〈p̂〉(ω)δcosϕ1(y)
(〈ω, ω̄〉)(µω̄,r(ryΨω)− µω̄,r(ryω)) dω, Ψ ∈ Knω̄,

where Knω̄ := {Ψ ∈ SO(n) : Ψω̄ = ω̄} ∼= SO(n − 1). Substituting the sequence of

polynomials p̃jl′,m′ (j ∈ N) leads to

0 =

∫
Sn−1

Yl′,m′(ω)δcosϕ1(y)
(〈ω, ω̄〉)(µω̄,r(ryΦω)− µω̄,r(ryω)) dω

by equation (3.11).

As the spherical harmonics Yl′,m′ constitute a base in L2(Sn−1), this implies

µω̄,r(ryΦω) = µω̄,r(ryω) for all ω ∈ Sn−1 satisfying 〈ω, ω̄〉 = cosϕ1(y) and for all

Φ ∈ Knω̄. Taking this into account in considering equation (3.15) we get

h∗〈p̂〉(ω̄, y) = µΨω̄,r(ryΨω̄
⊥)

∫
Sn−1

F〈p̂〉(ω)δcosϕ1(y)
(〈ω, ω̄〉) dω,

where ω̄⊥ is any unit vector perpendicular to ω̄. This implies that µ is conformal,

that proves the statement in dimensions higher than 2.
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18 �A. K URUSA

for all l0; l 2 L �; . Subtracting the �rst two equations results in sin(( l0� l )� + l0 ) =
sin((l0 � l )� � l ), that means either (l0 + l) � 0 (mod 2� ) or ( l0 � l )(2� +  ) �
� (mod 2� ). The latter congruence can not be valid for l0 = l, therefore 2l �
� (mod 2� ) should be valid for every l 2 L �; , which implies � � 2(l + l0) �
2l + 2 l0 � 0 (mod 2� ), a contradiction.

Thus, the assumption that system (3.19) degenerates for some� and  was
wrong, hence system (3.19) uniquely determines the values� � + �;r (ry! � + � + ' �

1 (y ) )
for every � and y. Since the coe�cients in system (3.19) depend neither onr nor
on � , the values � � + �;r (ry! � + � + ' �

1 (y ) ) are independent from r and from � .
The theorem is proved.

Note, that in higher dimensions the symmetry of the conformal Radon trans-
form RS;� follows from Theorem 3.4, but in the plane we need further conditions.

Theorem 3.5. Let RS;� be a conformal Radon transform in the plane with symmet-
ric ower S, and let f 2 L2

� (R2) be of compact support which satis�es condition(1)
in Theorem 3.4. Assume further that for each` 2 N the function g(x) := jx j` f (x)
satis�es

(2c) RS;� g(�� !; r ) = R S;� g� (�!; r ), where � is the reection to the x-axis.
Then � is symmetric.

Proof. We use the formulas and notations of the proof of Theorem 3.4. As the
ower is symmetric and dilational, there is a function ' (y) so that ' �

1 (y) = � ' (y).
Since� is conformal, by choosing� = 0 in system (3.19) we obtain

(3:21) ĥhp̂i (! � ; y) = Fhp̂i (! � + ' (y ) )� ! 0 ;1(y! ' (y ) ) + Fhp̂i (! � � ' (y ) )� ! 0 ;1(y! � ' (y ) )

for the function ĥhp̂i (! � ; y) = h�
hp̂i (! � ; y)=

p
1 + y2 _' 2(y). By condition (2c) we also

have

(3:22) ĥhp̂i (! � ; y) = Fhp̂i (! � � ' (y ) )� ! 0 ;1(y! ' (y ) ) + Fhp̂i (! � + ' (y ) )� ! 0 ;1(y! � ' (y ) ):

The di�erence of equations (3.21) and (3.22) implies

(3:23) 0 =
X

i 2f� 1;1g

(Fhp̂i (! � + i' (y ) ) � Fhp̂i (! � � i' (y ) )) � ! 0 ;1(y! i' (y ) )

for all y 2 (0; 1]. Substituting the sequence of polynomials �pk := ~pk
l;m (k 2 N) into

(3.23), and taking k ! 1 , by (3.11) we obtain

0 =
X

i 2f� 1;1g

(Yl;m (! � + i' (y ) ) � Yl;m (! � � i' (y ) )) � ! 0 ;1(y! i' (y ) ):
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Identifying rotational Radon transforms 21

Theorem 4.2. Let the di�erentiable conformal ower S be not selftangent. If
RS;� f (�!; r ) = F (�!; r ) is known for an unknown function f =

P m
i =1 � x i + `, where

` 2 L2(Rn ) and � x i is the Dirac measure at x i 2 Rn n f 0g, then the generating
curve c1 is determined, and the weights� !;r (x i ) can be calculated for the pairs
(!; r ) 2 Sn � 1 � R+ satisfying x i 2 S!;r .

Proof. Consider the sequence of functions

gx ;j (y ) =
�

0; if jy � xj > 1=j ,
j n � 1; if jy � xj < 1=j .

As R�
S;� = R S � ;� � with S� and � � de�ned in Theorem 2.2, we clearly have

lim
j !1

h̀ ; RS � ;� � gx ;j i = lim
j !1

hRS;� `; gx ;j i = 0

for all x 2 Rn , hence

lim
j !1

hRS;� f; g x ;j i = lim
j !1

D mX

i =1

� x i + `; RS � ;� � gx ;j

E
=

mX

i =1

lim
j !1

RS � ;� � gx ;j (x i ):

The limit lim j !1 RS � ;� � gx ;j (x i ) is not zero if and only if x 2 S�
! i ;r i

. Therefore the

set Ŝ :=
S m

i =1 S�
! i ;r i

is the support of the function h(x) := lim j !1 hRS;� f; g x ;j i .
As the ower S is not selftangent, its dual ower S� is not selftangent too,

therefore no petal S�
! i ;r i

(i = 1 ; : : : ; m) can be tangent to any other petal S�
! j ;r j

(j = 1 ; : : : ; m) if i 6= j , therefore each point of Ŝ has a neighbourhood in which
one can decide if two points ofŜ belong to the same petalS�

! i ;r i
for a suitable i =

1; : : : ; m or not. This is enough to determine the petalsS�
! i ;r i

for all i = 1 ; : : : ; m,
hence we getc�

! i ;r i
and therefore we havec! i ;r i .

Having the petals, one can calculate the weight for allx 2 S�
! i ;r i

n Ŝ by

lim
j !1

hF; gx ;j ij x i j=jx j
RS � ;1gx ;j (x i )

= lim
j !1

jx i jhRS;� f; g x ;j i

jx jRS � ;1gx ;j (x i )
= lim

j !1

jx i jRS � ;� � gx ;j (x i )

jx jRS � ;1gx ;j (x i )

=
jx i j
jx j

� �
! i ;r i

(x) = � x =jx j ;j x j (x i ):

In the intersections of the petals the weight can be determined by continuity; that
completes the proof.
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Theorem 5.1. The indicator function of an � -sector on Sn � 1 (n � 3) has the
attenuated hyper Pompeiu property.

Proof. Let A be an � -sector onSn � 1, and let S be any great sphere onSn � 1.
The intersection B := A \ S is a � -cap on S.
If S does not contain the vertices ofA , then � is in (�; �= 2) and it changes

continuously with respect to any movement ofS in a small neighbourhood, therefore
B has the Pompeiu property for some great sphere in any neighbourhood ofS.

If S contains the vertices ofA , then � = 0 or � = �= 2, and in any neighbour-
hood of S there is a connected open set of great spheresS0, that do not contain
the vertices of A . By the previous paragraph, in any neighbourhood ofS0 there is
a great sphereS00on which B00:= A \ S 00has the Pompeiu property.

The proof is complete.
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