PROJECTIVE-METRIC SPACES WITH QUADRATIC HYPERBOLAS

ÁRPÁD KURUSA AND JÓZSEF KOZMA

Abstract

A conjecture is formulated that a projective-metric space is classic if and only if it has a quadratic hyperbola. The conjecture is validated for Minkowski geometry and analytic Hilbert geometry.

1. Introduction

Let (\mathcal{M}, d) be a metric space given in a set \mathcal{M} with the metric d. If \mathcal{M} is a projective space \mathbb{P}^{n} or an affine space $\mathbb{R}^{n} \subset \mathbb{P}^{n}$ or a proper open convex subset of \mathbb{R}^{n} for some $n \in \mathbb{N}$, and the metric d is complete, continuous with respect to the standard topology of \mathbb{P}^{n}, and the geodesic lines of d are exactly the non-empty intersection of \mathcal{M} with the straight lines, then the metric d is called projective.

If $\mathcal{M}=\mathbb{P}^{n}$ and the geodesic lines of d are isometric with an Euclidean circle, or $\mathcal{M} \subseteq \mathbb{R}^{n}$ and the geodesic lines of d are isometric with an Euclidean straight line, then (\mathcal{M}, d) is called a projective-metric space of elliptic, parabolic or hyperbolic type, respectively (see [1, p. 115] and [7, p. 188]).

In a projective-metric space (\mathcal{M}, d) a set
$\left(D_{1}\right) \mathcal{H}_{d ; F_{1}, F_{2}}^{a}:=\left\{X: 2 a=\left|d\left(F_{1}, X\right)-d\left(F_{2}, X\right)\right|\right\}$ is called hyperbola (hyperboloid in higher dimensions),
where $F_{1}, F_{2} \in \mathcal{M}$ are different points, the focuses, and $a<\frac{1}{2} d\left(F_{1}, F_{2}\right)$ is a positive number.

A kind of folkloric result [6, Theorem 2.2 ${ }^{1}$ is that hyperboloids are quadratic in every classic projective-metric spaces. Following [6] we consider here the reverse of this asking if a projective-metric space is classic if it has a quadratic hyperbola.

We prove in Theorem 4.3 that a Minkowski geometry with a quadratic hyperboloid is Euclidean. This result can be understood as a hyperbolic version of Busemann's result [1, 25.4], for hyperbolas (hyperboloids).

Next we prove in Theorem 5.6 that an analytic Hilbert geometry with a quadratic hyperboloid is hyperbolic.

[^0]
2. Preliminaries

To prove our results in arbitrary dimensions, we only need to work in the affine plane, because a convex body \mathcal{K} in $\mathbb{R}^{n}(n \geq 3)$ is an ellipsoid if and only if for any fixed $k \in\{2, \ldots, n-1\}$ every k-plane through any point of \mathcal{K} intersects \mathcal{K} in a k-dimensional ellipsoid [2, (16.12), p. 91]. Therefore, in what follows, we restrict ourselves to the plane.

Points of \mathbb{R}^{2} are denoted by A, B, \ldots, vectors by $\overrightarrow{A B}$ or $\boldsymbol{a}, \boldsymbol{b}, \ldots$ The open segment with endpoints A and B is denoted by $\overline{A B}$. The open ray starting from A and passing through B is denoted by $\bar{A} B$, and the line through A and B by $A B$.

Notations $\boldsymbol{u}_{\varphi}:=(\cos \varphi, \sin \varphi)$ and $\boldsymbol{u}_{\varphi}^{\perp}:=(\cos (\varphi+\pi / 2), \sin (\varphi+\pi / 2))$ are frequently used. It is worth to note that by these assumptions we have $\frac{\mathrm{d}}{\mathrm{d} \varphi} \boldsymbol{u}_{\varphi}=\boldsymbol{u}_{\varphi}^{\perp}$.

In most cases, we use polar parameterization for the boundary $\partial \mathcal{D}$ of a domain \mathcal{D} in \mathbb{R}^{2}, starlike with respect to the origin $O \in \mathcal{D}$, by a function $\boldsymbol{r}:[-\pi, \pi) \rightarrow \mathbb{R}^{2}$ of the form $\boldsymbol{r}(\varphi)=r(\varphi) \boldsymbol{u}_{\varphi}$, where r is the radial function of \mathcal{D} with respect to O.

The affine ratio $(A, B ; C)$ of the collinear points A, B and C is defined by $(A, B ; C) \overrightarrow{B C}=\overrightarrow{A C}$. The cross ratio of the collinear points A, B and C, D is $(A, B ; C, D)=(A, B ; C) /(A, B ; D)$ [1, page 243].

Following [6], we call a curve analytic if its coordinates depend on its arc length analytically. By [6, Lemma 2.1], the border of a convex domain is an analytic curve if and only if any one of its radial functions is analytic.
2.1. BASIC PROPERTIES OF HYPERBOLAS. Let a hyperboloid $\mathcal{H}_{d ; F_{1}, F_{2}}^{a}$ be given. We define its eccentricity as $f:=\frac{1}{2} d\left(F_{1}, F_{2}\right)$ and its radius as a.

Define the function $X \mapsto \Delta(X):=d\left(F_{1}, X\right)-d\left(X, F_{2}\right)$ on \mathcal{M}. It is clearly continuous by the continuity of d. Let the ordering ' \prec ' of line $F_{1} F_{2}$ be such that $F_{1} \prec F_{2}$. Then, by the additivity of d, we have $\Delta(X)=-2 f$ for every $X \preceq F_{1}$, $\Delta(X)=2 f$ for every $F_{2} \preceq X$, and Δ is strictly monotonously increasing on $\overline{F_{1} F_{2}}$ with respect to ' \prec '. As $f>a$, we deduce the existence of unique points $A, B \in \overline{F_{1} F_{2}}$ such that $F_{1} \prec A \prec B \prec F_{2}, \Delta(A)=-2 a, \Delta(B)=2 a$, and $d(A, B)=2 a$.

It follows that the left branch $\mathcal{H}_{d ; F_{1}, F_{2}}^{a-}:=\{X: \Delta(X)=-2 a\}$ and the right branch $\mathcal{H}_{d ; F_{1}, F_{2}}^{a+}:=\{X: \Delta(X)=2 a\}$ of the hyperbola meets $\overline{F_{1} F_{2}}$ in A and B, respectively, and they are clearly disjoint sets.

The metric midpoint O of $\overline{F_{1} F_{2}}$ is called the metric center of $\mathcal{H}_{d ; F_{1}, F_{2}}^{a}$. It is clearly in $\overline{A B}$, the major axis of length $2 a$, and is therefore not on the hyperbola.
2.2. Classic geometries. A complete Riemannian manifold \mathbb{M}^{n} of dimension n is called an abstract rotational manifold with base point $O \in \mathbb{M}^{n}$ if the induced linear action of the isotropy group of O on $T_{O} \mathbb{M}^{n}$ is equivalent to $O(n)$ [8].

The Riemannian metric on \mathbb{M}^{n} is then completely described by its size function $\nu:\left[0, I_{\nu}\right) \rightarrow \mathbb{R}_{+}$such that the geodesic sphere of radius r and center O in \mathbb{M}^{n} is isometric to the Euclidean sphere of radius $\nu(r)$. This explains the notation
$\left(\mathbb{M}^{n}, \nu\right)$. A complete abstract rotational manifold of real type is homogeneous if and only if it is of constant sectional curvature κ [8]. In this case, a function $\mu:\left[0, I_{\nu}\right) \rightarrow[0, \infty)$, the projector function of $\mathbb{M}^{n}[5]$, exists such that the map $\bar{\mu}: \exp _{O}(p \boldsymbol{u}) \mapsto \mu(p) \boldsymbol{u}$ from \mathbb{M}^{n} into \mathbb{R}^{n}, where \boldsymbol{u} is a unit vector in the tangent space $T_{O} \mathbb{M}^{n} \cong \mathbb{R}^{n}$, takes geodesics into straight lines. From the quadratic model of the spaces of constant curvature ${ }^{2}$ one can easily read off the following:

\mathbb{M}	I_{ν}	κ	ν	μ
\mathbb{H}^{n}	∞	-1	$\sinh r$	$\tanh r$
\mathbb{R}^{n}	∞	0	r	r
\mathbb{S}^{n} or \mathbb{P}^{n}	$\pi / 2$	+1	$\sin r$	$\tan r$

Theorem 2.1 ([6, Theorem 2.2]). Polar equation of every metric hyperbola $\mathcal{H}_{d ; F_{1}, F_{2}}^{a}$ in any 2-dimensional manifold of constant curvature $\kappa \in\{-1,0,1\}$ is of the form

$$
\begin{equation*}
\frac{1}{\nu^{2}(r(\omega))}=\frac{\cos ^{2} \omega}{\nu^{2}(a)}+\frac{\sin ^{2} \omega}{\left(\mu^{2}(a)-\mu^{2}(f)\right)\left(1-\kappa \nu^{2}(a)\right)}, \tag{2.1}
\end{equation*}
$$

where ν and μ are defined in the table above.
2.3. Minkowski geometry. Let \mathcal{I} be an open, strictly convex, bounded domain in \mathbb{R}^{2}, symmetric to the origin O. The function $d_{\mathcal{I}}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
d_{\mathcal{I}}(X, Y)=\inf \{\lambda>0: \overrightarrow{X Y} / \lambda \in \mathcal{I}\}
$$

is a metric on \mathbb{R}^{2} [1, IV.24], and is called Minkowski metric. We say that it is analytic if $\partial \mathcal{I}$ is an analytic curve. The pair $\left(\mathbb{R}^{2}, d_{\mathcal{I}}\right)$ is called a Minkowski plane, \mathcal{I} is its indicatrix. Note that Minkowski planes are isomorphic if and only if an affine map exists between their indicatrixes. If $\partial \mathcal{I}$ is an analytic curve, we speak of analytic Minkowski plane. The Euclidean plane is, in fact, a special analytic Minkowski plane $\left(\mathbb{R}^{2}, d_{\mathcal{E}}\right)$ given by an ellipse \mathcal{E} as indicatrix.
2.4. Hilbert geometry. Let \mathcal{I} be an open, strictly convex set in \mathbb{R}^{2} with boundary $\partial \mathcal{I}$. The function $d_{\mathcal{I}}: \mathcal{I} \times \mathcal{I} \rightarrow \mathbb{R}$ defined by

$$
d_{\mathcal{I}}(A, B)= \begin{cases}0, & \text { if } A=B \\ \frac{1}{2}|\ln (A, B ; C, D)|, & \text { if } A \neq B, \text { where } \overline{C D}=\mathcal{I} \cap A B\end{cases}
$$

is a metric on \mathcal{I} [1, page 297], and is called the Hilbert metric. We say that it is analytic if $\partial \mathcal{I}$ is an analytic curve. The pair $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ is called the Hilbert plane given in \mathcal{I}. Note that two Hilbert planes are isomorphic if and only if a projectivity exists between their sets of points.

If $\partial \mathcal{I}$ is an analytic curve, we speak of an analytic Hilbert plane. Bolyai's hyperbolic plane is, in fact, a special analytic Hilbert plane $\left(\mathcal{E}, d_{\mathcal{E}}\right)$ given by an ellipse \mathcal{E}.

[^1]
3. Utilities

In this section the underlying plane is Euclidean. The technical lemmas obtained are used in the next sections, and are analogous to the similar technical lemmas in [6]. We give proofs here only because there are some disparateness in some details.

Lemma 3.1 ([6, Lemma 3.1]). For any collinear points A, B, C, D satisfying $\overline{B C} \subsetneq$ $\overline{A D}$, and a point D^{\prime} out of the line $A D$, there is a unique perspectivity ϖ such that $A=\varpi(A), B^{\prime}=\varpi(B), C^{\prime}=\varpi(C), D^{\prime}=\varpi(D)$ and $\overrightarrow{A B^{\prime}}=\overrightarrow{C^{\prime} D^{\prime}}$.

Let \mathcal{H} be a hyperbola in the plane, with center O, and foci F_{1}, F_{2}. Line $\ell=F_{1} F_{2}$ intersects \mathcal{H} in points A and B such that $A \in \overline{F_{1} B}$, and $O \in \overline{A B} \subset \overline{F_{1} F_{2}}$. Let fix points V and W on $F_{1} F_{2}$ such that $F_{1} \in \overline{V A}$ and $F_{2} \in \overline{B W}$.

Straight lines ℓ_{1} through F_{1} and ℓ_{2} through F_{2} close angles α and β with ℓ, respectively. They intersect \mathcal{H} in a common point $H(\varphi)=\ell_{1} \cap \ell_{2}$, where φ is the angle $H O B \angle$. There is an angle $\Phi \in(0, \pi / 2)$ such that for $\varphi \in(-\Phi, \Phi)$, points $H(\varphi)$ are on the 'right' branch \mathcal{H}_{r} (containing B) of the hyperbola, while for $\varphi \in(\pi-\Phi, \pi+\Phi)$, points $H(\varphi)$ are on the 'left' branch \mathcal{H}_{l} (containing A) of the hyperbola. It is clear, that angles α and β are functions of φ, and $\alpha \rightarrow 0$ and $\beta \rightarrow \pi$ when $\varphi \rightarrow 0$.

Starting from any $\varphi_{0} \in(0, \Phi)$ we define sequences of points H_{i} and corresponding angles $\varphi_{i}, \alpha_{i}=\alpha\left(\varphi_{i}\right), \beta_{i}=\beta\left(\varphi_{i}\right)$ recursively, as follows. (See Figure 3.1.)

Figure 3.1. Sequence of angles
Let $H_{0}=H\left(\varphi_{0}\right) \in \mathcal{H}_{r}, \alpha_{0}=\angle W F_{1} H_{0}$ and $\beta_{0}=\angle W F_{2} H_{0}$. Furthermore, $H_{2 i+1}=\overline{F_{1} H_{2 i}} \cap \mathcal{H}_{l}, \alpha_{2 i+1}=\alpha_{2 i}$, and $\beta_{2 i+1}=\angle W F_{2} H_{2 i+1}$. Finally, $H_{2 i+2}=$ $\overline{F_{2} H_{2 i+1}} \cap \mathcal{H}_{r}, \alpha_{2 i+2}=\angle H_{2 i+2} F 1 W$, and $\beta_{2 i+2}=\beta_{2 i+1}$. It is easy to see that all
these points and angles are well defined. Furthermore, we have $\varphi_{2 i} \in(0, \Phi)$ and $\varphi_{2 i+1} \in(\pi+\Phi, \pi-\Phi)$ for every $i \in \mathbb{N}$.

Lemma 3.2. If $i \rightarrow \infty$, then $\alpha_{2 i}$ and $\varphi_{2 i}$ tend to zero, $\beta_{2 i}, \beta_{2 i+1}$ and $\varphi_{2 i+1}$ tend to π, and $\alpha_{2 i+2} / \alpha_{2 i}$ tends to $\left(F_{1}, F_{2} ; A, B\right)$.
Proof. Simple consideration shows that $\varphi_{2 i}<\Phi<\pi / 2$ and $\varphi_{2 i+1}>\pi-\Phi>\pi / 2$, and therefore

$$
\begin{array}{cll}
\alpha_{2 i}<\pi-\beta_{2 i} \quad \text { and } \quad \pi-\beta_{2 i+1}<\alpha_{2 i+1} \quad\left(\text { or } \quad \pi-\beta_{2 i+2}<\alpha_{2 i}\right), \\
\alpha_{2 i+2}<\pi-\beta_{2 i+2} & \text { and } \quad \pi-\beta_{2 i+1}<\alpha_{2 i},
\end{array}
$$

hence $\beta_{2 i+2}>\beta_{2 i}, \alpha_{2 i+2}<\alpha_{2 i}$, and $\pi-\beta_{2 i+2}<\alpha_{2 i}<\pi-\beta_{2 i}$.
Thus, sequences $\beta_{2 i}, \beta_{2 i+1}$ monotonously increase, while sequences $\alpha_{2 i}, \alpha_{2 i+1}$ monotonously decrease. As these sequences are bounded, they are convergent.

Assuming $\lim _{i} \beta_{2 i}<\pi$, i.e. $\lim _{i}\left(\pi-\beta_{2 i}\right)>0, \lim _{i} \frac{\pi-\beta_{2 i+2}}{\pi-\beta_{2 i}}=1$, and $\lim _{i} \frac{\alpha_{2 i}}{\pi-\beta_{2 i}}=$ 1 follow, hence the sinus law for triangle $\triangle F_{1} F_{2} H_{2 i}$ implies

$$
\lim _{i \rightarrow \infty} \frac{d\left(F_{2}, H_{2 i}\right)}{d\left(H_{2 i}, F_{1}\right)}=\lim _{i \rightarrow \infty} \frac{\sin \alpha_{2 i}}{\sin \left(\pi-\beta_{2 i}\right)} \cdot \lim _{i \rightarrow \infty} \frac{\pi-\beta_{2 i}}{\alpha_{2 i}}=1
$$

which, by the continuity of d, gives $d\left(F_{2}, B\right)=d\left(B, F_{1}\right)$, a contradiction.
Thus $\lim _{i} \beta_{2 i}=\pi$, hence also $\beta_{2 i+1}$ and $\varphi_{2 i+1}$ tend to π, and furthermore, sequences $\alpha_{2 i}, \alpha_{2 i+1}$ and $\varphi_{2 i}$ tend to zero, and observing Figure 3.1, we see that

$$
\begin{array}{ll}
h_{1}\left(\alpha_{2 i}\right):=d\left(F_{1}, H_{2 i}\right) \rightarrow d\left(F_{1}, B\right), & h_{1}\left(\alpha_{2 i+1}\right):=d\left(F_{1}, H_{2 i+1}\right) \rightarrow d\left(F_{1}, A\right), \tag{3.1}\\
h_{2}\left(\beta_{2 i}\right):=d\left(F_{2}, H_{2 i}\right) \rightarrow d\left(F_{2}, B\right), & h_{2}\left(\beta_{2 i+1}\right):=d\left(F_{2}, H_{2 i+1}\right) \rightarrow d\left(F_{2}, A\right) .
\end{array}
$$

The sine law in triangles $\triangle F_{1} F_{2} H_{2 i}$ and $\triangle F_{1} F_{2} H_{2 i+1}$ gives

$$
\frac{h_{2}\left(\beta_{2 i+1}\right)}{h_{1}\left(\alpha_{2 i+1}\right)}=\frac{\sin \alpha_{2 i+1}}{\sin \left(\pi-\beta_{2 i+1}\right)} \quad \text { and } \quad \frac{h_{2}\left(\beta_{2 i+2}\right)}{h_{1}\left(\alpha_{2 i+2}\right)}=\frac{\sin \alpha_{2 i+2}}{\sin \left(\pi-\beta_{2 i+2}\right)}
$$

respectively. Multiplying these by $\cos \beta_{2 i+1} / \cos \alpha_{2 i+1}$ and $\cos \beta_{2 i+2} / \cos \alpha_{2 i+2}$, respectively, and taking the ratio of the results give

$$
\frac{\tan \alpha_{2 i+2}}{\tan \alpha_{2 i}}=\frac{h_{2}\left(\beta_{2 i+2}\right) \cos \beta_{2 i+2}}{h_{1}\left(\alpha_{2 i+2}\right) \cos \alpha_{2 i+2}} \frac{h_{1}\left(\alpha_{2 i+1}\right) \cos \alpha_{2 i+1}}{h_{2}\left(\beta_{2 i+1}\right) \cos \beta_{2 i+1}} .
$$

By (3.1), the right-hand side of this equation tends to $\left(F_{1}, F_{2} ; A, B\right)$, so the proof is complete.

Let \boldsymbol{r}_{1} and \boldsymbol{r}_{2} be curves in the plane with analytic arc length parametrization on $[-1,1]$ such that at their common point $\boldsymbol{r}_{1}(0)=\boldsymbol{r}_{2}(0)$ they have common tangent $\dot{\boldsymbol{r}}_{1}(0)=\dot{\boldsymbol{r}}_{2}(0)$. Let line ℓ through $\boldsymbol{r}_{1}(0)$ be orthogonal to $\dot{\boldsymbol{r}}_{1}(0)$, and the analytic curve \boldsymbol{h} parameterized on $[0,1]$ by arc length intersects ℓ in $B=\boldsymbol{h}(0)$ orthogonally, and $\dot{\boldsymbol{r}}_{1}(0)=\dot{\boldsymbol{h}}(0)$.

We are given different points F_{1}, F_{2} on ℓ such that
(C1) either $\overline{F_{2} J} \subset \overline{B J} \subset \overline{F_{1} J}$, where $J=\boldsymbol{r}_{1}(0)$, and $\dot{\boldsymbol{r}}_{1}(0)=\boldsymbol{u}_{\pi / 2}$,
(C2) or $\overline{I F_{1}} \subset \overline{I B} \subset \overline{I F_{2}}$, where $I=\boldsymbol{r}_{1}(0)$, and $\dot{\boldsymbol{r}}_{1}(0)=\boldsymbol{u}_{-\pi / 2}$.

For sufficiently small $s>0$, points $H=\boldsymbol{h}(s)$ on the curve \boldsymbol{h} define the straight lines $\ell_{1}:=F_{1} H$ and $\ell_{2}:=F_{2} H$, closing small angle α and $\tilde{\beta}$ with ℓ, respectively (where $\tilde{\beta}=\beta-\pi$).

The lines ℓ_{1} and ℓ_{2} intersect the curves \boldsymbol{r}_{1} and \boldsymbol{r}_{2} in points $C_{1}=\boldsymbol{r}_{1}\left(s_{1,1}\right), D_{1}=$ $\boldsymbol{r}_{2}\left(s_{2,1}\right)$, and $C_{2}=\boldsymbol{r}_{1}\left(s_{1,2}\right), D_{2}=\boldsymbol{r}_{2}\left(s_{2,2}\right)$, respectively, where $s_{i, j}$ is the arc length parameter of \boldsymbol{r}_{i} at its intersection with $\ell_{j}(i, j=1,2)$. Let $\delta_{1}=\left\langle\boldsymbol{r}_{1}\left(s_{1,1}(\alpha)\right)-\right.$ $\left.\boldsymbol{r}_{2}\left(s_{2,1}(\alpha)\right), \boldsymbol{u}_{\alpha}\right\rangle$ and $\delta_{2}=\left\langle\boldsymbol{r}_{1}\left(s_{1,2}(\tilde{\beta})\right)-\boldsymbol{r}_{2}\left(s_{2,2}(\tilde{\beta})\right), \boldsymbol{u}_{\tilde{\beta}}\right\rangle$.

Lemma 3.3. If H tends to B on the curve $\boldsymbol{h}, K=\boldsymbol{r}_{1}(0)$ and $\delta_{2}(\tilde{\beta}) \neq 0$, then

$$
\begin{equation*}
\frac{\delta_{1}(\alpha)}{\delta_{2}(\tilde{\beta})} \rightarrow\left(F_{1}, F_{2} ; K, B\right)^{k}, \quad \text { where } k \geq 2 \tag{3.2}
\end{equation*}
$$

Proof. If there is $\tilde{\beta}$ in every neighborhood of zero such that $\delta_{2}(\tilde{\beta}) \neq 0$, then, by the analyticity of \boldsymbol{r}_{1} and \boldsymbol{r}_{2}, integer $k:=\min \left\{i \in \mathbb{N}: \frac{d^{i} \boldsymbol{r}_{1}}{d s}(0) \neq \frac{d^{i} \boldsymbol{r}_{2}}{d s}(0)\right\}$ is well defined, and $k \geq 2$.

If $\lim _{s \rightarrow 0} \frac{\delta_{1}(\bar{\alpha})}{\delta_{2}(\tilde{\beta})}$ exists, then we can apply L'Hospital's rule, which results in

$$
\begin{align*}
\lim _{s \rightarrow 0} \frac{\delta_{1}(\alpha)}{\delta_{2}(\tilde{\beta})} & =\lim _{s \rightarrow 0} \frac{\frac{d \delta_{1}}{d \alpha} \frac{d \alpha}{d s}}{\frac{d \delta_{2}}{d \tilde{\beta}} \frac{d \tilde{\beta}}{d s}}=\lim _{s \rightarrow 0} \frac{\frac{d \delta_{1}}{d \alpha}}{\frac{d \delta_{2}}{d \tilde{\beta}}} \lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}}=\lim _{s \rightarrow 0} \frac{\frac{d^{2} \delta_{1}}{d \alpha^{2}}}{\frac{d^{2} \delta_{2}}{d \tilde{\beta}^{2}}}\left(\lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}}\right)^{2} \\
& =\cdots=\lim _{s \rightarrow 0} \frac{\frac{d^{k} \delta_{1}}{d \alpha^{k}}}{\frac{d^{k} \delta_{2}}{d \tilde{\beta}^{k}}}\left(\lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}}\right)^{k} . \tag{3.3}
\end{align*}
$$

For the second limit in (3.3), take the orthogonal projection H^{\perp} of H onto ℓ, and use L'Hospital's rule to get

$$
\begin{equation*}
\frac{\left|F_{2}-B\right|}{\left|F_{1}-B\right|}=\lim _{s \rightarrow 0} \frac{\left|F_{2}-H^{\perp}\right|}{\left|F_{1}-H^{\perp}\right|}=\lim _{s \rightarrow 0} \frac{\tan \alpha}{-\tan \tilde{\beta}}=-\lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}} \tag{3.4}
\end{equation*}
$$

For the first limit in (3.3), we first observe that

$$
\frac{d^{k} \delta_{j}}{d \xi^{k}}(\xi)=\left\langle\frac{d^{k} \boldsymbol{r}_{1}}{d s_{1, j}^{k}}\left(s_{1, j}(\xi)\right)\left(\frac{d s_{1, j}}{d \xi}(\xi)\right)^{k}-\frac{d^{k} \boldsymbol{r}_{2}}{d s_{2, j}^{k}}\left(s_{2, j}(\xi)\right)\left(\frac{d s_{2, j}}{d \xi}(\xi)\right)^{k}, \boldsymbol{u}_{\xi}\right\rangle+\Delta
$$

where $\xi=\alpha$ for $j=1, \xi=\tilde{\beta}$ for $j=2$, and $\Delta=\left\langle\boldsymbol{f}(\xi), \boldsymbol{u}_{\xi}\right\rangle+\left\langle\boldsymbol{g}(\xi), \boldsymbol{u}_{\xi+\pi / 2}\right\rangle$, where vectors \boldsymbol{f} and \boldsymbol{g} are composed of lower order derivatives $d^{\ell} \boldsymbol{r}_{i} / d s_{i, j}^{\ell}\left(s_{i, j}(\xi)\right)(\ell<k)$ multiplied by a sum of products of various lower order derivatives ($m \leq k-\ell$) of the form $d^{m} s_{i, j} / d \xi^{m}(\xi)(i=1,2)$. As for every $0<m \leq k-\ell, \frac{d^{\ell} \boldsymbol{r}_{1}}{d s_{1, j}}(0)=\frac{d^{\ell} \boldsymbol{r}_{2}}{d s_{2, j}}(0)$ and $\frac{d^{m} s_{1, j}}{d \xi^{m}}(0)=\frac{d^{m} s_{2, j}}{d \xi^{m}}(0)$, we obtain $\frac{d^{k} \delta_{j}}{d \xi^{k}}(0)=\left\langle\frac{d^{k} r_{1}}{d s_{1, j}^{k}}(0)-\frac{d^{k} r_{2}}{d s_{2, j}^{k}}(0), \boldsymbol{u}_{0}\right\rangle\left(\frac{d s_{1, j}}{d \xi}(0)\right)^{k}$. Substituting this, (3.4), and the evident equations $\frac{d s_{1,1}}{d \alpha}(0)=\frac{d s_{2,1}}{d \alpha}(0)=\left|F_{1}-K\right|$ and $\frac{d s_{1,2}}{d \tilde{\beta}}(0)=\frac{d s_{2,2}}{d \tilde{\beta}}(0)=-\left|F_{2}-K\right|$ into (3.3) we arrive at

$$
\lim _{s \rightarrow 0} \frac{\delta_{1}(\alpha)}{\delta_{2}(\tilde{\beta})}=\left(\frac{\left|F_{1}-K\right|}{\left|F_{2}-K\right|}\right)^{k}\left(\frac{\left|F_{1}-B\right|}{\left|F_{2}-B\right|}\right)^{k}=\left(F_{1}, F_{2} ; K, B\right)^{k}
$$

Notice that

$$
\frac{d^{2} \delta_{j}}{d \xi^{2}}(0)=\left\langle\frac{d^{2} \boldsymbol{r}_{1}}{d s_{1, j}^{2}}(0)-\frac{d^{2} \boldsymbol{r}_{2}}{d s_{2, j}^{2}}(0), \boldsymbol{u}_{0}\right\rangle\left(\frac{d s_{1, j}}{d \xi}(0)\right)^{2}= \pm\left(\kappa_{1}(0)-\kappa_{2}(0)\right)\left(\frac{d s_{1, j}}{d \xi}(0)\right)^{2}
$$

where κ_{1} and κ_{2} are the signed curvatures of the curves \boldsymbol{r}_{1} and \boldsymbol{r}_{2}, respectively. Thus, the signed curvatures of the curves coincide if and only if $k \geq 3$.

Now modify the previous configuration by changing the position and role of the lines ℓ_{1} and ℓ_{2}.

Let they pass through the midpoint O of the segment $\overline{F_{1} F_{2}}$, and close angles α and β with ℓ, respectively. Denote the intersections of ℓ_{1} and ℓ_{2} with \boldsymbol{r}_{1} and \boldsymbol{r}_{2} by \bar{C}_{1}, \bar{D}_{1} and \bar{C}_{2}, \bar{D}_{2}, respectively. Finally, let s_{i} be the arc length parameter of
$\boldsymbol{r}_{i}(i=1,2)$, and introduce $\delta(\alpha)=\left\langle C_{1}-D_{1}, \boldsymbol{u}_{\alpha}\right\rangle$ and $\delta(\tilde{\beta})=\left\langle C_{2}-D_{2}, \boldsymbol{u}_{\tilde{\beta}}\right\rangle$ where $\tilde{\beta}=\beta-\pi$.
Lemma 3.4. If H tends to B on the curve $\boldsymbol{h}, K=\boldsymbol{r}_{0}(0)$ and $\delta(\tilde{\beta}) \neq 0$, then

$$
\begin{equation*}
\frac{\delta(\alpha)}{\delta(\tilde{\beta})} \rightarrow\left(F_{2}, F_{1} ; B\right)^{k}, \quad \text { where } k \geq 2 \tag{3.5}
\end{equation*}
$$

Proof. If there is $\tilde{\beta}$ in every neighborhood of zero such that $\delta(\tilde{\beta}) \neq 0$, then, by the analyticity of \boldsymbol{r}_{1} and \boldsymbol{r}_{2}, integer $k:=\min \left\{i \in \mathbb{N}: \frac{d^{i} \boldsymbol{r}_{1}}{d s}(0) \neq \frac{d^{i} \boldsymbol{r}_{2}}{d s}(0)\right\}$ is well defined and $k \geq 2$.

If $\lim _{s \rightarrow 0} \frac{\delta(\bar{\alpha})}{\delta(\tilde{\beta})}$ exists, then L'Hospital's rule can be used, which results in

$$
\begin{aligned}
\lim _{s \rightarrow 0} \frac{\delta(\alpha)}{\delta(\tilde{\beta})} & =\lim _{s \rightarrow 0} \frac{\frac{d \delta(\alpha)}{d \alpha} \frac{d \alpha}{d s}}{\frac{d \delta(\tilde{\beta})}{d \tilde{\beta}} \frac{d \tilde{\beta}}{d s}}=\lim _{s \rightarrow 0} \frac{\frac{d \delta(\alpha)}{d \alpha}}{\frac{d \delta(\tilde{\beta})}{d \tilde{\beta}}} \lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}}=\lim _{s \rightarrow 0} \frac{\frac{d^{2} \delta(\alpha)}{d \alpha^{2}}}{\frac{d^{2} \delta(\tilde{\beta})}{d \tilde{\beta}^{2}}}\left(\lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}}\right)^{2} \\
& =\cdots=\lim _{s \rightarrow 0} \frac{\frac{d^{k} \delta(\alpha)}{d \alpha^{k}}}{\frac{d^{k} \delta(\tilde{\beta})}{d \tilde{\beta}^{k}}}\left(\lim _{s \rightarrow 0} \frac{\frac{d \alpha}{d s}}{\frac{d \tilde{\beta}}{d s}}\right)^{k}=\left(\lim _{s \rightarrow 0} \frac{\frac{d \alpha}{\frac{d s}{d}}}{\frac{d \tilde{\beta}}{d s}}\right)^{k} .
\end{aligned}
$$

By (3.4), this proves the lemma.
Notice again that the signed curvatures of the curves coincide if and only if $k \geq 3$.

4. Minkowski planes with a quadratic hyperbola

We consider the quadratic hyperbola $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ with eccentricity $2 f=d_{\mathcal{I}}\left(F_{1}, F_{2}\right)$ in the Minkowski plane $\left(\mathbb{R}^{2}, d_{\mathcal{I}}\right)$ with indicatrix \mathcal{I}. By [4, (ii) of Theorem 3] every straight line parallel to $F_{1} F_{2}$ intersects $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ in exactly two points, hence $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is a hyperbolic quadric.

According to Subsection 2.1, the left-branch and right-branch of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ intersect $\overline{F_{1} F_{2}}$ in the points A and B. Let t_{A}, t_{B} be the tangents of $\mathcal{H}_{d_{\mp} ; F_{1}, F_{2}}^{a}$ at A, B, respectively. Then, the obvious symmetry in the midpoint O of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ entails $t_{A} \| t_{B}$.

Let \mathcal{I}_{O} be the translate of \mathcal{I} centered at O, and denote its intersections with line $F_{1} F_{2}$ by I, J so that I is on the ray $\bar{O} F_{1}$ and J is on $\bar{O} F_{2}$. Denote the tangents of \mathcal{I} at I, J by t_{I}, t_{J}, respectively. Then $t_{I} \| t_{J}$ by the symmetry of \mathcal{I}.

As a hyperbolic quadric, $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ has two asymptotes ℓ_{+}and ℓ_{-}through O. These intersect the straight lines ℓ_{1} and ℓ_{2} through F_{1} and F_{2}, respectively, in points $P_{1}^{ \pm}=\ell_{ \pm} \cap \ell_{1}$ and $P_{2}^{ \pm}=\ell_{ \pm} \cap \ell_{2}$.

Introduce now an affine coordinate system such as $O=(0,0), J=(1,0)$, and $P_{2}^{+}=\left(f, \sqrt{f^{2}-a^{2}}\right)$. Choose the Euclidean metric d_{e} so that $\{(1,0),(0,1)\}$ is an orthonormal basis. Then $F_{1}=(-f, 0), F_{2}=(f, 0), A=(-a, 0)$, and $B=(a, 0)$.

Given the Euclidean metric d_{e}, we can define r as the radial function of $\partial \mathcal{I}_{O}$ with respect to O, the angles $\alpha=\angle\left(H F_{1} O\right), \tilde{\beta}=\angle\left(H F_{2} B\right)(\beta:=\pi-\tilde{\beta})$ and $\varphi=\angle(H O B)$ for the points H on the B-branch (that contains B) of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$. Finally, we define the lengths $h_{1}(\alpha):=d_{e}\left(F_{1}, H\right), h_{2}(\beta):=d_{e}\left(F_{2}, H\right)$, and $h(\varphi):=$ $d_{e}(O, H)$. Then $d_{\mathcal{I}}\left(F_{1}, H\right)=h_{1}(\alpha) / r(\alpha)$, and $d_{\mathcal{I}}\left(F_{2}, H\right)=h_{2}(\beta) / r(\beta)$, so we have

$$
\begin{equation*}
2 a=\frac{h_{1}(\alpha)}{r(\alpha)}-\frac{h_{2}(\beta)}{r(\beta)} . \tag{4.1}
\end{equation*}
$$

Figure 4.1. A hyperbola in a Minkowski plane
Lemma 4.1. Tangents t_{A}, t_{B}, t_{I} and t_{J} are all parallel.
Proof. Due to the quadraticity, φ and H are bijectively related, hence the functions $\alpha(\varphi), \beta(\varphi)$ are also well defined. Differentiating (4.1) with respect to φ leads to

$$
\begin{equation*}
0=\frac{\frac{d h_{1}(\alpha)}{d \alpha} r(\alpha)-h_{1}(\alpha) \frac{d r(\alpha)}{d \alpha}}{r^{2}(\alpha)} \frac{d \alpha}{d \varphi}-\frac{\frac{d h_{2}(\beta)}{d \beta} r(\beta)-h_{2}(\beta) \frac{d r(\beta)}{d \beta}}{r^{2}(\beta)} \frac{d \beta}{d \varphi} \tag{4.2}
\end{equation*}
$$

As $\varphi=0$ implies $\alpha=0, \beta=\pi, r(0)=r(\pi)=1$, and $\frac{d h_{1}}{d \alpha}(0)=\frac{d h_{2}}{d \beta}(\pi)=0$ follows from $t_{B} \perp_{d_{e}} F_{1} F_{2},(4.2)$ gives at $\varphi=0$ that

$$
r^{\prime}(0)\left[-h_{1}(0) \frac{d \alpha}{d \varphi}(0)+h_{2}(\pi) \frac{d \beta}{d \varphi}(0)\right]=0
$$

According to (3.4), $h_{1}(0)=\left|F_{1}-B\right|$, and $h_{2}(\pi)=\left|F_{2}-B\right|$, the second factor in the left-hand side is positive, hence $r^{\prime}(0)=0$ follows that is $t_{B} \perp_{d_{e}} F_{1} F_{2}$, which proves the lemma.

Lemma 4.2. The curve $\partial \mathcal{I}_{O}$ is analytic in a neighborhood of I and J.
Proof. The radial functions h_{1}, h_{2}, the angles $\alpha(s), \beta(s)$, and the inverses of the angles, where s is the arc length parameter, are clearly analytic, hence we deduce that $\beta(\alpha)$ and $\alpha(\beta)$ are also analytic functions.

As $x \mapsto 1 / x$ is analytic in a neighborhood of 1 , in order to prove that $r(\alpha)$ is analytic in a neighborhood of 0 , it is enough to prove that $\bar{r}(\alpha):=1 / r(\alpha)$ is analytic in a neighborhood of 0 .

Bearing this in mind, we reformulate (4.1) as

$$
\begin{equation*}
\bar{r}(\alpha)=\frac{h_{2}(\tilde{\beta}(\alpha))}{h_{1}(\alpha)} \bar{r}(\tilde{\beta}(\alpha))+\frac{2 a}{h_{1}(\alpha)} . \tag{4.3}
\end{equation*}
$$

Let us now introduce the functions $f(\alpha):=\tilde{\beta}(\alpha), g(\alpha):=\frac{h_{2}(\tilde{\beta}(\alpha))}{h_{1}(\alpha)}$, and $h(\alpha):=$ $\frac{2 a}{h_{1}(\alpha)}$. Then $\phi(\alpha):=\bar{r}(\alpha)$ is a solution of the functional equation

$$
\phi(\alpha)=g(\alpha) \phi(f(\alpha))+h(\alpha)
$$

in which functions f, g and h are analytic in a neighborhood of $0, \frac{d f}{d \alpha}(0)=\frac{h_{2}(0)}{h_{1}(0)}<1$, $g(0)=\frac{h_{2}(0)}{h_{1}(0)}<1$, and $h(0)=\frac{2 a}{h_{1}(0)}=\frac{2 a}{|F 1-B|}<1$. By [3, Theorem 4.6], such a functional equation has a unique solution for ϕ, which additionally is analytic in a neighborhood of 0 . Consequently, $r(\alpha)$ is the reciprocal of that unique analytic solution, so $\partial \mathcal{I}_{O}$ is analytic around J, and, by its symmetry, around I too.

Theorem 4.3. A Minkowski-plane that has a quadratic hyperbola is Euclidean.
Proof. We compare $\partial \mathcal{I}_{O}$, analytic by Lemma 4.2, with the unit circle \mathcal{C} of d_{e}.
Observe that hyperbolas $\mathcal{H}_{d_{e} ; F_{1}, F_{2}}^{a}$ and $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ have two common tangents t_{A} and t_{B}, two common asymptotes, and two common points A and B, hence, due to their quadraticity, they coincide.

By the definition of $\mathcal{H}_{d_{e} ; F_{1}, F_{2}}^{a}$ we have $h_{1}(\alpha)-h_{2}(\beta)=2 a$, which together with (4.1) implies

$$
\begin{equation*}
\delta(\alpha)=\delta(\beta) \frac{h_{2}(\beta)}{h_{1}(\alpha)+2 a \delta(\beta)} \tag{4.4}
\end{equation*}
$$

where $\delta(\alpha)=1-r(\alpha)$ is the radial difference of \mathcal{C} and $\partial \mathcal{I}_{O}$.
If in every neighborhood of I curves \mathcal{C} and $\partial \mathcal{I}_{O}$ differ, then (4.4) implies

$$
\lim _{\varphi \rightarrow 0} \frac{\delta(\alpha)}{\delta(\beta)}=\frac{f-a}{f+a}=\left(F_{2}, F_{1} ; B\right)
$$

which contradicts (3.5). It follows that in a neighborhood of I curves \mathcal{C} and $\partial \mathcal{I}_{O}$ coincide.

However, if $\delta\left(\beta_{0}\right) \neq 0$ for any β_{0}, then no value of the 0 -convergent sequence $\beta_{2 i}$ constructed in Lemma 3.2 can vanish by (4.4), therefore no β_{0} can exist for which $\delta\left(\beta_{0}\right) \neq 0$.

By the symmetry of the configuration, we deduce also, that no α can exist for which $\delta(\alpha) \neq 0$, hence \mathcal{C} and $\partial \mathcal{I}_{O}$ coincide.

5. Hilbert planes with a quadratic hyperbola

Let $\mathcal{I} \subset \mathbb{R}^{2} \subset \mathbb{P}^{2}$ be a bounded, strictly convex open domain, and consider the Hilbert plane $\left(\mathcal{I}, d_{\mathcal{I}}\right)$. Let $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ be a quadratic hyperbola in $\left(\mathcal{I}, d_{\mathcal{I}}\right)$.

Let the intersections of line $\ell=F_{1} F_{2}$ with $\partial \mathcal{I}$ be denoted by I and J so that $F_{1} \in \overline{I F_{2}}$, and denote the tangents of \mathcal{I} at I and J by t_{I} and t_{J}, respectively.

Take the point $T_{\mathcal{I}}=t_{I} \cap t_{J}$ in \mathbb{P}^{2} and a straight line $\ell \subset \mathbb{P}^{2}$ through $T_{\mathcal{I}}$ that avoids \mathcal{I}. From now on, we consider the configuration in the affine plane \mathbb{R}^{2} in which $T_{\mathcal{I}}$ is on the ideal line, hence $t_{I} \| t_{J}$.

By Lemma 3.1, there is a perspectivity such that the respective image points $I, F_{1}^{\prime}, F_{2}^{\prime}, J^{\prime}$ of I, F_{1}, F_{2}, J satisfy $\overrightarrow{I F_{1}^{\prime}}=\overrightarrow{F_{2}^{\prime} J^{\prime}}$, meanwhile $t_{I} \| t_{J^{\prime}}$. Thus, considering the configuration in the image plane allows us to assume from now on that $\overrightarrow{I F_{1}}=$ $\overrightarrow{F_{2} J}$.

Denote the intersections of line ℓ with $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ by A and B so that $A \in \overline{F_{1} B}$. By the definition of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ we have

$$
\left(I, J ; A, F_{1}\right)\left(I, J ; A, F_{2}\right)=e^{-4 a}=\left(I, J ; F_{1}, B\right)\left(I, J ; F_{2}, B\right)
$$

which implies $(I, J ; A)(I, J ; B)=\left(I, J ; F_{1}\right)\left(I, J ; F_{2}\right)$. As $\left(I, J ; F_{1}\right)\left(I, J ; F_{2}\right)=1$ follows from $\overrightarrow{I F_{1}}=\overrightarrow{F_{2} J}$, and $(I, J ; A)(I, J ; B)=1$ gives $\overrightarrow{I A}=\overrightarrow{B J}$, we found that the affine and metric midpoints of the segments $\overline{I J}, \overline{A B}$ and $\overline{F_{1} F_{2}}$ coincide. Let this point be denoted by O.

Figure 5.1. Metric hyperbola in the Hilbert plane

Take the straight line ℓ_{O} through O that is parallel to t_{I}. Fix an affine coordinate system so that $O=(0,0), J=(1,0)$ and a point $Y \in \ell_{O} \backslash\{O\}$ is $(0,1)$. Let d_{e} be the Euclidean metric such that $\{(0,1),(1,0)\}$ is an orthonormal bases.

Let H be a moving point on $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ that defines angles $\alpha=\angle\left(H F_{1} J\right), \beta=$ $\angle\left(H F_{2} J\right)$ and $\varphi=\angle(H O J)$; points $V_{1}=\overline{F_{1}} H \cap \partial \mathcal{I}, V_{2}=\overline{F_{2}} H \cap \partial \mathcal{I}, U_{1}=\bar{H} F_{1} \cap \partial \mathcal{I}$, and $U_{2}=\bar{H} F_{2} \cap \partial \mathcal{I}$; and distances $r_{1}(\alpha)=d_{e}\left(F_{1}, V_{1}\right), r_{2}(\beta)=d_{e}\left(F_{2}, V_{2}\right), h_{1}(\alpha)=$ $d_{e}\left(F_{1}, H\right)$, and $h_{2}(\beta)=d_{e}\left(F_{2}, H\right)$ (see Figure 5.1).

Lemma 5.1. The respective tangents t_{A} and t_{B} of $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ at A and B, respectively, are parallel with t_{I} and t_{J}.

Proof. We start with the Hilbert distances

$$
\begin{align*}
& d_{\mathcal{I}}\left(F_{1}, H\right)=-\frac{1}{2} \ln \left(\frac{r_{1}(\alpha+\pi)}{r_{1}(\alpha)} / \frac{r_{1}(\alpha+\pi)+h_{1}(\alpha)}{r_{1}(\alpha)-h_{1}(\alpha)}\right), \tag{5.1}\\
& d_{\mathcal{I}}\left(H, F_{2}\right)=-\frac{1}{2} \ln \left(\frac{r_{2}(\beta+\pi)}{r_{2}(\beta)} / \frac{r_{2}(\beta+\pi)+h_{2}(\beta)}{r_{2}(\beta)-h_{2}(\beta)}\right) .
\end{align*}
$$

As we have $d_{\mathcal{I}}\left(F_{1}, B\right)-d_{\mathcal{I}}\left(B, F_{2}\right)=2 a$, and $d_{\mathcal{I}}$ is continuous, there is a neighborhood \mathcal{B} of B in which $d_{\mathcal{I}}\left(F_{1}, H\right)>d_{\mathcal{I}}\left(H, F_{2}\right)$ for every point H. Thus, the equation

$$
2 a=d_{\mathcal{I}}\left(F_{1}, H\right)-d_{\mathcal{I}}\left(H, F_{2}\right)=-\frac{1}{2} \ln \frac{\frac{r_{1}(\alpha+\pi)}{r_{1}(\alpha)} / \frac{r_{1}(\alpha+\pi)+h_{1}(\alpha)}{r_{1}(\alpha)-h_{1}(\alpha)}}{\frac{r_{2}(\beta+\pi)}{r_{2}(\beta)} / \frac{r_{2}(\beta+\pi)+h_{2}(\beta)}{r_{2}(\beta)-h_{2}(\beta)}}
$$

describes $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ in \mathcal{B}. After some rearrangement this gives

$$
\begin{equation*}
e^{-4 a}\left(1+\frac{h_{1}(\alpha)}{r_{1}(\alpha+\pi)}\right)\left(1-\frac{h_{2}(\beta)}{r_{2}(\beta)}\right)=\left(1-\frac{h_{1}(\alpha)}{r_{1}(\alpha)}\right)\left(1+\frac{h_{2}(\beta)}{r_{2}(\beta+\pi)}\right) . \tag{5.2}
\end{equation*}
$$

By (5.1), the sum $2 t(\alpha)=d_{\mathcal{I}}\left(F_{1}, H\right)+d_{\mathcal{I}}\left(H, F_{2}\right)$ is

$$
2 t(\alpha)=-\frac{1}{2} \ln \left[\left(\frac{r_{1}(\alpha+\pi)}{r_{1}(\alpha)} / \frac{r_{1}(\alpha+\pi)+h_{1}(\alpha)}{r_{1}(\alpha)-h_{1}(\alpha)}\right)\left(\frac{r_{2}(\beta+\pi)}{r_{2}(\beta)} / \frac{r_{2}(\beta+\pi)+h_{2}(\beta)}{r_{2}(\beta)-h_{2}(\beta)}\right)\right],
$$

which, after some rearrangements, results in

$$
e^{-4 t(\alpha)}\left(1+\frac{h_{1}(\alpha)}{r_{1}(\alpha+\pi)}\right)\left(1+\frac{h_{2}(\beta)}{r_{2}(\beta+\pi)}\right)=\left(1-\frac{h_{1}(\alpha)}{r_{1}(\alpha)}\right)\left(1-\frac{h_{2}(\beta)}{r_{2}(\beta)}\right)
$$

Multiplying (5.2) with this and taking square root of the product yield

$$
e^{2 a+2 t(\alpha)}\left(1-\frac{h_{1}(\alpha)}{r_{1}(\alpha)}\right)=1+\frac{h_{1}(\alpha)}{r_{1}(\alpha+\pi)} .
$$

Expressing $h_{1}(\alpha)$ gives

$$
h_{1}(\alpha)=\frac{\left(e^{2 a+2 t(\alpha)}-1\right) r_{1}(\alpha) r_{1}(\alpha+\pi)}{e^{2 a+2 t(\alpha)} r_{1}(\alpha+\pi)+r_{1}(\alpha)} .
$$

The derivative of this vanishes at 0 , because the derivative of r_{1} vanishes at 0 and at π as $t_{I} \perp \ell \perp t_{J}$, and the derivative of t also vanishes at 0 as $2 t(\alpha) \geq d_{\mathcal{I}}\left(F_{2}, F_{1}\right)$ by the triangle inequality of $d_{\mathcal{I}}$, and equality holds if and only if $H \in \overline{F_{1} F_{2}}$, i.e. when $H=B$, due to the strictness of the triangle inequality. Thus, $t_{B} \perp \ell$.

The very same reasoning for point A leads to the deduction of $t_{A} \perp \ell$, so the lemma is proved.

Lemma 5.2. If $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is the intersection of a hyperbolic quadric \mathcal{H} with \mathcal{I}, then point $Y \in \ell_{O}$ can be chosen so that for the open unit disc \mathcal{D} of d_{e} the hyperbola $\mathcal{H}_{d_{\mathcal{D}} ; F_{1}, F_{2}}^{a}$ in the hyperbolic plane $\left(\mathcal{D}, d_{\mathcal{D}}\right)$ coincides with $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ in $\mathcal{I} \cap \mathcal{D}$.
Proof. The touching points of two parallel tangents of \mathcal{H} are symmetric in the center of \mathcal{H}, hence O is the center of \mathcal{H}. Therefore, the asymptotes ℓ_{+}and ℓ_{-}of \mathcal{H} intersect each other in O. Let C be the opposite vertice of A in the parallelogram defined by edges ℓ and t_{A}, vertice O, and diagonal ℓ_{-}. (See Figure 5.2.)

Figure 5.2. Common hyperbola of Hilbert planes $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ and $\left(\mathcal{C}, d_{\mathcal{C}}\right)$.
By (2.1), hyperbola $\mathcal{H}_{d_{\mathcal{D}} ; F_{1}, F_{2}}^{a}$ is the intersection of \mathcal{D} and a hyperbolic quadric \mathcal{H}^{\prime}, and, by symmetry, the asymptotes ℓ_{+}^{\prime} and ℓ_{-}^{\prime} of \mathcal{H}^{\prime} intersect each other in O. Let C^{\prime} be the opposite edge of A in the parallelogram defined by vertices ℓ and t_{A}, edge O, and diagonal ℓ_{-}^{\prime}.

Points A, B and tangents t_{A}, t_{B} are common of \mathcal{H} and \mathcal{H}^{\prime} by Lemma 5.1.
Equation (2.1) gives the polar-equation

$$
\frac{1}{\sinh ^{2}(r(\omega))}=\frac{\cos ^{2} \omega}{\sinh ^{2}(a)}+\frac{\sin ^{2} \omega}{\left(\tanh ^{2}(a)-\tanh ^{2}(f)\right) \cosh ^{2}(a)}
$$

for $\mathcal{H}_{d_{\mathcal{D}} ; F_{1}, F_{2}}^{a}$, that shows $C^{\prime}=\left(0, \sqrt{\tanh ^{2} f-\tanh ^{2} a}\right)$.
Thus, choosing $Y \in \ell_{O}$ so that the coordinates of C be $\left(0, \sqrt{\tanh ^{2} f-\tanh ^{2} a}\right)$ in the affine coordinate system given by $O=(0,0), J=(1,0)$ and $Y=(0,1)$, results in \mathcal{H}^{\prime} such that $C=C^{\prime}$. In this case \mathcal{H} and \mathcal{H}^{\prime} have A, B, t_{A}, t_{B} and $\ell_{ \pm}$in common, therefore, as they are quadrics, they coincidence, hence the statement of the lemma.

Comparing Figure 5.2 to Figure 5.1, we let $R_{1}(\alpha):=V_{1}, R_{1}(\alpha+\pi):=U_{1}$, $R_{2}(\beta):=V_{2}, R_{2}(\beta+\pi):=U_{2}$, and $H(\varphi):=H$, furthermore introduce the point $C(\varphi)$ as the intersection of $\bar{O} H$ with \mathcal{C}. Finally, for $j \in\{1,2\}$, we let C_{j} and R_{j} be the points where $\overline{F_{j}} H$ intersects \mathcal{C} and $\partial \mathcal{I}$, respectively, and introduce distances $c_{1}(\alpha)=d_{e}\left(F_{1}, C_{1}(\alpha)\right)$, and $c_{2}(\beta)=d_{e}\left(F_{2}, C_{2}(\beta)\right)$

Proposition 5.3. If $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is the intersection of a hyperbolic quadric with \mathcal{I}, and $\partial \mathcal{I}$ is analytic around the points I and J, then

$$
\begin{equation*}
1=\frac{1+\tanh a}{1-\tanh a}\left|\frac{\left(\frac{\tanh f+\tanh a}{\tanh f-\tanh a}\right)^{k-1}+\left(\frac{\tanh f-1}{\tanh f+1}\right)^{-(k-1)}}{\left(\frac{\tanh f-1}{\tanh f+1}\right)^{-(k-1)}\left(\frac{\tanh f+\tanh a}{\tanh f-\tanh a}\right)^{k-1}+1}\right| \tag{5.3}
\end{equation*}
$$

or $\partial \mathcal{I}$ coincides with \mathcal{C} in a neighborhood of points I and J.
Proof. Let $\delta_{1}(\alpha):=r_{1}(\alpha)-c_{1}(\alpha)$ and $\delta_{2}(\beta):=r_{2}(\beta)-c_{2}(\beta)$, and, in case of non-vanishing denominators, let

$$
\begin{align*}
\sigma_{1}(\alpha) & :=\frac{\delta_{1}(\alpha+\pi)}{\delta_{1}(\alpha)} \quad \text { and } \quad \sigma_{2}(\beta) \tag{5.4}\\
\tau(\alpha) & :=\frac{\delta_{1}(\alpha)}{\delta_{2}(\beta+\pi)} \quad \text { and } \quad \varrho(\alpha) \tag{5.5}\\
\delta_{2}(\beta+\pi) & =\frac{\sigma_{1}(\alpha)}{\sigma_{2}(\beta)}
\end{align*}
$$

Notice that $\varphi \rightarrow 0$ implies

$$
\begin{array}{ll}
c_{1}(\alpha), r_{1}(\alpha) \rightarrow 1+\tanh f, & c_{1}(\alpha+\pi), r_{1}(\alpha+\pi) \rightarrow 1-\tanh f \\
c_{2}(\beta), r_{2}(\beta) \rightarrow 1-\tanh f, & c_{2}(\beta+\pi), r_{2}(\beta+\pi) \rightarrow 1+\tanh f
\end{array}
$$

and for non-vanishing denominators, by Lemma 3.3, these give

$$
\begin{equation*}
\tau(\alpha) \rightarrow\left(F_{1}, F_{2} ; J, B\right)^{k} \quad \text { and } \varrho(\alpha) \rightarrow \frac{\left(F_{1}, F_{2} ; I, B\right)^{k}}{\left(F_{1}, F_{2} ; J, B\right)^{k}}, \quad(k \geq 2) \tag{5.6}
\end{equation*}
$$

Following (5.2) for for \mathcal{C}, we have

$$
\begin{equation*}
\left(1+\frac{h_{1}(\alpha)}{c_{1}(\alpha+\pi)}\right)\left(1-\frac{h_{2}(\beta)}{c_{2}(\beta)}\right)=e^{4 a}\left(1-\frac{h_{1}(\alpha)}{c_{1}(\alpha)}\right)\left(1+\frac{h_{2}(\beta)}{c_{2}(\beta+\pi)}\right) . \tag{5.7}
\end{equation*}
$$

Using δ_{1} and δ_{2} in (5.2) leads to

$$
\begin{align*}
& \left(1+\frac{h_{1}(\alpha)}{c_{1}(\alpha+\pi)+\delta_{1}(\alpha+\pi)}\right)\left(1-\frac{h_{2}(\beta)}{c_{2}(\beta)+\delta_{2}(\beta)}\right) \\
& \quad=e^{4 a}\left(1-\frac{h_{1}(\alpha)}{c_{1}(\alpha)+\delta_{1}(\alpha)}\right)\left(1+\frac{h_{2}(\beta)}{c_{2}(\beta+\pi)+\delta_{2}(\beta+\pi)}\right) . \tag{5.8}
\end{align*}
$$

Subtracting (5.7) from this, then dividing by $\delta_{2}(\beta+\pi) \neq 0$, and using (5.4) and (5.5), we arrive at

$$
\begin{align*}
(1+ & \left.\frac{h_{1}(\alpha)}{c_{1}(\alpha+\pi)}\right) \frac{h_{2}(\beta) \sigma_{2}(\beta)}{c_{2}(\beta)\left(c_{2}(\beta)+\delta_{2}(\beta)\right)}- \\
& -\frac{h_{1}(\alpha) \varrho(\alpha) \sigma_{2}(\beta) \tau(\alpha)}{c_{1}(\alpha+\pi)\left(c_{1}(\alpha+\pi)+\delta_{1}(\alpha+\pi)\right)}\left(1-\frac{h_{2}(\beta)}{c_{2}(\beta)}\right)- \\
& -\frac{h_{1}(\alpha) \delta_{1}(\alpha+\pi)}{c_{1}(\alpha+\pi)\left(c_{1}(\alpha+\pi)+\delta_{1}(\alpha+\pi)\right)} \frac{h_{2}(\beta) \sigma_{2}(\beta)}{c_{2}(\beta)\left(c_{2}(\beta)+\delta_{2}(\beta)\right)} \tag{5.9}\\
= & -e^{4 a}\left(1-\frac{h_{1}(\alpha)}{c_{1}(\alpha)}\right) \frac{h_{2}(\beta)}{c_{2}(\beta+\pi)\left(c_{2}(\beta+\pi)+\delta_{2}(\beta+\pi)\right)}+ \\
& +e^{4 a} \frac{h_{1}(\alpha) \tau(\alpha)}{c_{1}(\alpha)\left(c_{1}(\alpha)+\delta_{1}(\alpha)\right)}\left(1+\frac{h_{2}(\beta)}{c_{2}(\beta+\pi)}\right)- \\
& -e^{4 a} \frac{h_{1}(\alpha) \delta_{1}(\alpha)}{c_{1}(\alpha)\left(c_{1}(\alpha)+\delta_{1}(\alpha)\right)} \frac{h_{2}(\beta)}{c_{2}(\beta+\pi)\left(c_{2}(\beta+\pi)+\delta_{2}(\beta+\pi)\right)} .
\end{align*}
$$

Let us now take the limit of this for $\varphi \rightarrow 0$, which involves $\alpha \rightarrow 0$ and $\beta \rightarrow \pi$. Using (5.6), we obtain for any point of accumulation $\hat{\sigma}_{2}$ of σ_{2} in $\mathbb{R} \cup\{-\infty, \infty\}$ that

$$
\begin{align*}
& \frac{1+\tanh a}{1-\tanh f} \frac{\tanh f-\tanh a}{(1+\tanh f)^{2}} \hat{\sigma}_{2}-\frac{(\tanh f+\tanh a)\left(F_{1}, F_{2} ; I, B\right)^{k}}{(1-\tanh f)^{2}} \frac{1+\tanh a}{1+\tanh f} \hat{\sigma}_{2} \\
& =e^{4 a} \frac{(\tanh f+\tanh a)\left(F_{1}, F_{2} ; J, B\right)^{k}}{(1+\tanh f)^{2}} \frac{1-\tanh a}{1-\tanh f}-e^{4 a} \frac{1-\tanh a}{1+\tanh f} \frac{\tanh f-\tanh a}{(1-\tanh f)^{2}} \tag{5.10}
\end{align*}
$$

hence, by taking into account that $\frac{1+\tanh a}{1-\tanh a}=e^{2 a}$, we obtain that

$$
\hat{\sigma}_{2}=-e^{2 a} \frac{\frac{\tanh f-\tanh a}{1-\tanh f}-\frac{(\tanh f+\tanh a)}{1+\tanh f}\left(F_{1}, F_{2} ; J, B\right)^{k}}{\frac{\tanh f-\tanh a}{1+\tanh f}-\frac{(\tanh f+\tanh a)}{1-\tanh f}\left(F_{1}, F_{2} ; I, B\right)^{k}} .
$$

Substitution of
$\left(F_{1}, F_{2} ; I, B\right)=-\frac{1-\tanh f}{1+\tanh f} \frac{\tanh f-\tanh a}{\tanh f+\tanh a} \quad$ and $\quad\left(F_{1}, F_{2} ; J, B\right)=-\frac{1+\tanh f}{1-\tanh f} \frac{\tanh f-\tanh a}{\tanh f+\tanh a}$ results in
$\hat{\sigma}_{2}=-e^{2 a} \frac{1+\tanh f}{1-\tanh f} \frac{1+\left(F_{1}, F_{2} ; J, B\right)^{k-1}}{1+\left(F_{1}, F_{2} ; I, B\right)^{k-1}}=-e^{2 a} \frac{1+\left(F_{1}, F_{2} ; J, B\right)^{k-1}}{1+\left(F_{1}, F_{2} ; I, B\right)^{k-1}}\left(I, J ; F_{2}\right)$.

By (5.5) and (5.6) we have

$$
\frac{\hat{\sigma}_{1}}{\hat{\sigma}_{2}}=\lim _{\varphi \rightarrow 0} \frac{\sigma_{1}(\alpha)}{\sigma_{2}(\beta)}=\lim _{\varphi \rightarrow 0} \varrho(\alpha)=\left(F_{1}, F_{2} ; I, J\right)^{k}=\frac{\left(I, J ; F_{1}\right)^{k}}{\left(I, J ; F_{2}\right)^{k}},
$$

hence

$$
\frac{\hat{\sigma}_{1}}{\left(I, J ; F_{1}\right)^{k}}=\frac{\hat{\sigma}_{2}}{\left(I, J ; F_{2}\right)^{k}}=\frac{-e^{2 a}}{\left(I, J ; F_{2}\right)^{k-1}} \frac{1+\left(F_{1}, F_{2} ; J, B\right)^{k-1}}{1+\left(F_{1}, F_{2} ; I, B\right)^{k-1}}
$$

As $\hat{\sigma}_{1} \hat{\sigma}_{2}=1,\left(I, J ; F_{1}\right)\left(I, J ; F_{2}\right)=1$, and $\left(I, J ; F_{2}\right)=-\left(F_{1}, F_{2} ; I\right)^{-1}=-\left(F_{1}, F_{2} ; J\right)$ by the central symmetry of the configuration in point O, we deduce

$$
\begin{aligned}
1=\hat{\sigma}_{1} \hat{\sigma}_{2} & =\left(\frac{e^{2 a}}{\left(I, J ; F_{2}\right)^{k-1}} \frac{1+\left(F_{1}, F_{2} ; J, B\right)^{k-1}}{1+\left(F_{1}, F_{2} ; I, B\right)^{k-1}}\right)^{2} \\
& =\left(\frac{e^{2 a}}{\left(F_{1}, F_{2} ; I\right)^{1-k}} \frac{\left(F_{1}, F_{2} ; B\right)^{k-1}+\left(F_{1}, F_{2} ; J\right)^{k-1}}{\left(F_{1}, F_{2} ; B\right)^{k-1}+\left(F_{1}, F_{2} ; I\right)^{k-1}}\right)^{2} \\
& =e^{2 a}\left|\frac{\left(F_{1}, F_{2} ; B\right)^{k-1}+\left(F_{1}, F_{2} ; I\right)^{-(k-1)}}{\left(F_{1}, F_{2} ; I\right)^{-(k-1)}\left(F_{1}, F_{2} ; B\right)^{k-1}+1}\right| .
\end{aligned}
$$

Substituting the expressions of $e^{2 a}$ and the affine ratios in terms of $\tanh a$ and $\tanh f$ yields (5.3) for the case of the existence of a non-vanishing sequence $\alpha_{i} \rightarrow 0$ for which $\delta_{1}\left(\alpha_{i}\right) \neq 0, \delta_{2}\left(\beta_{i}\right) \neq 0$, and $\delta_{2}\left(\beta_{i}+\pi\right) \neq 0$.

To finish the proof of the proposition it remains to consider the case when $\delta_{1}\left(\alpha_{i}\right) \delta_{2}\left(\beta_{i}+\pi\right) \delta_{2}\left(\beta_{i}\right)=0$ for any non-vanishing sequence $\alpha_{i} \rightarrow 0$. In this case one of the factors $\delta_{1}\left(\alpha_{i}\right), \delta_{2}\left(\beta_{i}+\pi\right)$, and $\delta_{2}\left(\beta_{i}\right)$ vanishes for any non-vanishing sequence $\alpha_{i} \rightarrow 0$ at infinitely many i, which, by the analyticity of $\partial \mathcal{I}$ and \mathcal{C}, implies that there is an $\varepsilon>0$ such that for $|\alpha|<\varepsilon$ either $\delta_{1}(\alpha)=0=\delta_{2}(\beta+\pi)$ or $\delta_{1}(\alpha+\pi)=0=\delta_{2}(\beta)$.

Assume first that $\delta_{1}(\alpha)=0=\delta_{2}(\beta+\pi)$ for $|\alpha|<\varepsilon$, that is, \mathcal{C} and \mathcal{I} coincide in a neighborhood of J. Subtracting (5.7) from (5.8) gives

$$
\begin{aligned}
\left(1+\frac{h_{1}(\alpha)}{c_{1}(\alpha+\pi)}\right) & \frac{h_{2}(\beta) \delta_{2}(\beta)}{c_{2}(\beta)\left(c_{2}(\beta)+\delta_{2}(\beta)\right)}- \\
& -\frac{h_{1}(\alpha) \delta_{1}(\alpha+\pi)}{c_{1}(\alpha+\pi)\left(c_{1}(\alpha+\pi)+\delta_{1}(\alpha+\pi)\right)}\left(1-\frac{h_{2}(\beta)}{c_{2}(\beta)}\right)- \\
& -\frac{h_{1}(\alpha) \delta_{1}(\alpha+\pi)}{c_{1}(\alpha+\pi)\left(c_{1}(\alpha+\pi)+\delta_{1}(\alpha+\pi)\right)} \frac{h_{2}(\beta) \delta_{2}(\beta)}{c_{2}(\beta)\left(c_{2}(\beta)+\delta_{2}(\beta)\right)}=0
\end{aligned}
$$

If there is a non-vanishing sequence $\alpha_{i} \rightarrow 0$ such that $\delta_{2}\left(\beta_{i}\right) \neq 0$ for all indexes i, then division by $\delta_{2}\left(\beta_{i}\right)$ and application of (3.2) gives

$$
\left(1+\frac{h_{1}(0)}{c_{1}(\pi)}\right) \frac{h_{2}(\pi)}{c_{2}^{2}(\pi)}-\frac{h_{1}(0)\left(F_{1}, F_{2} ; I, B\right)^{k}}{c_{1}^{2}(\pi)}\left(1-\frac{h_{2}(\pi)}{c_{2}(\pi)}\right)=0
$$

where the integer k is at least 2 . Substitution of the values $h_{1}(0)=\tanh f+\tanh a$, $h_{2}(\pi)=\tanh f-\tanh a, c_{1}(\pi)=1-\tanh f, c_{2}(\pi)=1+\tanh f$, and $\left(F_{1}, F_{2} ; I, B\right)=$ $-\frac{1-\tanh f}{1+\tanh f} \frac{\tanh f-\tanh a}{\tanh f+\tanh a}$, we arrive at

$$
1=(-1)^{k}\left(\frac{1-\tanh f}{1+\tanh f} \frac{\tanh f-\tanh a}{\tanh f+\tanh a}\right)^{k-1}
$$

which is a contradiction as the absolute value of the right-hand side is less than 1 . So \mathcal{C} and \mathcal{I} coincides in a neighborhood of I, as well.

Let us rephrase this result as follows:

> if \mathcal{C} and \mathcal{I} coincide in a neighborhood of J, then they coincide in a neighborhood of I, as well.

Secondly, assume now that $\delta_{2}(\beta)=0$ (consequently, $\delta_{1}(\alpha+\pi)=0$) for $|\alpha|<\varepsilon$, that is, \mathcal{C} and \mathcal{I} coincides in a neighborhood of I. By the symmetry of our given configuration, we immediately deduce by (5.11) that then \mathcal{C} and \mathcal{I} coincide in a neighborhood of J, as well.

The proof is complete.
Proposition 5.4. If $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is the intersection of a hyperbolic quadric \mathcal{H} with \mathcal{I}, then coincidence of $\partial \mathcal{I}$ and \mathcal{C} in a neighborhood of I and J implies their identity.

Proof. For a point $H \in \mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ we call the lines $H F_{1}$ and $H F_{2}$ focal. A focal line $F_{j} H$ is of type $\ddot{C} \ddot{C}$ if both ot its intersections with $\partial \mathcal{I}$ is also on \mathcal{C}. A focal line $F_{j} H$ is of type $\ddot{C} \ddot{D}$ or $\ddot{D} \ddot{C}$ if the intersections of $\overline{F_{j}} H$ or $F_{j} \bar{H}$, respectively, with $\partial \mathcal{I}$ is on \mathcal{C}, and the other intersection of $F_{j} H$ with $\partial \mathcal{I}$ is not on \mathcal{C}.

The proof will be proceeded in several steps.
Equation (5.9) clearly shows that if any three of $\delta_{2}(\beta), \delta_{2}(\beta+\pi), \delta_{1}(\alpha)$, and $\delta_{1}(\alpha+\pi)$ vanish, then the fourth one vanishes, too. Therefore we have the following:

There does not exist a point $H \in \mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ such that
one of its focal lines is $\ddot{C} \ddot{C}$, while the other is $\ddot{C} \ddot{D}$.
As there are common arcs of $\partial \mathcal{I}$ and \mathcal{C} through I and J, either $R(\varphi)=C(\varphi)$ for every $\varphi \in[0, \pi]$, or there are angles $\varphi_{+}<\varphi^{+}$in $(0, \pi)$ such that $R(\varphi)=C(\varphi)$ for all $\varphi \in\left[0, \varphi_{+}\right] \cup\left[\varphi^{+}, \pi\right]$, and $R(\varphi) \neq C(\varphi)$ for some $\varphi \in\left(\varphi_{+}, \varphi^{+}\right)$in all neighborhoods of φ_{+}and φ^{+}.

Further, either $R(\varphi)=C(\varphi)$ for every $\varphi \in[\pi, 2 \pi]$, or there are angles $\varphi^{-}<\varphi_{-}$ in $(\pi, 2 \pi)$ such that $R(\varphi)=C(\varphi)$ for all $\varphi \in\left[\pi, \varphi^{-}\right] \cup\left[\varphi_{-}, 2 \pi\right]$, and $R(\varphi) \neq C(\varphi)$ for some $\varphi \in\left(\varphi^{-}, \varphi_{-}\right)$in all neighborhoods of φ^{-}and φ_{-}.

Both intervals $\left[\varphi^{+}, \varphi^{-}\right]$and $\left[\varphi_{-}, \varphi_{+}\right]$will be called interval of initial coincidence (IC for short) and every corresponding common arc of $\partial \mathcal{I}$ and \mathcal{C} will be called arc of initial coincidence (IC for short). We shall use the shorter notations $R_{+}=R\left(\varphi_{+}\right)$, $R_{-}=R\left(\varphi_{-}\right), R^{+}=R\left(\varphi^{+}\right)$, and $R^{-}=R\left(\varphi^{-}\right)$, and regard the arcs on $\partial \mathcal{I}$ or \mathcal{C} positively oriented, so $\left[R^{+} R^{-}\right]$and $\left[R_{-} R_{+}\right]$are the arcs of IC.

Figure 5.3. $A^{+}=A\left(x^{+}\right)$: critical point of the "upper" segment of \mathcal{H}_{-}
For the sake of brevity, a point P of $\mathcal{R}=\left\{R_{+}, R^{+}, R^{-}, R_{-}\right\}$is called an R -point (or we say that P is $\stackrel{\circ}{\mathrm{R}}$), and a point Q of arcs of IC not in \mathcal{R} is called a $\dot{\mathrm{C}}$-point (or we say that Q is \dot{C}). A focal line m will be called an $R \circ R \circ$-line (respectively CCC-line) if it intersects $\partial \mathcal{I}$ in two R -points (respectively Coipoints). A focal line
 point (respectively in Cْ-point), but $\bar{H} F_{j}$ intersects $\partial \mathcal{I}$ in \dot{C}-point (respectively in R-point).

Hyperbola \mathcal{H} is composed from two convex curves $\mathcal{H}_{-} \ni A$ and $\mathcal{H}_{+} \ni B$, the branches, so each of them intersects $\partial \mathcal{I}$ in two points $H_{ \pm}^{+}$and $H_{ \pm}^{-}$. Let x and y be (Euclidean) arc length parameter on the branch \mathcal{H}_{-}and \mathcal{H}_{+}, respectively, and define $A: x \mapsto A(x) \in \mathcal{H}_{-}$and $B: y \mapsto B(y) \in \mathcal{H}_{+}$be such that $A(0)=A$, $B(0)=B$, and $\overline{F_{1}} A(x)$ rotates anti clockwise if x increases, while $\overline{F_{2}} B(y)$ rotates clockwise if y increases. (See Figure 5.3.)

For sufficiently small x, both focal lines $A(x) F_{1}$ and $A(x) F_{2}$ are clearly CْCْ. Let x^{+}be the supremum of $x>0$ such that both of the focal lines of $A(x)$ is CC․ Let x^{-}be the infimum of $x>0$ such that both of its focal line of $A(x)$ is CْC․ Define similarly the values y^{+}and y^{-}. Points $A^{+}=A\left(x^{+}\right), A^{-}=A\left(x^{-}\right), B^{+}=B\left(y^{+}\right)$, and $B^{-}=B\left(y^{-}\right)$are the so called critical points of \mathcal{H}. Clearly, at least one of the focal lines of a critical point is not CْĆ, but either R̊Cْ or R̊R.

If $A^{+}=H_{-}^{+}$, then $R_{+}=R^{+}$and $\varphi_{+}=\varphi^{+}$, and more importantly arc [$R_{-} R^{-}$] is common in $\partial \mathcal{I} \cap \mathcal{C}$. Further, $A(x)=F_{1} R_{-} \cap \mathcal{H}_{-}$is a critical point with focal line $A(x) F_{1}$ of type $\mathrm{C} R ̊$, and, therefore, with focal line $A(x) F_{2}$ that is $\ddot{C} \ddot{C}$ as can not
be $\ddot{\mathrm{D}} \ddot{\mathrm{C}}$, by (5.12). If $A(x) F_{2}$ is $\stackrel{C}{\mathrm{C}} \mathrm{C}$, then a small, appropriate decrease of x keeps $A(x) F_{2}$ being CْC், but changes $A(x) F_{1}$ to D̈Ö which contradicts (5.12), hence we deduce $A(x) F_{2}$ is RْCْ, i.e. $A(x)=F_{2} R^{-} \cap \mathcal{H}_{-}$. Letting $B(y)=F_{2} R^{-} \cap \mathcal{H}_{+}$we see that $B(y) F_{1}$ is $\dot{C} C \circ$, and by the very same reasoning again, a small, appropriate decrease of y produces a contradiction with (5.12).

Thus, if even just one of the critical points is not in \mathcal{I}, then $\partial \mathcal{I} \equiv \mathcal{C}$.
Therefore, from now on we assume that there are exactly four critical points, and so $0<\varphi_{+}<\varphi^{+}<\pi$ and $\pi<\varphi^{-}<\varphi_{-}<2 \pi$.

Our aim is to rule out the impossible configurations of the critical points.
No critical point can have focal lines of type $\dot{C} \dot{C}$ and $\dot{R} \dot{C}$ at once.
If $A(x) F_{2}$ is $\dot{C} C \circ$ and $A(x) F_{1}$ is $R \circ \mathrm{R} \mathrm{C}$, then an small, appropriate increase of x keeps $A(x) F_{2}$ being $\check{C} C ْ$, but changes $A(x) F_{1}$ to $\ddot{\mathrm{D}} \ddot{\mathrm{C}}$ which contradicts (5.12).

No critical point can have focal lines of type $\dot{R} R$ and $\dot{C} R$ at once.
If $A(x) F_{2}$ is $\stackrel{\mathrm{R}}{\mathrm{C}}$ and $A(x) F_{1}$ is $\stackrel{\circ}{\mathrm{R} R}$, then letting $B(y)=A(x) F_{2} \cap \mathcal{H}_{+}$we see that $B(y)$ is a critical point with focal lines being $\stackrel{\circ}{\mathrm{R}} \mathrm{C}$ and C C C that contradicts (5.13).

No critical point can have two focal lines of type $\dot{R} C \subset$ at once.
If $B(y) F_{1}$ and $B(y) F_{2}$ are $\stackrel{\circ}{\mathrm{R}} \stackrel{\circ}{\mathrm{C}}$, the point $A(x)=B(y) F_{1} \cap \mathcal{H}_{-}$has the focal line $A(x) F_{1}$ of type $\mathrm{R} \dot{\mathrm{C}}$, but its other focal line $A(x) F_{2}$ is of type $\dot{\mathrm{C}} \mathrm{C}$ that contradicts (5.13).

No two critical points can be on a focal line of type $R \circ R$.
A focal line of type $\stackrel{R}{R} R$ can pass only one of the focuses, say it is F_{1}. Assume that this focal line is $R^{-} R_{+}=A(x) F_{1}=B(y) F_{1}$. Consider the critical point $B(z)$ for $z<0$. Both of its focal lines have intersection with $\partial \mathcal{I}$ above the line $I J$ of type ${ }^{\circ}$. The other two intersections can only be of type R or $\dot{\mathrm{C}}$, but then (5.15) or (5.13) leads to contradiction.

There are at most two critical points with focal line of type $R \circ R$.
If there were three such critical points, then two of them would have a common focal line of type $R \circ R$. This contradicts (5.16).

By (5.17), there are at least two critical points such that none of their four focal lines is $R \circ R$. One of the focal lines of such a critical point must have an R-endpoint, so it is an $R \circ C$ focal line. The other focal line can only be $R \circ C$ or $C \circ C \circ$, but these contradict (5.15) and (5.13), respectively.

Thus, we conclude that $\partial \mathcal{I}=\mathcal{C}$.

Proposition 5.5. Equation (5.3) is never satisfied.
Proof. Substitution of $x=\tanh f$ and $y=\tanh a$ into (5.3), and making some rearrangement we get

$$
\pm 1=\frac{1+y}{1-y} \frac{1+\left(\frac{x+y}{x-y}\right)^{k-1}\left(\frac{x-1}{x+1}\right)^{k-1}}{\left(\frac{x+y}{x-y}\right)^{k-1}+\left(\frac{x-1}{x+1}\right)^{k-1}}
$$

where $0<y<x<1$. Introducing $A=\frac{x+y}{x-y}$ and $B=\frac{1-x}{1+x}$, we first obtain that $\frac{1+y}{1-y}=\frac{A+B}{1+A B}$, and then

$$
\pm 1=\frac{A+B}{1+A B} \frac{1+(-1)^{k-1} A^{k-1} B^{k-1}}{A^{k-1}+(-1)^{k-1} B^{k-1}}
$$

where $0<B<1<A$. Easy rearrangements of this equation lead to

$$
A\left(A^{k-2} \mp 1\right)\left(-1 \pm(-1)^{k-1} B^{k}\right)=B\left(1 \mp(-1)^{k-1} B^{k-2}\right)\left(A^{k} \mp 1\right)
$$

As $0<B<1<A$, the left-hand side is negative and the right-hand side is positive, hence this equation can not be valid.

Propositions 5.3, 5.4 and 5.5 imply our main result.
Theorem 5.6. If $\mathcal{H}_{d_{\mathcal{I}} ; F_{1}, F_{2}}^{a}$ is the intersection of a hyperbolic quadric with \mathcal{I}, and $\partial \mathcal{I}$ is analytic around the points I and J, then $\partial \mathcal{I}$ is an ellipse and consequently Hilbert plane $\left(\mathcal{I}, d_{\mathcal{I}}\right)$ is hyperbolic.

References

[1] H. Busemann and P. J. Kelly, Projective Geometries and Projective Metrics, Academic Press, New York, 1953.
[2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
[3] S. S. Cheng and W. Li, Analytic Solutions of Functional Equations, World Scientific, New Jersey, 2008.
[4] Á. G. Horváth and H. Martini, Conics in normed planes, Extracta Math., 26:1 (2011), 29-43; available also at arXiv: 1102.3008.
[5] Á. Kurusa, Support Theorems for Totally Geodesic Radon Transforms on Constant Curvature Spaces, Proc. Amer. Math. Soc., 122:2(1994), 429-435; DOI: 10.2307/2161033.
[6] Á. Kurusa, Projective metrics with quadratic ellipses, Submitted;
[7] Z. I. Szabó, Hilbert's fourth problem. I, Adv. in Math., 59:3 (1986), 185-301; DOI: 10.1016/0001-8708(86)90056-3.
[8] Wu-Yi Hsiang, On the laws of trigonometries of two-point homogeneous spaces, Ann. Global Anal. Geom., 7 (1989), 29-45 DOI: 10.1007/BF00137400.

Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725 Szeged, Hungary; $\mathrm{E}-$ mail: kurusa@math.u-szeged.hu.
J. Kozma, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725 Szeged, Hungary; E -mail: kozma@math.u-szeged.hu.

[^0]: 1991 Mathematics Subject Classification. 53A35; 51M09, 52A20.
 Key words and phrases. hyperbola, Minkowski geometry, Hilbert geometry, projective metrics.
 This research was supported by National Research, Development and Innovation Office of Hungary (NKFIH), grant number NKFIH 116451.
 ${ }^{1}$ It is included in this article as Theorem 2.1 without proof for a complete treatment.

[^1]: ${ }^{2}$ Look for projective realization of constant curvature spaces in standard textbooks.

