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PROJECTIVE-METRIC SPACES
WITH QUADRATIC HYPERBOLAS

ÁRPÁD KURUSA AND JÓZSEF KOZMA

Abstract. A conjecture is formulated that a projective-metric space is classic
if and only if it has a quadratic hyperbola. The conjecture is validated for
Minkowski geometry and analytic Hilbert geometry.

1. Introduction

Let (M, d) be a metric space given in a set M with the metric d. If M is a
projective space Pn or an affine space Rn ⊂ Pn or a proper open convex subset
of Rn for some n ∈ N, and the metric d is complete, continuous with respect to
the standard topology of Pn, and the geodesic lines of d are exactly the non-empty
intersection ofM with the straight lines, then the metric d is called projective.

IfM = Pn and the geodesic lines of d are isometric with an Euclidean circle, or
M⊆ Rn and the geodesic lines of d are isometric with an Euclidean straight line,
then (M, d) is called a projective-metric space of elliptic, parabolic or hyperbolic
type, respectively (see [1, p. 115] and [7, p. 188]).

In a projective-metric space (M, d) a set

(D1) Had;F1,F2
:= {X : 2a = |d(F1, X) − d(F2, X)|} is called hyperbola (hyper-

boloid in higher dimensions),

where F1, F2 ∈M are different points, the focuses, and a < 1
2d(F1, F2) is a positive

number.
A kind of folkloric result [6, Theorem 2.2]1 is that hyperboloids are quadratic in

every classic projective-metric spaces. Following [6] we consider here the reverse of
this asking if a projective-metric space is classic if it has a quadratic hyperbola.

We prove in Theorem 4.3 that a Minkowski geometry with a quadratic hy-
perboloid is Euclidean. This result can be understood as a hyperbolic version of
Busemann’s result [1, 25.4], for hyperbolas (hyperboloids).

Next we prove in Theorem 5.6 that an analytic Hilbert geometry with a qua-
dratic hyperboloid is hyperbolic.
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2. Preliminaries

To prove our results in arbitrary dimensions, we only need to work in the affine
plane, because a convex body K in Rn (n ≥ 3) is an ellipsoid if and only if for any
fixed k ∈ {2, . . . , n − 1} every k-plane through any point of K intersects K in a
k-dimensional ellipsoid [2, (16.12), p. 91]. Therefore, in what follows, we restrict
ourselves to the plane.

Points of R2 are denoted by A,B, . . . , vectors by
−−→
AB or a, b, . . . . The open

segment with endpoints A and B is denoted by AB. The open ray starting from A
and passing through B is denoted by AB, and the line through A and B by AB.

Notations uϕ := (cosϕ, sinϕ) and u⊥ϕ := (cos(ϕ + π/2), sin(ϕ + π/2)) are fre-
quently used. It is worth to note that by these assumptions we have d

dϕuϕ = u⊥ϕ .
In most cases, we use polar parameterization for the boundary ∂D of a domain

D in R2, starlike with respect to the origin O ∈ D, by a function r : [−π, π)→ R2

of the form r(ϕ) = r(ϕ)uϕ, where r is the radial function of D with respect to O.
The affine ratio (A,B;C) of the collinear points A,B and C is defined by

(A,B;C)
−−→
BC =

−→
AC. The cross ratio of the collinear points A,B and C,D is

(A,B;C,D) = (A,B;C)/(A,B;D) [1, page 243].
Following [6], we call a curve analytic if its coordinates depend on its arc length

analytically. By [6, Lemma 2.1], the border of a convex domain is an analytic curve
if and only if any one of its radial functions is analytic.

2.1. Basic properties of hyperbolas. Let a hyperboloid Had;F1,F2
be

given. We define its eccentricity as f := 1
2d(F1, F2) and its radius as a.

Define the function X 7→ ∆(X) := d(F1, X) − d(X,F2) on M. It is clearly
continuous by the continuity of d. Let the ordering ‘≺’ of line F1F2 be such that
F1 ≺ F2. Then, by the additivity of d, we have ∆(X) = −2f for every X � F1,
∆(X) = 2f for every F2 � X, and ∆ is strictly monotonously increasing on F1F2

with respect to ‘≺’. As f > a, we deduce the existence of unique points A,B ∈ F1F2

such that F1 ≺ A ≺ B ≺ F2, ∆(A) = −2a, ∆(B) = 2a, and d(A,B) = 2a.
It follows that the left branch Ha−d;F1,F2

:= {X : ∆(X) = −2a} and the right
branch Ha+d;F1,F2

:= {X : ∆(X) = 2a} of the hyperbola meets F1F2 in A and B,
respectively, and they are clearly disjoint sets.

The metric midpoint O of F1F2 is called the metric center of Had;F1,F2
. It is

clearly in AB, the major axis of length 2a, and is therefore not on the hyperbola.

2.2. Classic geometries. A complete Riemannian manifoldMn of dimension
n is called an abstract rotational manifold with base point O ∈ Mn if the induced
linear action of the isotropy group of O on TOMn is equivalent to O(n) [8].

The Riemannian metric on Mn is then completely described by its size function
ν : [0, Iν) → R+ such that the geodesic sphere of radius r and center O in Mn

is isometric to the Euclidean sphere of radius ν(r). This explains the notation
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(Mn, ν). A complete abstract rotational manifold of real type is homogeneous if
and only if it is of constant sectional curvature κ [8]. In this case, a function
µ : [0, Iν) → [0,∞), the projector function of Mn [5], exists such that the map
µ̄ : expO(pu) 7→ µ(p)u from Mn into Rn, where u is a unit vector in the tangent
space TOMn ∼= Rn, takes geodesics into straight lines. From the quadratic model
of the spaces of constant curvature2 one can easily read off the following:

M Iν κ ν µ

Hn ∞ −1 sinh r tanh r

Rn ∞ 0 r r

Sn or Pn π/2 +1 sin r tan r

Theorem 2.1 ([6, Theorem 2.2]). Polar equation of every metric hyperbola Had;F1,F2

in any 2-dimensional manifold of constant curvature κ ∈ {−1, 0, 1} is of the form

1

ν2(r(ω))
=

cos2 ω

ν2(a)
+

sin2 ω

(µ2(a)− µ2(f))(1− κν2(a))
, (2.1)

where ν and µ are defined in the table above.
2.3. Minkowski geometry. Let I be an open, strictly convex, bounded do-
main in R2, symmetric to the origin O. The function dI : R2 ×R2 → R defined by

dI(X,Y ) = inf
{
λ > 0 :

−−→
XY /λ ∈ I

}
is a metric on R2 [1, IV.24], and is called Minkowski metric. We say that it is
analytic if ∂I is an analytic curve. The pair (R2, dI) is called a Minkowski plane,
I is its indicatrix. Note that Minkowski planes are isomorphic if and only if an
affine map exists between their indicatrixes. If ∂I is an analytic curve, we speak
of analytic Minkowski plane. The Euclidean plane is, in fact, a special analytic
Minkowski plane (R2, dE) given by an ellipse E as indicatrix.

2.4. Hilbert geometry. Let I be an open, strictly convex set in R2 with
boundary ∂I. The function dI : I × I → R defined by

dI(A,B) =

{
0, if A = B,
1
2

∣∣ln(A,B;C,D)
∣∣, if A 6= B, where CD = I ∩AB,

is a metric on I [1, page 297], and is called the Hilbert metric. We say that it
is analytic if ∂I is an analytic curve. The pair (I, dI) is called the Hilbert plane
given in I. Note that two Hilbert planes are isomorphic if and only if a projectivity
exists between their sets of points.

If ∂I is an analytic curve, we speak of an analytic Hilbert plane. Bolyai’s
hyperbolic plane is, in fact, a special analytic Hilbert plane (E , dE) given by an
ellipse E .

2Look for projective realization of constant curvature spaces in standard textbooks.
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3. Utilities

In this section the underlying plane is Euclidean. The technical lemmas obtained
are used in the next sections, and are analogous to the similar technical lemmas in
[6]. We give proofs here only because there are some disparateness in some details.

Lemma 3.1 ([6, Lemma 3.1]). For any collinear points A,B,C,D satisfying BC (
AD, and a point D′ out of the line AD, there is a unique perspectivity $ such that
A = $(A), B′ = $(B), C ′ = $(C), D′ = $(D) and

−−→
AB′ =

−−−→
C ′D′.

LetH be a hyperbola in the plane, with center O, and foci F1, F2. Line ` = F1F2

intersects H in points A and B such that A ∈ F1B, and O ∈ AB ⊂ F1F2. Let fix
points V and W on F1F2 such that F1 ∈ V A and F2 ∈ BW .

Straight lines `1 through F1 and `2 through F2 close angles α and β with `,
respectively. They intersect H in a common point H(ϕ) = `1 ∩ `2, where ϕ is
the angle HOB∠. There is an angle Φ ∈ (0, π/2) such that for ϕ ∈ (−Φ,Φ),
points H(ϕ) are on the ’right’ branch Hr (containing B) of the hyperbola, while
for ϕ ∈ (π − Φ, π + Φ), points H(ϕ) are on the ’left’ branch Hl (containing A) of
the hyperbola. It is clear, that angles α and β are functions of ϕ, and α → 0 and
β → π when ϕ→ 0.

Starting from any ϕ0 ∈ (0,Φ) we define sequences of pointsHi and corresponding
angles ϕi, αi = α(ϕi), βi = β(ϕi) recursively, as follows. (See Figure 3.1.)

O

H2i

H2i+1

H2i+2

F1 F2A BV W

ϕ2i

ϕ2i+1α2i+1 = α2i

α2i+2

β2iβ2i+2 = β2i+1

ϕ2i ϕ2i+1 ϕ2i+2

α2i

H2i+1−−−−−→ α2i+1 = a2i α2i+2

H2i+3−−−−−→ . . .

β2i β2i+1

H2i+2−−−−−→ β2i+2 = β2i+1

Figure 3.1. Sequence of angles

Let H0 = H(ϕ0) ∈ Hr, α0 = ∠WF1H0 and β0 = ∠WF2H0. Furthermore,
H2i+1 = F1H2i ∩ Hl, α2i+1 = α2i, and β2i+1 = ∠WF2H2i+1. Finally, H2i+2 =
F2H2i+1 ∩ Hr, α2i+2 = ∠H2i+2F1W , and β2i+2 = β2i+1. It is easy to see that all
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these points and angles are well defined. Furthermore, we have ϕ2i ∈ (0,Φ) and
ϕ2i+1 ∈ (π + Φ, π − Φ) for every i ∈ N.

Lemma 3.2. If i→∞, then α2i and ϕ2i tend to zero, β2i, β2i+1 and ϕ2i+1 tend
to π, and α2i+2/α2i tends to (F1, F2;A,B).

Proof. Simple consideration shows that ϕ2i < Φ < π/2 and ϕ2i+1 > π−Φ > π/2,
and therefore

α2i < π − β2i and π − β2i+1 < α2i+1 (or π − β2i+2 < α2i),

α2i+2 < π − β2i+2 and π − β2i+1 < α2i,

hence β2i+2 > β2i, α2i+2 < α2i, and π − β2i+2 < α2i < π − β2i.
Thus, sequences β2i, β2i+1 monotonously increase, while sequences α2i, α2i+1

monotonously decrease. As these sequences are bounded, they are convergent.
Assuming limi β2i < π, i.e. limi(π−β2i) > 0, limi

π−β2i+2

π−β2i
= 1, and limi

α2i

π−β2i
=

1 follow, hence the sinus law for triangle 4F1F2H2i implies

lim
i→∞

d(F2, H2i)

d(H2i, F1)
= lim
i→∞

sinα2i

sin(π − β2i)
· lim
i→∞

π − β2i
α2i

= 1,

which, by the continuity of d, gives d(F2, B) = d(B,F1), a contradiction.
Thus limi β2i = π, hence also β2i+1 and ϕ2i+1 tend to π, and furthermore,

sequences α2i, α2i+1 and ϕ2i tend to zero, and observing Figure 3.1, we see that
h1(α2i) := d(F1,H2i)→ d(F1, B), h1(α2i+1) := d(F1,H2i+1)→ d(F1, A),

h2(β2i) := d(F2,H2i)→ d(F2, B), h2(β2i+1) := d(F2,H2i+1)→ d(F2, A).
(3.1)

The sine law in triangles 4F1F2H2i and 4F1F2H2i+1 gives
h2(β2i+1)

h1(α2i+1)
=

sinα2i+1

sin(π − β2i+1)
and

h2(β2i+2)

h1(α2i+2)
=

sinα2i+2

sin(π − β2i+2)
,

respectively. Multiplying these by cosβ2i+1/ cosα2i+1 and cosβ2i+2/ cosα2i+2, re-
spectively, and taking the ratio of the results give

tanα2i+2

tanα2i
=
h2(β2i+2) cosβ2i+2

h1(α2i+2) cosα2i+2

h1(α2i+1) cosα2i+1

h2(β2i+1) cosβ2i+1
.

By (3.1), the right-hand side of this equation tends to (F1, F2;A,B), so the proof
is complete. �

Let r1 and r2 be curves in the plane with analytic arc length parametrization on
[−1, 1] such that at their common point r1(0) = r2(0) they have common tangent
ṙ1(0) = ṙ2(0). Let line ` through r1(0) be orthogonal to ṙ1(0), and the analytic
curve h parameterized on [0, 1] by arc length intersects ` in B = h(0) orthogonally,
and ṙ1(0) = ḣ(0).

We are given different points F1, F2 on ` such that
(C1) either F2J ⊂ BJ ⊂ F1J , where J = r1(0), and ṙ1(0) = uπ/2,
(C2) or IF1 ⊂ IB ⊂ IF2, where I = r1(0), and ṙ1(0) = u−π/2.



(September 7, 2017) c© Á. Kurusa and J. Kozma

6 Á. KURUSA AND J. KOZMA

For sufficiently small s > 0, points H = h(s) on the curve h define the straight
lines `1 := F1H and `2 := F2H, closing small angle α and β̃ with `, respectively
(where β̃ = β − π).

α
β

β̃

h

`1

`
2

H

F1 F2B
J

r1
r2

C1
D1

C2

D2

α
ββ

β̃

h

`1

2̀

H

F1 F2B
I

r1
r2

D1

C1

D2

C2

The lines `1 and `2 intersect the curves r1 and r2 in points C1 = r1(s1,1), D1 =
r2(s2,1), and C2 = r1(s1,2), D2 = r2(s2,2), respectively, where si,j is the arc length
parameter of ri at its intersection with `j (i, j = 1, 2). Let δ1 = 〈r1(s1,1(α)) −
r2(s2,1(α)),uα〉 and δ2 = 〈r1(s1,2(β̃))− r2(s2,2(β̃)),uβ̃〉.

Lemma 3.3. If H tends to B on the curve h, K = r1(0) and δ2(β̃) 6= 0, then
δ1(α)

δ2(β̃)
→ (F1, F2;K,B)k, where k ≥ 2. (3.2)

Proof. If there is β̃ in every neighborhood of zero such that δ2(β̃) 6= 0, then, by
the analyticity of r1 and r2, integer k := min{i ∈ N : dir1

ds (0) 6= dir2

ds (0)} is well
defined, and k ≥ 2.

If lims→0
δ1(α)

δ2(β̃)
exists, then we can apply L’Hospital’s rule, which results in

lim
s→0

δ1(α)

δ2(β̃)
= lim
s→0

dδ1
dα

dα
ds

dδ2
dβ̃

dβ̃
ds

= lim
s→0

dδ1
dα
dδ2
dβ̃

lim
s→0

dα
ds

dβ̃
ds

= lim
s→0

d2δ1
dα2

d2δ2
dβ̃2

(
lim
s→0

dα
ds

dβ̃
ds

)2

= · · · = lim
s→0

dkδ1
dαk

dkδ2
dβ̃k

(
lim
s→0

dα
ds

dβ̃
ds

)k
. (3.3)

For the second limit in (3.3), take the orthogonal projection H⊥ of H onto `,
and use L’Hospital’s rule to get

|F2 −B|
|F1 −B|

= lim
s→0

|F2 −H⊥|
|F1 −H⊥|

= lim
s→0

tanα

− tan β̃
= − lim

s→0

dα
ds

dβ̃
ds

. (3.4)
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For the first limit in (3.3), we first observe that

dkδj
dξk

(ξ) =

〈
dkr1
dsk1,j

(s1,j(ξ))
(ds1,j
dξ

(ξ)
)k
− d

kr2
dsk2,j

(s2,j(ξ))
(ds2,j
dξ

(ξ)
)k
,uξ

〉
+ ∆,

where ξ = α for j = 1, ξ = β̃ for j = 2, and ∆ = 〈f(ξ),uξ〉+〈g(ξ),uξ+π/2〉, where
vectors f and g are composed of lower order derivatives d`ri/ds`i,j(si,j(ξ)) (` < k)
multiplied by a sum of products of various lower order derivatives (m ≤ k − `) of
the form dmsi,j/dξ

m(ξ) (i = 1, 2). As for every 0 < m ≤ k − `, d`r1

ds`1,j
(0) = d`r2

ds`2,j
(0)

and dms1,j
dξm (0) =

dms2,j
dξm (0), we obtain dkδj

dξk
(0) =

〈
dkr1

dsk1,j
(0)− dkr2

dsk2,j
(0),u0

〉(ds1,j
dξ (0)

)k
.

Substituting this, (3.4), and the evident equations ds1,1
dα (0) =

ds2,1
dα (0) = |F1 −K|

and ds1,2
dβ̃

(0) =
ds2,2
dβ̃

(0) = −|F2 −K| into (3.3) we arrive at

lim
s→0

δ1(α)

δ2(β̃)
=

(
|F1 −K|
|F2 −K|

)k( |F1 −B|
|F2 −B|

)k
=
(
F1, F2;K,B)k. �

Notice that
d2δj
dξ2

(0) =
〈d2r1
ds21,j

(0)− d2r2
ds22,j

(0),u0

〉(ds1,j
dξ

(0)
)2

= ±(κ1(0)− κ2(0))
(ds1,j
dξ

(0)
)2
,

where κ1 and κ2 are the signed curvatures of the curves r1 and r2, respectively.
Thus, the signed curvatures of the curves coincide if and only if k ≥ 3.

Now modify the previous configuration by changing the position and role of the
lines `1 and `2.

α β

β̃

h

`1

2̀

H

OF1 F2B
J

r1
r2

C1
C2

D1
D2

α β

β̃

h

`1

2̀
H

OF1 F2B
I

r1

r2

C1 D1

C2 D2

Let they pass through the midpoint O of the segment F1F2, and close angles α
and β with `, respectively. Denote the intersections of `1 and `2 with r1 and r2
by C̄1, D̄1 and C̄2, D̄2, respectively. Finally, let si be the arc length parameter of
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ri (i = 1, 2), and introduce δ(α) = 〈C1 −D1,uα〉 and δ(β̃) = 〈C2 −D2,uβ̃〉 where
β̃ = β − π.

Lemma 3.4. If H tends to B on the curve h, K = r0(0) and δ(β̃) 6= 0, then

δ(α)

δ(β̃)
→ (F2, F1;B)k, where k ≥ 2. (3.5)

Proof. If there is β̃ in every neighborhood of zero such that δ(β̃) 6= 0, then, by
the analyticity of r1 and r2, integer k := min{i ∈ N : dir1

ds (0) 6= dir2

ds (0)} is well
defined and k ≥ 2.

If lims→0
δ(α)

δ(β̃)
exists, then L’Hospital’s rule can be used, which results in

lim
s→0

δ(α)

δ(β̃)
= lim
s→0

dδ(α)
dα

dα
ds

dδ(β̃)

dβ̃

dβ̃
ds

= lim
s→0

dδ(α)
dα

dδ(β̃)

dβ̃

lim
s→0

dα
ds

dβ̃
ds

= lim
s→0

d2δ(α)
dα2

d2δ(β̃)

dβ̃2

(
lim
s→0

dα
ds

dβ̃
ds

)2

= · · · = lim
s→0

dkδ(α)
dαk

dkδ(β̃)

dβ̃k

(
lim
s→0

dα
ds

dβ̃
ds

)k
=
(

lim
s→0

dα
ds

dβ̃
ds

)k
.

By (3.4), this proves the lemma. �

Notice again that the signed curvatures of the curves coincide if and only if
k ≥ 3.

4. Minkowski planes with a quadratic hyperbola

We consider the quadratic hyperbolaHadI ;F1,F2
with eccentricity 2f = dI(F1, F2)

in the Minkowski plane (R2, dI) with indicatrix I. By [4, (ii) of Theorem 3] ev-
ery straight line parallel to F1F2 intersects HadI ;F1,F2

in exactly two points, hence
HadI ;F1,F2

is a hyperbolic quadric.
According to Subsection 2.1, the left-branch and right-branch of HadI ;F1,F2

inter-
sect F1F2 in the points A and B. Let tA, tB be the tangents of HadI ;F1,F2

at A, B,
respectively. Then, the obvious symmetry in the midpoint O of HadI ;F1,F2

entails
tA ‖ tB .

Let IO be the translate of I centered at O, and denote its intersections with line
F1F2 by I, J so that I is on the ray OF1 and J is on OF2. Denote the tangents of
I at I, J by tI , tJ , respectively. Then tI ‖ tJ by the symmetry of I.

As a hyperbolic quadric, HadI ;F1,F2
has two asymptotes `+ and `− through O.

These intersect the straight lines `1 and `2 through F1 and F2, respectively, in
points P±1 = `± ∩ `1 and P±2 = `± ∩ `2.

Introduce now an affine coordinate system such as O = (0, 0), J = (1, 0), and
P+
2 = (f,

√
f2 − a2). Choose the Euclidean metric de so that {(1, 0), (0, 1)} is an

orthonormal basis. Then F1 = (−f, 0), F2 = (f, 0), A = (−a, 0), and B = (a, 0).
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Given the Euclidean metric de, we can define r as the radial function of ∂IO
with respect to O, the angles α = ∠(HF1O), β̃ = ∠(HF2B) (β := π − β̃) and
ϕ = ∠(HOB) for the points H on the B-branch (that contains B) of HadI ;F1,F2

.
Finally, we define the lengths h1(α) := de(F1, H), h2(β) := de(F2, H), and h(ϕ) :=
de(O,H). Then dI(F1, H) = h1(α)/r(α), and dI(F2, H) = h2(β)/r(β), so we have

2a =
h1(α)

r(α)
− h2(β)

r(β)
. (4.1)

O

H

F1 F2A B

tA

tB

I J

tI tJϕα ββ̃

∂I0

h(
ϕ)h1(

α)

h
2
(β

)

r(α
)r(

β
)

Figure 4.1. A hyperbola in a Minkowski plane
Lemma 4.1. Tangents tA, tB, tI and tJ are all parallel.

Proof. Due to the quadraticity, ϕ and H are bijectively related, hence the func-
tions α(ϕ), β(ϕ) are also well defined. Differentiating (4.1) with respect to ϕ leads
to

0 =
dh1(α)
dα r(α)− h1(α)dr(α)dα

r2(α)

dα

dϕ
−

dh2(β)
dβ r(β)− h2(β)dr(β)dβ

r2(β)

dβ

dϕ
. (4.2)

As ϕ = 0 implies α = 0, β = π, r(0) = r(π) = 1, and dh1

dα (0) = dh2

dβ (π) = 0 follows
from tB ⊥de F1F2, (4.2) gives at ϕ = 0 that

r′(0)
[
− h1(0)

dα

dϕ
(0) + h2(π)

dβ

dϕ
(0)
]

= 0.

According to (3.4), h1(0) = |F1 − B|, and h2(π) = |F2 − B|, the second factor in
the left-hand side is positive, hence r′(0) = 0 follows that is tB ⊥de F1F2, which
proves the lemma. �

Lemma 4.2. The curve ∂IO is analytic in a neighborhood of I and J .

Proof. The radial functions h1, h2, the angles α(s), β(s), and the inverses of the
angles, where s is the arc length parameter, are clearly analytic, hence we deduce
that β(α) and α(β) are also analytic functions.

As x 7→ 1/x is analytic in a neighborhood of 1, in order to prove that r(α)
is analytic in a neighborhood of 0, it is enough to prove that r̄(α) := 1/r(α) is
analytic in a neighborhood of 0.
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Bearing this in mind, we reformulate (4.1) as

r̄(α) =
h2(β̃(α))

h1(α)
r̄(β̃(α)) +

2a

h1(α)
. (4.3)

Let us now introduce the functions f(α) := β̃(α), g(α) := h2(β̃(α))
h1(α)

, and h(α) :=
2a

h1(α)
. Then φ(α) := r̄(α) is a solution of the functional equation

φ(α) = g(α)φ(f(α)) + h(α),

in which functions f , g and h are analytic in a neighborhood of 0, dfdα (0) = h2(0)
h1(0)

< 1,

g(0) = h2(0)
h1(0)

< 1, and h(0) = 2a
h1(0)

= 2a
|F1−B| < 1. By [3, Theorem 4.6], such a

functional equation has a unique solution for φ, which additionally is analytic in
a neighborhood of 0. Consequently, r(α) is the reciprocal of that unique analytic
solution, so ∂IO is analytic around J , and, by its symmetry, around I too. �

Theorem 4.3. A Minkowski-plane that has a quadratic hyperbola is Euclidean.

Proof. We compare ∂IO, analytic by Lemma 4.2, with the unit circle C of de.
Observe that hyperbolas Hade;F1,F2

and HadI ;F1,F2
have two common tangents tA

and tB , two common asymptotes, and two common points A and B, hence, due to
their quadraticity, they coincide.

1

h(ϕ)

O

r(ϕ) (cosϕ;sinϕ)

r(0)=J

I=r(π)

∂IO

C

Ha
dI ;F1,F2

=Ha
de;F1,F2

ϕ

A B

α

F1

β

F2

By the definition of Hade;F1,F2
we have h1(α) − h2(β) = 2a, which together with

(4.1) implies

δ(α) = δ(β)
h2(β)

h1(α) + 2aδ(β)
, (4.4)

where δ(α) = 1− r(α) is the radial difference of C and ∂IO.
If in every neighborhood of I curves C and ∂IO differ, then (4.4) implies

lim
ϕ→0

δ(α)

δ(β)
=
f − a
f + a

= (F2, F1;B),

which contradicts (3.5). It follows that in a neighborhood of I curves C and ∂IO
coincide.
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However, if δ(β0) 6= 0 for any β0, then no value of the 0-convergent sequence β2i
constructed in Lemma 3.2 can vanish by (4.4), therefore no β0 can exist for which
δ(β0) 6= 0.

By the symmetry of the configuration, we deduce also, that no α can exist for
which δ(α) 6= 0, hence C and ∂IO coincide. �

5. Hilbert planes with a quadratic hyperbola

Let I ⊂ R2 ⊂ P2 be a bounded, strictly convex open domain, and consider the
Hilbert plane (I, dI). Let HadI ;F1,F2

be a quadratic hyperbola in (I, dI).
Let the intersections of line ` = F1F2 with ∂I be denoted by I and J so that

F1 ∈ IF2, and denote the tangents of I at I and J by tI and tJ , respectively.
Take the point TI = tI ∩ tJ in P2 and a straight line ` ⊂ P2 through TI that

avoids I. From now on, we consider the configuration in the affine plane R2 in
which TI is on the ideal line, hence tI ‖ tJ .

By Lemma 3.1, there is a perspectivity such that the respective image points
I, F ′1, F

′
2, J
′ of I, F1, F2, J satisfy

−−→
IF ′1 =

−−→
F ′2J

′, meanwhile tI ‖ tJ′ . Thus, considering
the configuration in the image plane allows us to assume from now on that

−−→
IF1 =−−→

F2J .
Denote the intersections of line ` with HadI ;F1,F2

by A and B so that A ∈ F1B.
By the definition of HadI ;F1,F2

we have

(I, J ;A,F1)(I, J ;A,F2) = e−4a = (I, J ;F1, B)(I, J ;F2, B),

which implies (I, J ;A)(I, J ;B) = (I, J ;F1)(I, J ;F2). As (I, J ;F1)(I, J ;F2) = 1

follows from
−−→
IF1 =

−−→
F2J , and (I, J ;A)(I, J ;B) = 1 gives

−→
IA =

−→
BJ , we found that

the affine and metric midpoints of the segments IJ , AB and F1F2 coincide. Let
this point be denoted by O.

∂I

O

HadI ;F1,F2
H

I

J

tI tJ

f1 f2

ϕα β

r1(α
+ π)

h1(α
)

r1(α
)

r 2
(β

+
π

)
h
2
(β

)

r 2
(β

)

A B

F1

F2

tA
tBU1

V1

U2

V2

Figure 5.1. Metric hyperbola in the Hilbert plane
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Take the straight line `O through O that is parallel to tI . Fix an affine coordinate
system so that O = (0, 0), J = (1, 0) and a point Y ∈ `O \ {O} is (0, 1). Let de be
the Euclidean metric such that {(0, 1), (1, 0)} is an orthonormal bases.

Let H be a moving point on HadI ;F1,F2
that defines angles α = ∠(HF1J), β =

∠(HF2J) and ϕ = ∠(HOJ); points V1 = F1H∩∂I, V2 = F2H∩∂I, U1 = HF1∩∂I,
and U2 = HF2 ∩∂I; and distances r1(α) = de(F1, V1), r2(β) = de(F2, V2), h1(α) =
de(F1, H), and h2(β) = de(F2, H) (see Figure 5.1).

Lemma 5.1. The respective tangents tA and tB of HadI ;F1,F2
at A and B, respec-

tively, are parallel with tI and tJ .

Proof. We start with the Hilbert distances

dI(F1, H) = −1

2
ln
(r1(α+ π)

r1(α)

/r1(α+ π) + h1(α)

r1(α)− h1(α)

)
,

dI(H,F2) = −1

2
ln
(r2(β + π)

r2(β)

/r2(β + π) + h2(β)

r2(β)− h2(β)

)
.

(5.1)

As we have dI(F1, B) − dI(B,F2) = 2a, and dI is continuous, there is a neigh-
borhood B of B in which dI(F1, H) > dI(H,F2) for every point H. Thus, the
equation

2a = dI(F1, H)− dI(H,F2) = −1

2
ln

r1(α+π)
r1(α)

/
r1(α+π)+h1(α)
r1(α)−h1(α)

r2(β+π)
r2(β)

/
r2(β+π)+h2(β)
r2(β)−h2(β)

describes HadI ;F1,F2
in B. After some rearrangement this gives

e−4a
(

1 +
h1(α)

r1(α+ π)

)(
1− h2(β)

r2(β)

)
=
(

1− h1(α)

r1(α)

)(
1 +

h2(β)

r2(β + π)

)
. (5.2)

By (5.1), the sum 2t(α) = dI(F1, H) + dI(H,F2) is

2t(α) = −1

2
ln
[(r1(α+ π)

r1(α)

/r1(α+ π) + h1(α)

r1(α)− h1(α)

)(r2(β + π)

r2(β)

/r2(β + π) + h2(β)

r2(β)− h2(β)

)]
,

which, after some rearrangements, results in

e−4t(α)
(

1 +
h1(α)

r1(α+ π)

)(
1 +

h2(β)

r2(β + π)

)
=
(

1− h1(α)

r1(α)

)(
1− h2(β)

r2(β)

)
.

Multiplying (5.2) with this and taking square root of the product yield

e2a+2t(α)
(

1− h1(α)

r1(α)

)
= 1 +

h1(α)

r1(α+ π)
.

Expressing h1(α) gives

h1(α) =
(e2a+2t(α) − 1)r1(α)r1(α+ π)

e2a+2t(α)r1(α+ π) + r1(α)
.
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The derivative of this vanishes at 0, because the derivative of r1 vanishes at 0 and
at π as tI ⊥ ` ⊥ tJ , and the derivative of t also vanishes at 0 as 2t(α) ≥ dI(F2, F1)
by the triangle inequality of dI , and equality holds if and only if H ∈ F1F2, i.e.
when H = B, due to the strictness of the triangle inequality. Thus, tB ⊥ `.

The very same reasoning for point A leads to the deduction of tA ⊥ `, so the
lemma is proved. �

Lemma 5.2. If HadI ;F1,F2
is the intersection of a hyperbolic quadric H with I, then

point Y ∈ `O can be chosen so that for the open unit disc D of de the hyperbola
HadD;F1,F2

in the hyperbolic plane (D, dD) coincides with HadI ;F1,F2
in I ∩ D.

Proof. The touching points of two parallel tangents of H are symmetric in the
center of H, hence O is the center of H. Therefore, the asymptotes `+ and `− of H
intersect each other in O. Let C be the opposite vertice of A in the parallelogram
defined by edges ` and tA, vertice O, and diagonal `−. (See Figure 5.2.)

C = ∂D

O

HadI ;F1,F2

H

I

−1

J

1

ϕα β
h(
ϕ)

tI tJ

r1(α
+ π)

h1(α
)

r1(α
)c1(α

)

r 2
(β

+
π

)
h
2
(β

)

r 2
(β

)

c 2
(β

)

A B

F1

F2

tA
tB

R1(α)

R2(β)

R(ϕ)

∂I

`−

`O

C

Figure 5.2. Common hyperbola of Hilbert planes (I, dI) and (C, dC).

By (2.1), hyperbola HadD;F1,F2
is the intersection of D and a hyperbolic quadric

H′, and, by symmetry, the asymptotes `′+ and `′− of H′ intersect each other in O.
Let C ′ be the opposite edge of A in the parallelogram defined by vertices ` and tA,
edge O, and diagonal `′−.

Points A,B and tangents tA, tB are common of H and H′ by Lemma 5.1.
Equation (2.1) gives the polar-equation

1

sinh2(r(ω))
=

cos2 ω

sinh2(a)
+

sin2 ω

(tanh2(a)− tanh2(f)) cosh2(a)
,
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for HadD;F1,F2
, that shows C ′ =

(
0,
√

tanh2 f − tanh2 a
)
.

Thus, choosing Y ∈ `O so that the coordinates of C be
(
0,
√

tanh2 f − tanh2 a
)

in the affine coordinate system given by O = (0, 0), J = (1, 0) and Y = (0, 1),
results in H′ such that C = C ′. In this case H and H′ have A,B, tA, tB and `± in
common, therefore, as they are quadrics, they coincidence, hence the statement of
the lemma. �

Comparing Figure 5.2 to Figure 5.1, we let R1(α) := V1, R1(α + π) := U1,
R2(β) := V2, R2(β + π) := U2, and H(ϕ) := H, furthermore introduce the point
C(ϕ) as the intersection of OH with C. Finally, for j ∈ {1, 2}, we let Cj and Rj
be the points where FjH intersects C and ∂I, respectively, and introduce distances
c1(α) = de(F1, C1(α)), and c2(β) = de(F2, C2(β))

Proposition 5.3. If HadI ;F1,F2
is the intersection of a hyperbolic quadric with I,

and ∂I is analytic around the points I and J , then

1 =
1 + tanh a

1− tanh a

∣∣∣∣∣ ( tanh f+tanh a
tanh f−tanh a )k−1 + ( tanh f−1

tanh f+1 )−(k−1)

( tanh f−1
tanh f+1 )−(k−1)( tanh f+tanh a

tanh f−tanh a )k−1 + 1

∣∣∣∣∣ (5.3)

or ∂I coincides with C in a neighborhood of points I and J .

Proof. Let δ1(α) := r1(α) − c1(α) and δ2(β) := r2(β) − c2(β), and, in case of
non-vanishing denominators, let

σ1(α) :=
δ1(α+π)

δ1(α)
and σ2(β) :=

δ2(β)

δ2(β+π)
, (5.4)

τ(α) :=
δ1(α)

δ2(β + π)
and %(α) :=

σ1(α)

σ2(β)
. (5.5)

Notice that ϕ→ 0 implies

c1(α), r1(α)→ 1 + tanh f, c1(α+ π), r1(α+ π)→ 1− tanh f,

c2(β), r2(β)→ 1− tanh f, c2(β + π), r2(β + π)→ 1 + tanh f,

and for non-vanishing denominators, by Lemma 3.3, these give

τ(α)→ (F1, F2; J,B)k and %(α)→ (F1, F2; I,B)k

(F1, F2; J,B)k
, (k ≥ 2). (5.6)

Following (5.2) for for C, we have(
1 +

h1(α)

c1(α+ π)

)(
1− h2(β)

c2(β)

)
= e4a

(
1− h1(α)

c1(α)

)(
1 +

h2(β)

c2(β + π)

)
. (5.7)
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Using δ1 and δ2 in (5.2) leads to(
1 +

h1(α)

c1(α+ π) + δ1(α+ π)

)(
1− h2(β)

c2(β) + δ2(β)

)
= e4a

(
1− h1(α)

c1(α) + δ1(α)

)(
1 +

h2(β)

c2(β + π) + δ2(β + π)

)
.

(5.8)

Subtracting (5.7) from this, then dividing by δ2(β + π) 6= 0, and using (5.4) and
(5.5), we arrive at(

1+
h1(α)

c1(α+ π)

) h2(β)σ2(β)

c2(β)
(
c2(β) + δ2(β)

)−
− h1(α)%(α)σ2(β)τ(α)

c1(α+ π)
(
c1(α+ π) + δ1(α+ π)

)(1− h2(β)

c2(β)

)
−

− h1(α)δ1(α+ π)

c1(α+ π)
(
c1(α+ π) + δ1(α+ π)

) h2(β)σ2(β)

c2(β)
(
c2(β) + δ2(β)

)
=− e4a

(
1− h1(α)

c1(α)

) h2(β)

c2(β + π)
(
c2(β + π) + δ2(β + π)

)+

+ e4a
h1(α)τ(α)

c1(α)
(
c1(α) + δ1(α)

)(1 +
h2(β)

c2(β + π)

)
−

− e4a h1(α)δ1(α)

c1(α)
(
c1(α) + δ1(α)

) h2(β)

c2(β + π)
(
c2(β + π) + δ2(β + π)

) .

(5.9)

Let us now take the limit of this for ϕ → 0, which involves α → 0 and β → π.
Using (5.6), we obtain for any point of accumulation σ̂2 of σ2 in R∪{−∞,∞} that

1 + tanh a

1− tanh f

tanh f − tanh a

(1 + tanh f)2
σ̂2 −

(tanh f + tanh a)(F1, F2; I,B)k

(1− tanh f)2
1 + tanh a

1 + tanh f
σ̂2

= e4a
(tanh f + tanh a)(F1, F2; J,B)k

(1 + tanh f)2
1− tanh a

1− tanh f
− e4a 1− tanh a

1 + tanh f

tanh f − tanh a

(1− tanh f)2
,

(5.10)
hence, by taking into account that 1+tanh a

1−tanh a = e2a, we obtain that

σ̂2 = −e2a
tanh f−tanh a

1−tanh f − (tanh f+tanh a)
1+tanh f (F1, F2; J,B)k

tanh f−tanh a
1+tanh f − (tanh f+tanh a)

1−tanh f (F1, F2; I,B)k
.

Substitution of

(F1, F2; I,B) = − 1−tanh f
1+tanh f

tanh f−tanh a
tanh f+tanh a and (F1, F2; J,B) = − 1+tanh f

1−tanh f
tanh f−tanh a
tanh f+tanh a

results in

σ̂2 = −e2a 1 + tanh f

1− tanh f

1 + (F1, F2; J,B)k−1

1 + (F1, F2; I,B)k−1
= −e2a 1 + (F1, F2; J,B)k−1

1 + (F1, F2; I,B)k−1
(I, J ;F2).
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By (5.5) and (5.6) we have

σ̂1
σ̂2

= lim
ϕ→0

σ1(α)

σ2(β)
= lim
ϕ→0

%(α) = (F1, F2; I, J)k =
(I, J ;F1)k

(I, J ;F2)k
,

hence

σ̂1
(I, J ;F1)k

=
σ̂2

(I, J ;F2)k
=

−e2a

(I, J ;F2)k−1
1 + (F1, F2; J,B)k−1

1 + (F1, F2; I,B)k−1
.

As σ̂1σ̂2 = 1, (I, J ;F1)(I, J ;F2) = 1, and (I, J ;F2) = −(F1, F2; I)−1 = −(F1, F2; J)
by the central symmetry of the configuration in point O, we deduce

1 = σ̂1σ̂2 =
( e2a

(I, J ;F2)k−1
1 + (F1, F2; J,B)k−1

1 + (F1, F2; I,B)k−1

)2
=
( e2a

(F1, F2; I)1−k
(F1, F2;B)k−1 + (F1, F2; J)k−1

(F1, F2;B)k−1 + (F1, F2; I)k−1

)2
= e2a

∣∣∣∣ (F1, F2;B)k−1 + (F1, F2; I)−(k−1)

(F1, F2; I)−(k−1)(F1, F2;B)k−1 + 1

∣∣∣∣ .
Substituting the expressions of e2a and the affine ratios in terms of tanh a and

tanh f yields (5.3) for the case of the existence of a non-vanishing sequence αi → 0
for which δ1(αi) 6= 0, δ2(βi) 6= 0, and δ2(βi + π) 6= 0.

To finish the proof of the proposition it remains to consider the case when
δ1(αi)δ2(βi + π)δ2(βi) = 0 for any non-vanishing sequence αi → 0. In this case
one of the factors δ1(αi), δ2(βi + π), and δ2(βi) vanishes for any non-vanishing
sequence αi → 0 at infinitely many i, which, by the analyticity of ∂I and C,
implies that there is an ε > 0 such that for |α| < ε either δ1(α) = 0 = δ2(β + π) or
δ1(α+ π) = 0 = δ2(β).

Assume first that δ1(α) = 0 = δ2(β + π) for |α| < ε, that is, C and I coincide in
a neighborhood of J . Subtracting (5.7) from (5.8) gives(

1 +
h1(α)

c1(α+ π)

) h2(β)δ2(β)

c2(β)
(
c2(β) + δ2(β)

)−
− h1(α)δ1(α+ π)

c1(α+ π)
(
c1(α+ π) + δ1(α+ π)

)(1− h2(β)

c2(β)

)
−

− h1(α)δ1(α+ π)

c1(α+ π)
(
c1(α+ π) + δ1(α+ π)

) h2(β)δ2(β)

c2(β)
(
c2(β) + δ2(β)

) = 0.

If there is a non-vanishing sequence αi → 0 such that δ2(βi) 6= 0 for all indexes i,
then division by δ2(βi) and application of (3.2) gives(

1 +
h1(0)

c1(π)

)h2(π)

c22(π)
− h1(0)(F1, F2; I,B)k

c21(π)

(
1− h2(π)

c2(π)

)
= 0,
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where the integer k is at least 2. Substitution of the values h1(0) = tanh f+tanh a,
h2(π) = tanh f−tanh a, c1(π) = 1−tanh f , c2(π) = 1+tanh f , and (F1, F2; I,B) =

− 1−tanh f
1+tanh f

tanh f−tanh a
tanh f+tanh a , we arrive at

1 = (−1)k
(1− tanh f

1 + tanh f

tanh f − tanh a

tanh f + tanh a

)k−1
,

which is a contradiction as the absolute value of the right-hand side is less than 1.
So C and I coincides in a neighborhood of I, as well.

Let us rephrase this result as follows:

if C and I coincide in a neighborhood of J , then
they coincide in a neighborhood of I, as well. (5.11)

Secondly, assume now that δ2(β) = 0 (consequently, δ1(α+ π) = 0) for |α| < ε,
that is, C and I coincides in a neighborhood of I. By the symmetry of our given
configuration, we immediately deduce by (5.11) that then C and I coincide in a
neighborhood of J , as well.

The proof is complete. �

Proposition 5.4. If HadI ;F1,F2
is the intersection of a hyperbolic quadric H with I,

then coincidence of ∂I and C in a neighborhood of I and J implies their identity.

Proof. For a point H ∈ HadI ;F1,F2
we call the lines HF1 and HF2 focal. A focal

line FjH is of type C̈C̈ if both ot its intersections with ∂I is also on C. A focal line
FjH is of type C̈D̈ or D̈C̈ if the intersections of FjH or FjH, respectively, with
∂I is on C, and the other intersection of FjH with ∂I is not on C.

The proof will be proceeded in several steps.
Equation (5.9) clearly shows that if any three of δ2(β), δ2(β + π), δ1(α), and

δ1(α+π) vanish, then the fourth one vanishes, too. Therefore we have the following:

There does not exist a point H ∈ HadI ;F1,F2
such that

one of its focal lines is C̈C̈, while the other is C̈D̈.
(5.12)

As there are common arcs of ∂I and C through I and J , either R(ϕ) = C(ϕ) for
every ϕ ∈ [0, π], or there are angles ϕ+ < ϕ+ in (0, π) such that R(ϕ) = C(ϕ) for all
ϕ ∈ [0, ϕ+]∪ [ϕ+, π], and R(ϕ) 6= C(ϕ) for some ϕ ∈ (ϕ+, ϕ

+) in all neighborhoods
of ϕ+ and ϕ+.

Further, either R(ϕ) = C(ϕ) for every ϕ ∈ [π, 2π], or there are angles ϕ− < ϕ−
in (π, 2π) such that R(ϕ) = C(ϕ) for all ϕ ∈ [π, ϕ−] ∪ [ϕ−, 2π], and R(ϕ) 6= C(ϕ)
for some ϕ ∈ (ϕ−, ϕ−) in all neighborhoods of ϕ− and ϕ−.

Both intervals [ϕ+, ϕ−] and [ϕ−, ϕ+] will be called interval of initial coincidence
(IC for short) and every corresponding common arc of ∂I and C will be called arc of
initial coincidence (IC for short). We shall use the shorter notations R+ = R(ϕ+),
R− = R(ϕ−), R+ = R(ϕ+), and R− = R(ϕ−), and regard the arcs on ∂I or C
positively oriented, so [R+R−] and [R−R+] are the arcs of IC.
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H1 H2

I J

R+

R−
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R−

H+
+

H−+

H+
−

H−−

A B

F1

F2

C
∂I

A(x)

A+

Figure 5.3. A+ = A(x+): critical point of the “upper” segment of H−

For the sake of brevity, a point P of R = {R+, R
+, R−, R−} is called an R̊-point

(or we say that P is R̊), and a point Q of arcs of IC not in R is called a C̊-point
(or we say that Q is C̊). A focal line m will be called an R̊R̊-line (respectively
C̊C̊-line) if it intersects ∂I in two R̊-points (respectively C̊-points). A focal line
FjH will be called an R̊C̊-line (respectively C̊R̊-line) if FjH intersects ∂I in R̊-
point (respectively in C̊-point), but HFj intersects ∂I in C̊-point (respectively in
R̊-point).

Hyperbola H is composed from two convex curves H− 3 A and H+ 3 B, the
branches, so each of them intersects ∂I in two points H+

± and H−± . Let x and
y be (Euclidean) arc length parameter on the branch H− and H+, respectively,
and define A : x 7→ A(x) ∈ H− and B : y 7→ B(y) ∈ H+ be such that A(0) = A,
B(0) = B, and F1A(x) rotates anti clockwise if x increases, while F2B(y) rotates
clockwise if y increases. (See Figure 5.3.)

For sufficiently small x, both focal lines A(x)F1 and A(x)F2 are clearly C̊C̊. Let
x+ be the supremum of x > 0 such that both of the focal lines of A(x) is C̊C̊. Let
x− be the infimum of x > 0 such that both of its focal line of A(x) is C̊C̊. Define
similarly the values y+ and y−. Points A+ = A(x+), A− = A(x−), B+ = B(y+),
and B− = B(y−) are the so called critical points of H. Clearly, at least one of the
focal lines of a critical point is not C̊C̊, but either R̊C̊ or R̊R̊.

If A+ = H+
− , then R+ = R+ and ϕ+ = ϕ+, and more importantly arc [R−R

−]
is common in ∂I ∩C. Further, A(x) = F1R−∩H− is a critical point with focal line
A(x)F1 of type C̊R̊, and, therefore, with focal line A(x)F2 that is C̈C̈ as can not
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be D̈C̈, by (5.12). If A(x)F2 is C̊C̊, then a small, appropriate decrease of x keeps
A(x)F2 being C̊C̊, but changes A(x)F1 to D̈C̈ which contradicts (5.12), hence we
deduce A(x)F2 is R̊C̊, i.e. A(x) = F2R

− ∩ H−. Letting B(y) = F2R
− ∩ H+ we

see that B(y)F1 is C̊C̊, and by the very same reasoning again, a small, appropriate
decrease of y produces a contradiction with (5.12).

Thus, if even just one of the critical points is not in I, then ∂I ≡ C.
Therefore, from now on we assume that there are exactly four critical points,

and so 0 < ϕ+ < ϕ+ < π and π < ϕ− < ϕ− < 2π.
Our aim is to rule out the impossible configurations of the critical points.

No critical point can have focal lines of type C̊C̊ and R̊C̊ at once. (5.13)

If A(x)F2 is C̊C̊ and A(x)F1 is R̊C̊, then an small, appropriate increase of x keeps
A(x)F2 being C̊C̊, but changes A(x)F1 to D̈C̈ which contradicts (5.12).

No critical point can have focal lines of type R̊R̊ and C̊R̊ at once. (5.14)

If A(x)F2 is R̊C̊ and A(x)F1 is R̊R̊, then letting B(y) = A(x)F2 ∩H+ we see that
B(y) is a critical point with focal lines being R̊C̊ and C̊C̊ that contradicts (5.13).

No critical point can have two focal lines of type R̊C̊ at once. (5.15)

If B(y)F1 and B(y)F2 are R̊C̊, the point A(x) = B(y)F1 ∩ H− has the focal line
A(x)F1 of type R̊C̊, but its other focal line A(x)F2 is of type C̊C̊ that contradicts
(5.13).

No two critical points can be on a focal line of type R̊R̊. (5.16)

A focal line of type R̊R̊ can pass only one of the focuses, say it is F1. Assume that
this focal line is R−R+ = A(x)F1 = B(y)F1. Consider the critical point B(z) for
z < 0. Both of its focal lines have intersection with ∂I above the line IJ of type C̊.
The other two intersections can only be of type R̊ or C̊, but then (5.15) or (5.13)
leads to contradiction.

There are at most two critical points with focal line of type R̊R̊. (5.17)

If there were three such critical points, then two of them would have a common
focal line of type R̊R̊. This contradicts (5.16).

By (5.17), there are at least two critical points such that none of their four focal
lines is R̊R̊. One of the focal lines of such a critical point must have an R̊-endpoint,
so it is an R̊C̊ focal line. The other focal line can only be R̊C̊ or C̊C̊, but these
contradict (5.15) and (5.13), respectively.

Thus, we conclude that ∂I = C. �
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Proposition 5.5. Equation (5.3) is never satisfied.

Proof. Substitution of x = tanh f and y = tanh a into (5.3), and making some
rearrangement we get

±1 =
1 + y

1− y
1 + (x+yx−y )k−1(x−1x+1 )k−1

(x+yx−y )k−1 + (x−1x+1 )k−1
,

where 0 < y < x < 1. Introducing A = x+y
x−y and B = 1−x

1+x , we first obtain that
1+y
1−y = A+B

1+AB , and then

±1 =
A+B

1 +AB

1 + (−1)k−1Ak−1Bk−1

Ak−1 + (−1)k−1Bk−1
,

where 0 < B < 1 < A. Easy rearrangements of this equation lead to

A(Ak−2 ∓ 1)(−1± (−1)k−1Bk) = B(1∓ (−1)k−1Bk−2)(Ak ∓ 1).

As 0 < B < 1 < A, the left-hand side is negative and the right-hand side is positive,
hence this equation can not be valid. �

Propositions 5.3, 5.4 and 5.5 imply our main result.

Theorem 5.6. If HadI ;F1,F2
is the intersection of a hyperbolic quadric with I, and

∂I is analytic around the points I and J , then ∂I is an ellipse and consequently
Hilbert plane (I, dI) is hyperbolic.
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