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EULER’S RATIO-SUM THEOREM REVISITED

ÁRPÁD KURUSA AND JÓZSEF KOZMA

Abstract. We shortly cover the history of Euler’s ratio-sum theorem, present
a short proof for it, prove how it can be reversed, and convert Euler’s ratio-sum
formula into an interesting inequality.

1. Introduction

Leonhard Euler (1707–1783), the greatest mathematician of his times, enriched
geometry with numerous theorems which have come illustrious since then. In this
survey, we deal with his less well known ratio-sum theorem. The literature of
the ratio-sum theorem is not too extensive, however, articles appear from time
to time (see [3, 4, 5, 7, 8]), and treat the ratio-sum formula in different settings.
Interestingly enough, the ratio-sum formula has gotten into the field of vision of the
present authors also in a different setting as a way to characterize projective-metric
spaces [6].

Theorem 1.1 (Euler’s ratio sum theorem [1]). For every inner point O of a triangle
ABC4 in the Euclidean plane,

d(A,O)

d(O,X)
+
d(B,O)

d(O, Y )
+
d(C,O)

d(O,Z)
+ 2 =

d(A,O)

d(O,X)
· d(B,O)

d(O, Y )
· d(C,O)

d(O,Z)
, (1.1)

where X = AO ∩BC, Y = BO ∩ CA, Z = CO ∩AB.
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C
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Z
O

Although Euler submitted his paper [1] containing the ratio-sum theorem, it
was published only 22 years after his death in 1873. Many of his works suffered a
similar fate, due mainly to his peerless productivity in scientific article writing (in
the course of his life, he wrote more than 800 articles, besides 28 extensive works),
hence the considerable backlog of his unpublished works at his preferred journals
of Academies of Saint Petersburg and Berlin.

Mathematicians of Euler’s times, however, knew Euler’s ratio-sum theorem,
what can be seen from the publication [2] of Anders Johan Lexell (1740–1783)
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that appeared in 1873 and contains a survey on the spherical version of the ratio-
sum theorem. Lexell was a good family friend of Euler, and a member of the same
Russian Academy of Science in Saint Petersburg until his death.

Even less well known, less than the ratio-sum theorem itself, albeit it was in-
cluded in Euler’s original paper [1], that triangle ABC4 can be constructed know-
ing the lengths in the ratio-sum formula (1.1).

Theorem 1.2 (Constructibility [1]). If the length of segments AO, BO, and CO,
and further the length of segments OX, OY , and OZ are given, where O is a
common point O of an unknown triangle ABC4 such that X = AO ∩ BC, Y =
BO ∩ CA, Z = CO ∩AB, then triangle ABC4 is constructible.

In this paper we prove not only the above theorems, but give the exact conditions
under which three segments AX, BY , and CZ with a given common point O can
be rotated in a position such that X = AO∩BC, Y = BO∩CA, Z = CO∩AB 1.

Finally, although we present the possibility of an immediate generalization, we
prefer to give and prove an inequality born by the proof of (1.1). This inequality
happens to turn into an equality if and only if segments AX, BY , and CZ pass
through one point. This form of Euler’s ratio-sum theorem, as phrased in this
Theorem 3.1, is markedly reminiscent of Ceva’s theorem.

2. Proofs and the converse of the ratio-sum theorem

Our notations mainly are the usual ones: points are denoted by capital letters;
d(A,B) denotes the distance of points A and B, AB respectively AB denotes the
line respectively the segment with endpoints A and B. The triangle determined by
points A, B and C is ABC4, while its angle at vertex A is ∠(BAC). The area
function is t(·), so the area of triangle ABC4 is given by t(ABC) = t(ABC4).

Proof of Theorem 1.1. To reduce clutter, introduce notations a = d(A,O)
d(O,X) , b =

d(B,O)
d(O,Y ) and c = d(C,O)

d(O,Z) . Then Euler’s ratio-sum formula (1.1) takes the form

a+ b+ c+ 2 = abc. (2.1)

Adding expression 1 + a + b + c + ab + bc + ca to both sides, the right-hand side
can be written in a form of product, while the left-hand side splits to a sum of
products:

(1 + b)(1 + c) + (1 + a)(1 + c) + (1 + a)(1 + b) = (1 + a)(1 + b)(1 + c).

1In his article [7] Shephard gave a solution for the similar problem in affine plane, where the
length of the segments is not taken into account, but only the ratios of the division by O counts.
In this case condition (1.1) alone guaranties the existence of a triangle in which the ratios in
equation (1.1) occur. Moreover, as Shephard notices too, every affine image of that triangle is
appropriate.
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Value of a, b and c is clearly different form −1, so dividing by the right-hand side
leads to the equivalent equality

1

1 + a
+

1

1 + b
+

1

1 + c
= 1. (2.2)

So, (1.1) is equivalent to equality

d(O,X)

d(A,X)
+
d(O, Y )

d(B, Y )
+
d(O,Z)

d(C,Z)
= 1. (2.3)

This one, however, immediately follows from equalities

d(O,X)

d(A,X)
=
t(OBC)

t(ABC)
,

d(O, Y )

d(B, Y )
=
t(OCA)

t(ABC)
,

d(O,Z)

d(C,Z)
=
t(OAB)

t(ABC)
.

�

Proof of Theorem 1.2. In order to avoid rather confusing complicated formulae,
apply notations a = d(A,O)

d(O,X) , b = d(B,O)
d(O,Y ) , and c = d(C,O)

d(O,Z) this case as well, which,
by our condition, fulfill (2.1), or what is the same, relation (2.2). Furthermore,
introduce angles α = ∠(ZOB), β = ∠(XOC), and γ = ∠(Y OA), for which relation
α+ β + γ = π is clearly true.

α

β
γ

A B

C

XY

Z

O

Our task therefore is to find values α, β, and γ = π − α− β.
Point X happens to fall on segment BC if and only if

d(B,O)d(O,C) sinα = t(BOC) = d(B,O)d(O,X) sin γ + d(C,O)d(O,X) sinβ,

that is,

d(A,O)

d(O,X)

sinα

d(O,A)
=

sinα

d(O,X)
=

sin γ

d(O,C)
+

sinβ

d(B,O)
.

A cyclic permutation of the vertexes gives the same way that Y ∈ CA and Z ∈ AB
if and only if

d(B,O)

d(O, Y )

sinβ

d(O,B)
=

sinα

d(O,A)
+

sin γ

d(C,O)
,

d(C,O)

d(O,Z)

sin γ

d(O,C)
=

sinβ

d(O,B)
+

sinα

d(A,O)
,
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respectively. Introducing x = sinα
d(A,O) , y = sin β

d(O,B) , and z = sin γ
d(O,C) turns up that

these fulfill the homogeneous linear system of equations

ax− y − z = 0,

−x+ by − z = 0,

−x− y + cz = 0.

(2.4)

From the difference of equations of (2.4), one gets right away for the solutions that
(1 + a)x = (1 + b)y = (1 + z)c, hence all solutions are of the form

(
λ

1+a ,
λ

1+b ,
λ

1+c ),
where λ ∈ R. Accordingly,

λ
d(A,O)

1 + a
= sinα, λ

d(B,O)

1 + b
= sinβ, and λ

d(C,O)

1 + c
= sin γ. (2.5)

This results, as well, in

d(O,B)

1 + b
sinα =

d(O,A)

1 + a
sinβ,

and
d(O,C)

1 + c
=

sin γ

λ
=

sinα cosβ + sinβ cosα

λ
=

sinα

λ
cosβ + cosα

sinβ

λ

=
d(O,A)

1 + a
cosβ +

d(O,B)

1 + b
cosα.

Subtracting expression d(O,B)
1+b cosα from both sides of the latter equation, then

squaring the result and summing up to the first equation, we get

d2(O,B)

(1 + b)2
sin2 α+

(
d(O,C)

1 + c
− d(O,B)

1 + b
cosα

)2

=
d2(O,A)

(1 + a)2
.

Performing the squaring of the difference on the left-hand side, we obtain

d2(O,B)

(1 + b)2
− 2

d(O,C)

1 + c

d(O,B)

1 + b
cosα+

d2(O,C)

(1 + c)2
=
d2(O,A)

(1 + a)2
. (2.6)

Pursuant to cosine theorem, this means that there exists a triangle PQR4 such
that for the length of its sides opposite to the vertexes, p = d(O,A)

1+a , q = d(O,B)
1+b ,

r = d(O,C)
1+c holds true, respectively, and the magnitude of the angles at the vertexes

are α, β, and γ = π − α− β, respectively.
So thus, the origonal triangle can be constructed if length p = d(A,O)d(O,X)

d(A,X) ,

q = d(B,O)d(O,Y )
d(B,Y ) , and r = d(C,O)d(O,Z)

d(C,Z) are calculated. From these data triangle
PQR4 is constructible and its angles give α, β, and γ = π − α− β, due to which
segments AX, BY , and CZ can be adjusted, properly to each other. �

In virtue of the proofs of Theorem 1.1 and Theorem 1.2, it is clear that the
conditions of the following theorem can not be lighten.
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Theorem 2.1 (Converse of the ratio-sum theorem). If for a common point O of
segments AX, BY , and CZ, Euler’s ratio-sum formula (1.1) holds true, and each
of the numbers p = d(A,O)d(O,X)

d(A,X) , q = d(B,O)d(O,Y )
d(B,Y ) , and r = d(C,O)d(O,Z)

d(C,Z) is smaller
than the sum of the other two, then segments AX, BY , and CZ can be turned
around O so that points X,Y, Z fall onto the sides of triangle ABC4, respectively.

Proof. For the sake of simplicity let a = d(A,O)
d(O,X) , b =

d(B,O)
d(O,Y ) , and c =

d(C,O)
d(O,Z) . By

the assumption and (2.2), we have

1

1 + a
+

1

1 + b
+

1

1 + c
= 1. (2.7)

Now construct a triangle PQR4 such that length of its sides opposite to the
vertexes, are p, q, r, respectively. Let the angles at vertexes be α, β, and γ =
π−α−β, respectively. Rotate segments AX, BY , and CZ so that ∠(ZOB) be α,
∠(XOC) be β, and ∠(Y OA) be γ. Hence

q2 − 2rq cosα+ r2 = p2,

p2 − 2rp cosβ + r2 = q2,

p2 − 2qp cos γ + q2 = r2.

(2.8)

Now we should prove that resulted triangle ABC4 is such that its sides opposite
to the vertexes contain points X, Y , and Z, respectively.

Let X̂ = AX∩BC, Ŷ = BY ∩CA, and Ẑ = CZ∩AB, furthermore, â = d(A,O)

d(O,X̂)
,

b̂ = d(B,O)

d(O,Ŷ )
, and ĉ = d(C,O)

d(O,Ẑ)
. Relation (1.1) is true for triangle ABC4, so (2.2)

gives
1

1 + â
+

1

1 + b̂
+

1

1 + ĉ
= 1. (2.9)

Introducing notations p̂ = d(A,O)d(O,X̂)

d(A,X̂)
, q̂ = d(B,O)d(O,Ŷ )

d(B,Ŷ )
, and r̂ = d(C,O)d(O,Ẑ)

d(C,Ẑ)
,

the construction procedure and (2.6) imply

q̂2 − 2r̂q̂ cosα+ r̂2 = p̂2,

p̂2 − 2r̂p̂ cosβ + r̂2 = q̂2,

p̂2 − 2q̂p̂ cos γ + q̂2 = r̂2.

(2.10)

Comparing equations (2.8) with equations (2.10), as both triple of equations
applies to triangles with the same corresponding angle, i.e. to similar triangles,
it follows that p̂ = λp, q̂ = λq, and r̂ = λr for some number λ > 0. From the
definition of p, q, r and p̂, q̂, r̂, equalities 1

1+â = λ
1+a ,

1
1+b̂

= λ
1+b , and

1
1+ĉ = λ

1+c

follow. Substituting these into (2.9) and comparing the result to (2.9), λ = 1

presents itself. Hence â = a, b̂ = b, and ĉ = c, that is, X̂ = X, Ŷ = Y , and Ẑ = Z.
Herewith the theorem is proven. �

http://www.math.u-szeged.hu/tagok/kurusa


(October 29, 2018) c© Á. Kurusa and J. Kozma http://www.math.u-szeged.hu/tagok/kurusa

6 Á. KURUSA AND J. KOZMA

3. Instead of generalization – inequality

It can be shown that Euler’s ratio-sum theorem remains true with appropriate
interpretation if the common point of the lines through the vertexes of the triangle
does not fall on the lines of the sides of the triangle. Moreover, the reverse statement
for this more general case holds true, as well, if one requires for points X,Y, Z only
to fall onto the lines of the sides of the triangle. We do not give proof for these
generalizations here, but show an inequality instead.

Let us consider the ratio-sum formula in its equivalent form (2.3). This formula
is valid when the three segments pass through one common point. When the
segments meet each other in the pairwise different points H, I, J , a ratio still can
be defined on each segment, taking the midpoint of the two points of intersection
as a new dividing point on the respective segments.

Theorem 3.1. Let X,Y, Z be points on the sides of triangle ABC4 opposite to
vertexes A,B,C, respectively. Furthermore, let H = AX ∩ BY , I = BY ∩ CZ,
and J = CZ ∩ AX be the points of intersection of segments joining these points
with the opposite vertexes, respectively. Finally, let the midpoints of the triangle
HIJ4, determined by the latter three points, be K = (J +H)/2, L = (H + I)/2,
and M = (I + J)/2. Then,

d(K,X)

d(A,X)
+
d(L, Y )

d(B, Y )
+
d(M,Z)

d(C,Z)
≥ 1, (3.1)

where equality stands if and only if K = L =M .

A B

C

X

Y

Z

H

I

J K

LM

Proof. We can calculate the area ratio of triangles with same base the following
way: t(HBC)

t(ABC) = d(H,X)
d(A,X) ,

t(JBC)
t(ABC) = d(J,X)

d(A,X) ,
t(ICA)
t(ABC) = d(I,Y )

d(B,X) ,
t(HCA)
t(ABC) = d(H,Y )

d(B,X) ,
t(JAB)
t(ABC) = d(J,Z)

d(C,X) ,
t(IAB)
t(ABC) = d(I,Z)

d(C,X) . Substituting these into the doubled left-hand
side of (3.1) gives

d(H,X) + d(J,X)

d(A,X)
+
d(I, Y ) + d(H,Y )

d(B, Y )
+
d(J, Z) + d(I, Z)

d(C,Z)

=
t(HBC)

t(ABC)
+
t(JBC)

t(ABC)
+
t(ICA)

t(ABC)
+
t(HCA)

t(ABC)
+
t(JAB)

t(ABC)
+
t(IAB)

t(ABC)
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=
t(HBC)

t(ABC)
+
t(HCA)

t(ABC)
+
t(ICA)

t(ABC)
+
t(IAB)

t(ABC)
+
t(JBC)

t(ABC)
+
t(JAB)

t(ABC)

= 1− t(HAB)

t(ABC)
+ 1− t(IBC)

t(ABC)
+ 1− t(JAC)

t(ABC)
= 3− t(ABC)− t(HIJ)

t(ABC)

= 2 +
t(HIJ)

t(ABC)
.

This completes the proof. �
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