
LOOPS WITH AND WITHOUT SUBLOOPS

JÓZSEF KOZMA

In the theory of local loops, those loops which have one-parameter subloops
are of considerable importance. M. A. Akivis [1] gave an interesting example of
a quasigroup which has r-parameter subloops in every direction [2]. At the “Web
Geometry Conference” held at Szeged, 1987, K. H. Hofmann raised the problem
of exhibiting a simple example in which there is no one-parameter subloop in any
direction.

Searching for a satisfactory answer to this problem we shall investigate the ques-
tion: Is the existence of one-parameter subloops a general property of local loops?

The aim of our considerations are as follows:

(1) Firstly, we exhibit a class of loops which have subloops in every direction,
and examine associativity conditions for this loop-class.

(2) Secondly, we give (analytic) examples of elastic loops in our class which
are not groups on the one hand, and a further example of elastic loops
whose one-parameter subloops are not one-parameter subgroups on the
other hand. Hence we separate analytic elastic loops from right alternative
analytic loops since tha latter ones are necessarily power-associative (see
[3]).

(3) Thirdly, we exhibit a class of loops which have one-parameter subloops only
one direction.

(4) Finally, we give an example of a loop without one-parameter subloops at
all.

All the results of the present paper are based on the existence of canonical
coordinate system [4] and the following main feature of loops ([5], Theorem 1). If
f is a local loop of calss Ck (k ≥ 2) and D is a canonical coordinate system then
every one-parameter subloop is locally a straight line through the origin in D.

The author expresses his sincere thanks to K. H. Hofmann, P. T. Nagy and
A. Kurusa for their help and suggestions.

1. Preliminaries {defaa}
Definition 1.1. Let F be an n-dimensional differentiable manifold. A partial
mapping f of class Ck

f : F × F → F : (x,y)→ z (x,y, z ∈ F)

is called a local loop-multiplication of class Ck and (F ; f) is called a local loop of
class Ck if the following conditions are satisfied.
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2 J. KOZMA

a) The multiplication is a local quasigroup, that is, there exist open neigh-
bourhoods V,U (V ⊂ U ⊂ F) such that f : V ×V → U and f(x,y) = z ∈ U
for all x,y ∈ V. Furthermore for arbitrary elements x ∈ V, z ∈ V (respec-
tively, y ∈ V, z ∈ V) there exists one and only one y ∈ U (respectively
x ∈ V) for which f(x,y) = z.

b) The loop has a unit element, that is, there is an element e ∈ V such that
f(x, e) = f(e,x) = x for all x ∈ V.

c) Zhe loop-multiplication is of class Ck.

We shall consider charts (Ui, ϕi) for which ϕi : Ui → Wi ⊆ Rn; e 7→ 0, where 0 is
the origin of Rn.

A loop on an m-dimensional manifold F is called an m-parameter loop. Instead
of (F ; f) we shall frequently write f .

Since the canonical coordinate-system defined in [4] plays an important role our
considerations further on, we recall its definition.

{defab}
Definition 1.2. Let us consider a loop f of class Ck (k ≥ 2). We shall say that a
coordinate-system ϕ given by the chart (U , ϕ), f : U → Rn, ϕ(e) = 0, is a canonical
coordinate system (CCS) with respect to f if in these coordinates we have

F (x,x) = 2x

for all x ∈ ϕ(V), where
F = ϕ ◦ f ◦ (ϕ−1 × ϕ−1).

Further on, by a loop we mean a local loop of class Ck (k ≥ 2).
{defac}

Definition 1.3. Let (F ; f) and (G; g) be two loops, and let ξ be a local map
ξ : F → G of class Ck. If ξ is a local embedding, then (F ; f) is caled a local
m-parameter subloop of (G; g).

2. Maximal families of one-parameter subloops

Our purpose is now to describe a class of loops having subloops in every direction.
{defad}

Definition 2.1. A local multiplication

F : Rn ×Rn → Rn;V × V → U
(where V,U are appropriate neighbourhoods of 0) is called an (α, β)-multiplication
if for all x,y ∈ V
(2.1){eqaa} F (x,y) = x + y + α(y)x + β(x)y

where α, β : Rn → R : 0→ 0 are real-valued functions of class Ck.
{propba}

Proposition 2.2. An (α, β)-multiplication is a local loop-multiplication on a neigh-
bourhood V of the origin 0 of Rn, the unit element is the origin 0.

Proof. First af all let us show that (2.1) defines a local loop-multiplication of class
Ck.

a) As α and β are defined on Rn, F (x,y) is well-defined. The multiplication is
locally solvable from left and right since

D1F (0,0) = I, D2F (0,0) = I

where D1 and D2 denotes the partial derivative with respect to the first, respec-
tively, second variable belonging to Rn, and where I is the identity map in Rn.

[Original publication: Acta Sci. Math., 55 (1991), 21-31]



LOOPS WITH AND WITHOUT SUBLOOPS 3

b) The origin 0 of Rn is the unit element since we have

F (x,0) = x + 0 + α(0)x + β(x)0 = x,

and similarly
F (0,y) = y.

c) The loop-multiplication is of class Ck because α and β are of class Ck, as
well. �

A loop (Rn, F ) with (α, β)- multiplication is called an (Rn;αβ)-loop.

Now we are going to show that these loops have subloops in every direction.
{thba}

Theorem 2.3. For every vector subspace A of Rn the restriction F |A×A of an
(α, β)-multiplication is a loop-multiplication on a neighbourhood of 0 ∈ A.

Proof. Let A be a vector subspace os Rn. Then for x,x ∈ A the element

z = F (x,y) = [1 + α(y)]x + [1 + β(x)]y

obviously belongs to A, as well. Similarly if x, z (respectively y, z) are elements of
A, then y (respectively x) also belongs to A. This implies that the restriction of F
to A×A is a local subloop of (Rn;F ). �

The subloop (A;F ) is called an (A;α, β)-loop.

Let us emphasize two details of the above result.
{coba}

Corollary 2.4. The loop (A;α, β) has r-parameter subloops in every r-dimensional
subspace of Rn. In particular, it has one-parameter subloops in every direction.

{thbb}
Theorem 2.5. Let F be an (α, β)-multiplication defined on a neighbourhood V ⊂
Rn. Then the loop (Rn;α, β) (n ≥ 2) is a local group on a sufficiantly small
neighbourhood W of 0 if and only if

α (F (x,y)) = α(x) + α(y) + α(x)α(y)

(for every x,y ∈ W).

Proof. 1) For the necessity we show that (Rn;α, β) is a group if and only if for all
x,y ∈ W the relations

α (F (x,y)) =α(x) + α(y) + α(x)α(y)(2.2a) {eqba1}

β (F (x,y)) =β(x) + β(y) + β(x)β(y)(2.2b) {eqba2}

are satisfied. Indeed, (Rn;α, β) is a group if and only if F is associative, that is,

F (F (x,y), z) = (x, F (y, z))

holds for all x,y, z ∈ W (W is a sufficiently small neighbourhood of 0). By a
straightforward calculation we see that this identity is equivalent to the following
one:

[α (F (y, z))− [α(y) + α(z) + α(y)α(z)]] x

= [β (F (x,y))− [β(x) + β(y) + β(x)β(y)]] z

for all x,y, z ∈ W, which is equivalent to (2.2a) and (2.2b).
2) In order to show that condition (2.2a) is sufficient we shall orove that (2.2a)

implies (2.2b). For this purpose we show that (2.2a) implies the linearity of α− β
via the commutativity of the one-parameter subloops.
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By (2.2a) we have

(2.3) {eqbb} α (F (x,y)) = α (F (y,x))

for all x,y ∈ W. Whenever for a direction a Daα(0) 6= 0, we get from (2.3) that

F (x,y) = F (y,x)

for all x,y belonging to the one-parameter subloop of direction a. That is, this one-
parameter subloop is commutative. However, if for the direction a Daα(0) = 0, we
introduce new defining functions

α∗(x) = α(x) + 〈a,x〉, β∗(x) = β(x)− 〈a,x〉,
to obtain the (Rn;α∗, β∗)-loop on W. Since

ua + vaα∗(va)ua + β∗(ua)va = ua + vaα(va)ua + β(ua)va

for all sufficiently small real number u and v the one-parameter subloops of the
direction a of the loops (Rn;α∗, β∗) and (Rn;α, β) are the same. SinceDaα

∗(0) 6= 0
when Daα(0) = 0, we obtain that this one-parameter subloop is commutative.

From the commutativity it immediately follows that

α(vx)ux + β(ux)vx = α(ux)vx + β(vx)ux

holds in every direction x for all sufficiently small nonzero u and v in R, which
yields

α(vx)− β(vx)

v
=
α(ux)− β(ux)

u
.

The left hand side does not depend on u, so we get
(2.4){eqbc}

α(vx)−β(vx) = v · lim
u→0

α(ux)− α(0)

u
− v · lim

u→0

β(ux)− β(0)

u
= v ·Dx

(
α(0)−β(0)

)
for each x ∈ W. Thus

α(z)− β(z) = 〈D(α− β)(0), z〉.
That is, α− β is linear function on the appropriate neighbourhood.

Now we are ready to prove (2.2a) from (2.2b). If in the left and right hand side
of (2.2a) we substitute λ+ β for α (where λ is a inear function), we obtain firstly

α
(
F (x,y)

)
= λ

(
F (x,y)

)
+ β

(
F (x,y)

)
= λ(x) + λ(y) + α(y)λ(x) + β(x)λ(y) + β

(
F (x,y)

)
=

[
λ(x) + λ(y) + λ(x)λ(y) + β(y)λ(x) + β(x)λ(y)

]
+ β

(
F (x,y)

)
,

secondly,

α(x) + α(y) + α(x)α(y) =

[λ(x) + λ(y) + λ(x)λ(y) + λ(x)β(y) + β(x)λ(y)] + β(x) + β(y) + β(x)β(y)

which is just (2.2b) and the theorem is proved. �
{remba}

Remarks. 1. In accordance with the proof above, the (Rn;α, β)-loop is not a group
if α − β is not linear (for example if β is identically 0, and α is not linear). Thus
relation (2.1) defines a non-trivial loop, in general. 2. By Theorem 2.3, r-parameter
subloops (A;α, β) of (Rn;α, β) exist for all subspace A ⊆ Rn. Since Theorem 2.3
holds for these loops, too, we obtain that the r-parameter (r ≥ 2) subloops of
(Rn;α, β) are not r-parameter subgroups if α− β is not linear.
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We now consider some other algebraic identities which are weaker than associa-
tivity. Let us recall some definitions.

{defbb}
Definition 2.6. A loop has the left-inverse property (right-inverse property) if for
each x ∈ V there is an element x̄l ∈ V (x̄r ∈ V) such that for every y ∈ V
(2.5) {eqbd}F

(
x̄l, F (x,y)

)
= y, respectively, F

(
F (y,x), x̄r,

)
= y,

in particular, for y = 0

(2.6) {eqbe} F (x̄l,x) = 0, respectively, F (x, x̄r) = 0.

The loop F is said to be left alternative (right alternative) if for all x,y ∈ V
(2.7) {eqbf}
F
(
F (x,x),y

)
= F

(
x, F (x,y)

)
, respectively,F

(
y, F (x,x)

)
= F

(
F (y,x),x

)
.

The loop has the property of elasticity if for all x,y ∈ V
(2.8) {eqbg} F

(
x, F (y,x)

)
= F

(
F (x,y),x

)
.

{thbc}
Theorem 2.7. An (Rn;α, β)-loop (n ≥ 2) is a group if and only if it

a) possesses the left-inverse property (right-inverse property) ,
b) possesses the left alternative property (right alternative property) .

{thbd}
Theorem 2.8. Whenever α = β and α is linear then the corresponding (Rn;α, β)-
loops (n ≥ 2) are elastic. Such an (Rn;α, β)-loop of dimension n (n ≥ 2) is a group
if and only if α ≡ 0.

Proof of Theorem 2.7. a) If we use expression (2.1) to reformulate (2.5) and (2.6)
we get [

1 + α[x + y + α(y)x + β(x)y]
]
· x̄l +

[
1 + α(y) + β(x̄l) + α(y)β(x̄l)

]
· x(2.5’) {eqbdp}

+
[
β(x) + β(x̄l) + β(x)β(x̄l)

]
· y = 0

[1 + α(x)] · x̄l + [1 + β(x̄l)] · x = 0(2.6’) {eqbep}

for all x,y and x̄l ∈ V. Subtracting (2.6’) from (2.5’) we get[
α[x + y + α(y)x + β(x)y]− α(x)x̄l

]
+ α(y)[1 + β(x̄l)] · x+

+
[
β(x) + β(x̄l) + β(x)β(x̄l)

]
· y = 0

for all x,y and x̄l ∈ V. In view of (2.6’) we obtain[
α[x+y+α(y)x+β(x)y]−α(x)−α(y)−α(x)α(y)

]
x̄l+

[
β(x)+β(x̄l)+β(x)β(x̄l)

]
y = 0

for all x,y and x̄l ∈ V. Notice that ¯(x)l = 0 if and only if x = 0 (see (2.6)). Hence
relation (2.5) holds for the loop (Rn;α, β) if and only if the following two identities
are satisfied

α[x + y + α(y)x + β(x)y] = α(x) + α(y) + α(x)α(y)(2.9a) {eqbf1}

= β(x) + β(x̄l) + β(x)β(x̄l)(2.9b) {eqbf2}

ll x,y ∈ V. Since condition (2.2a) is the same as (2.9a), this loop is a local group.
As a group always possesses left-inverse property, part a) of the theorem is proved
in the case of left inverse loops.

Notice that from (2.9b) and (2.6’) we can express x̄l as follows:

(∗) {eqbga} x̄l =
1

[1 + α(x)] · [1 + β(x)]
x.
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For right inverse (Rn;α, β)-loops the proof can be carried out in the same way as
above. Furthermore, the right and left inverse of an element are clearly the same
by (∗) above.

Expressing identity (2.7) in terms of (2.1) we obtain that (2.7) is equivalent to
the following two identities

α[x + y + α(y)x + β(x)y] = α(x) + α(y) + α(x)α(y)(2.10a){eqbg1}

β[2x + α(x)x + β(x)x] = 2β(x) + β(x) + β(x)β(x).(2.10b){eqbg2}

We see that (2.10a) and (2.2a) are equivalent. Thus from the left alternative prop-
erty it follows that an (Rn;α, β)-loop is a local group. The converse is obvious,
furthermore the right inverse case is similar, therefore part b) is proved. �

Proof of Theorem 2.8. From expression (2.1) we obtain that (2.8) is equivalent to
the following equality;

α(x) + α(y) + α(x)α(y)− α[x + y + α(x)y + β(y)x]

= β(x) + β(y) + β(x)β(y)− β[x + y + β(x)y + β(y)x]

for all x,y ∈ V. It is clear that if α ≡ β, then this equality is an identity for all
x,y ∈ V. In other words, for all α ≡ β the loop (Rn;α, β) is elastic. Let now α ≡ β
be linear function. Let us suppose that (Rn;α, β) is a group, and n ≥ 2. Then
(2.2a) is fulfilled and has the form

α
(
F (x,y)

)
= α(x) + α(y) + α(x)α(y)

α[x + y + α(y)x + α(x)y] = α(x) + α(y) + α(x)α(y)

α(x) + α(y) + α(y)α(x) + α(x)α(y) = α(x) + α(y) + α(x)α(y)

α(x)α(y) = 0

for all x,y ∈ V. However, this means that α ≡ β ≡ 0. Thus for the linear function
α ≡ β which is not identically zero the loop (Rn;α, β) is elastic, but not a group.

Another (less obvious) example is an (Rn;α, β)-loop (n ≥ 1) for which α(x) is
a qudratic function, e.g. α(x) = ‖x‖2. Indeed, for arbitrary, s, t, u ∈ R we have

F
(
F (sx, tx), ux

)
− F

(
sx, F (tx, ux)

)
= stu · ‖x‖2 ·

[
(3t+ 2s+ 2u)(s− u) + ‖x‖2t[t(s3 − u3) + 2t2(s2 − u2) + t3(s− u)]

]
x.

Hence these subloops are not subgroups because the difference vector has a positive
norm prided 0 < u < s < t. Consequently, these loops are not groups. �

Remark 2.9. L. V. Sabinin and P. O. Mikheev [3] proved that analytical right-
alternative loops are power associative (that is, F (xm,xn) = xm+n for arbitrary
x ∈ F and any integers m and n). However, we can show that the analogous
statement for elastic loops is false. As a power-associative loop has one-parameter
subgroups in every direction (see Kuz’min [6]), our analytical elastic (Rn;α, β)-
loops (α(x) = ‖x‖2) can not be power associative.

3. Loops without one-parameter subloops

In final part of this paper we exhibit loops which do not have any non-trivial
one-parameter subloops whatsoever. However, let us start with another class of
loops which have one-parameter subloops in one unique direction. For this purpose
we give a slight modification of the loops given by (2.1).
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{defca}
Definition 3.1. Let us define a local multiplication (α,−α; %,a) in Rn as follows

F2 : Rn ×Rn → Rn : V × V → U

where V,U are appropriate neighbourhoods of 0, furthermore for all x,y ∈ V we
have

(3.1) {eqca} F2(x,y) = x + y + α(y)x− α(x)y + %(x,y)a

for all x,y ∈ V. Here α is the same as in Definition 2.1; furthermore a ∈ Rn is a
point (sufficiently close to 0) different from 0, and % is a real function of class Ck:

% : Rn ×Rn → R : V × V → U∗ ⊂ R

such that %(x,y) = 0 if and only if x = 0 or y = 0 or x = y. (That is, %(x,0) =
%(0,y) = %(z, z) = 0 for all x,y, z ∈ V, and % does not vanis in any other case.)

Such function %exists, e.g. the function % defined as follows:

(3.2) {eqcb} %(x,y) = ‖x‖2‖y‖2‖x− y‖2.
{prca}

Proposition 3.2. The local (α,−α; %,a)-multiplication given by (3.1) defines a
local loops of class Ck which has one-parameter subloop in the direction of a, ex-
clusively.

Proof. We show that F − 2 is a loop-multiplication.
a) Since α and % are of class Ck, F2 is well defined in V. F2(x,y) = z can be

solved from left and right because the derivative of F2 with respect to the first and
second variable (belonging to Rn) is the identity map.

b) The origin 0 isn Rn is the unit element since

F2(x,0) = x + 0 + α(0)x− α(x)0 + %(x,0)a = x

and similarly F2(0,y) = y, for all x,y ∈ V.
c) α and % are of class Ck, therefore F2 is also of class Ck.
Following this, let us notice that the coordinate system in which F2 is defined,

is a CCS. Indeed, according to Definition 1.2 we have

F(x,x) = x + x + α(x)x− α(x)x + %(x,x)a = 2x

for all x ∈ V. So, owing to Theorem 1 in [5], there exists a one-parameter subloop,
then it is locally a straight line. It is obvious that there exists one-parameter
subloop in the direction of a.

Let us suppose that there exist one-parameter subloop in the direction of d.Then
the elements of this subloop are of form t · d, t ∈ (−T0, T0), at least locally. Let
x = s1d 6= 0 and y = s2d 6= 0 (s1 6= s2) be two different elements of it. According
to (3.1) we have

F2(x,y) = F2(s1d, s2d) = [s1 + s2 + s1α(s2d)− s2α(s1d)]d + %(s1d, s2d)a + rd

for some e ∈ R. Since for these s1 and s2: %(s1d, s2d) 6= 0, directions a and d must
be the same, which completes the proof. �

This loop is called an (Rn;α,−α; %,a)-loop.

Our next and last example is that of a loop without nontrivial one-parameter
subloops. For this purpose e shall modify the previous construction.
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{defcb}
Definition 3.3. Let us define a local multiplication (α,−α; %,a;σ,b) in Rn (n ≥ 2)
in the following manner

F3 : Rn ×Rn → Rn : V × V → U

where V,U are appropriate neighbourhoods of the origin 0, furthermore for all
x,y ∈ V we have

(3.3){eqcc} F3(x,y) = x + y + α(y)x− α(x)y + %(x,y)a + σ(x,y)b

where α is the same as in Definition 3.1, a and b are linearly independent (fixed)
points (directions) in Rn (sufficiently close to 0). Further we suppose that σ pos-
sesses all the properties of % and that, in additional, from %(x0,y0) = σ(x0,y0) it
follows that %(x0,y0) = σ(x0,y0) = 0 (that is that σ and % are different, except
where they vanish).

Functions σ with the required propertis exist, e.g. the one defined by the following
formula:

(3.4){eqcd} σ(x,y) = h(x)‖y‖2‖x− y‖2,

where h : Rn → Rn and h(x) vanishes if and only if x = 0, and = h(x) 6= ‖x‖2.
Furthermore h is assumed to be of class Ck.

{prcb}
Proposition 3.4. Any multiplication given by (3.3) defines a local loop of class
Ck which has no one-parameter subloop at all.

This loop is called an (Rn;α,−α; %,a;σ,b)-loop.

Proof. In the same way as above we can prove that conditions a), b) and c) for
loops are fulfilled.

It can be stated, again, that F3 is defined in a CCS. Thus if there exist a one-
parameter subloop of F3 in the direction of d, then for two different elements
x = s1d, y = s2d (0 6= s1 6= s2 6= 0) we have

F3(x,y) = F3(s1d, s2d)

= [s1 + s2 + s1α(s2d)− s2α(s1d)]d + %(s1d, s2d)a + σ(s1d, s2d)b = rd.

Thus we obtain that

td = (tκ1)a + (tκ2)b = %(s1d, s2d)a + σ(s1d, s2d)b

for allowable s1 6= s2, hence we obtain that

(3.5){eqce} %(s1d, s2d) = tκ1 and σ(s1d, s2d) = tκ2.

Let us first suppose that d = a. That is, there exists a one-parameter subloop in
the direction of a. Then we have

%(s1a, s2a)a + σ(s1a, s2a)b = ta.

Since %(s1a, s2a) 6= 0, σ(s1a, s2a) 6= 0 and t0ne0, it follows that b = a, which
contradicts the assumption for a and b. In the case of d = b we get the same
result.

Let us now suppose that a0ned 6= b. Then from relations (3.5) we obtain that
κ1 6= 0, κ2 6= 0, concequently for all 0 6= s1 6= s2 6= 0

(3.6){eqcf} %(s1d, s2d) =
κ1
κ2
σ(s1d, s2d).
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But, we shall now give a % and σ such that this equation does not hold identically
in s1 and s2. With relations (3.2) and (3.4) equation (3.6) becomes

‖s1d‖2‖s2d‖2‖(s1 − s2)d‖2 =
κ1
κ2
h(s1d)‖s2d‖2‖(s1 − s2)d‖2

and consequently

‖s1d‖2 =
κ1
κ2
h(s1d)

for all sufficiently small s1 6= 0. Now the function

h(x) = e‖x‖
2

· ‖x‖2

can not satisfy identically the previous equation, which completes the proof. �
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