BEHAVIOUR OF LOOPS IN A CANONICAL COORDINATE SYSTEM

JÓZSEF KOZMA

1. INTRODUCTION

This paper deals with the basic theory of local loops of class C^k . First we set up the framework of our further considerations. The following definition is standard.

Definition 1.1. Let \mathcal{F} be an *n*-dimensional differentiable manifold. Apartial mapping f of class C^k

$$f: \mathcal{F} \times \mathcal{F} \to \mathcal{F}: (x, y) \mapsto z \quad (x, y, z \in \mathcal{F})$$

is called a *local loop-multiplication of class* C^k and $(\mathcal{F}; f)$ is called a *local loop of class* C^k if the following conditions are satisfied.

- a) The multiplication is local quasigroup, that is, there exist open neighbourhoods \mathcal{V}, \mathcal{U} ($\mathcal{V} \subseteq \mathcal{UF}$) such that $f: \mathcal{V} \times \mathcal{V} \to \mathcal{U}$ and $f(x, y) = z \in \mathcal{U}$ for all $x, y \in \mathcal{V}$. Furthermore, for arbitrary elements $x \in \mathcal{V}, z \in mcv$ (respectively, $y \in \mathcal{V}, z \in \mathcal{V}$) there exists one and only one $y \in \mathcal{U}$ (respectively, $x \in \mathcal{V}$) for which f(x, y) = z.
- b) The loop has a unit element, that is, there is an element $e \in \mathcal{V}$ such that f(x, e) = f(e, x) = x for all $x \in \mathcal{V}$.
- c) The loop-multiplication is of class C^k .

We shall consider charts $(\mathcal{U}_i, qvarphi_i)$ for which $\varphi_i \colon \mathcal{U}_i \to \mathcal{W}_i \subseteq \mathbf{R}^n; e \mapsto 0$, where 0 is the origin of \mathbf{R}^n .

A loop on an *m*-dimensional manifold \mathcal{F} is called an *m*-parameter loop. Instead of $(\mathcal{F}; f)$ we shall frequently write f.

Since the canonical coordinate-system defined in [1] takes a prominent part in our investigations now, we recall its definition.

Definition 1.2. Let us consider a loop of class C^k $(k \ge 2)$. We shall say that a coordinate-system φ given by the chart (\mathcal{U}, φ) $f: \mathcal{U} \to \mathbf{R}^n$, $\varphi(e) = 0$ is a *canonical coordinate-system*(*CCS*) with respect to f if in these coordinates we have

$$f(x,x) = 2x$$

for all $x \in \varphi(\mathcal{V})$, where

$$F = \varphi \circ f(\varphi^{-1} \times \varphi^{-1}).$$

This definition is feasible on account of the following result.

Theorem 1.3 ([1], Theorem 1). If f is a loop of class C^k $(k \ge 2)$, then there exists a CCS with respect to f, of class C^k .

Date: April 19, 1989.

J. KOZMA

2. Morphisms and differentiable subloops

Further on, by a loop we mean a local loop of class C^k $(k \ge 2)$. Finally, we give the definition of morphisms and differentiable subloops.

Definition 2.1. Let $(\mathcal{F}; f)$ and $(\mathcal{G}; g)$ be two loops, and let ξ be a local map $\xi \colon \mathcal{F} \to \mathcal{G}$ of class C^k . If

$$f(\xi(x),\xi(y)) = \xi(f(x,y))$$

for all $x, y \in \mathcal{F}$ for which the product f(x, y) is defined, then ξ is called a *local* morphism from $(\mathcal{F}; f)$ to $(\mathcal{G}; g)$. If, in particular, ξ is a local embedding of class C^k , then $(\mathcal{F}; f)$ is called a local *m*-parameter subloop of $(\mathcal{G}; g)$.

Our main goal now to show that any morphism of local loops, when trnsposed to a canonical coordinate-system; is the restriction of a linear map.

We first explain what we mean by transposing morphism to canonical coordinate system. Let $(\mathcal{F}; f)$ be a loop with the CCS given by $(\mathcal{U}; \varphi)$, and $(\mathcal{G}; g)$ a loop with CCSgiven by $(\mathcal{L}; \psi)$, and let $\xi : (\mathcal{F}; f) \to (\mathcal{G}; g)$ be a C^k -morphism, $\xi \in C^k$. We can dfine loops $(\mathbf{R}^n; \sigma)$ is \mathbf{R}^n and $(\mathbf{R}^n; \tau)$ in \mathbf{R}^n by diffeomorphisms φ and ψ . The loop-multiplication σ is defined by

$$\sigma \colon \tilde{\mathcal{V}} \times \tilde{\mathcal{V}} \to \tilde{\mathcal{U}}, \quad \sigma = \varphi \circ f \circ (\varphi^{-1} \times \varphi^{-1}),$$

where $0 \in \tilde{\mathcal{V}} \subseteq \mathbf{R}^m$.

In the CCS $(\mathcal{L}; \psi)$ of the loop $(\mathcal{G}; g)$ the loop-multiplication τ is defined as follows

 $\tau \colon \tilde{\mathcal{W}} \times \tilde{\mathcal{W}} \to \tilde{\mathcal{L}}, \quad \tau = \psi \circ g \circ (\psi^{-1} \times \psi^{-1}).$

By the definition of the morphism ξ , for the loop $(\mathcal{G}; g)$ we have

$$: \mathcal{W} \times \mathcal{W} \to \mathcal{L}, \quad \xi \circ f = g(\xi \times \xi),$$

and the unit element of g is e_g : $e_g = \xi(e_f)$, where e_f is the unit element of

$$g\bigl(\xi(e_f),\xi(x)\bigr) = \xi\bigl(g(e_f),x\bigr)(\xi(x))\bigr)$$

It is clear that the mapping $\kappa = \varphi \circ \xi \circ \psi^{-1}$ is a ,orphism from the loop $(\mathbf{R}^n; \tau)$ to the loop $(\mathbf{R}^n; \sigma)$, that is,

(2.1)
$$\kappa \circ \sigma(x, y) = \tau \circ (\kappa \times \kappa)(x, y)$$

holds for any $x, y \in \mathcal{V}$. Furthermore if, in particular, ξ is an embedding, then κ is a local embedding, as well.

The mapping κ is said to be the transposed mapping of the morphism ξ by the mappings φ and ψ .

[Arch. Math., 55 (1990), 498-502]

BEHAVIOUR OF LOOPS...

3. Linearity in a CCS

Now we ae going to show that κ is linear. With the notations introduced above the theorem in question can be stated as follows.

Theorem 3.1. The transposed mapping κ of the morphism ξ by the homeomorphisms φ and ψ is linear, that is, there exists a linear mapping $T: \mathbf{R}^m \to \mathbf{R}^m$ such that κ is the restriction of T to $\tilde{\mathcal{U}}$.

In order to prove this theorem we require the following lemma.

Main lemma. Let κ be a differentiable map of a star shaped neighbourhood \mathcal{W}^* in \mathbf{R}^m onto a neighbourhood of \mathbf{R}^n keeping the origin fixed. If there exists a sequence of real numbers $\{r_m\}, r_m \neq 0$, converging to 0 an such that for each m

(3.1)
$$\kappa(r_m x) = r_m \cdot \kappa(x)$$

holds for all x in \mathcal{V}^* , then κ is a linear mapping (that is, the restriction of a linear map).

Proof of the Main lemma. As κ is differentiable at 0, we have

$$\kappa(x) = D\kappa(0)(x) + \|x\| \cdot \varepsilon(x)$$

for all $x \in \mathcal{V}^*$, where $\|\dot{\|}$ denotes the usual Euclidean norm, and $\lim_{x \to 0} \varepsilon(x) = 0$. We can substitute $r_m x$ for x:

$$\kappa(r_m x) = D\kappa(0)(r_m x) + \|r_m x\| \cdot \varepsilon(r_m x).$$

Taking into account of linearity of of $D\kappa(0)$, and relation (3.1), we obtain the following

$$r_m \cdot \kappa(x) = r_m \cdot D\kappa(0)(x) + r_m \cdot \|x\| \cdot \varepsilon(r_m x)$$

for all $x \in \mathcal{V}^*$. Multiplying both sides with r_m^{-1} , and comparing the two equalities for $\kappa(x)$ we get

$$\|x\| \cdot \varepsilon(x) = \|x\| \cdot \varepsilon(r_m x)$$

for all $x \in \mathcal{V}^*$ and for all m. It follows that

$$\varepsilon(x) = \lim_{m \to \infty} \varepsilon(r_m x) = \lim_{x \to 0} \varepsilon(x) = 0$$

which shows that $\kappa = DK(0)|_{\mathcal{V}^*}$, that is, κ is a restriction of a linear map, which was to be shown.

Proof of the Theorem. Since φ and ψ determine a CCS, we have

$$\sigma(x, x) = 2x$$

and

$$\sigma(\kappa(x),\kappa(x)) = 2\kappa(x)$$

for every $x \in \tilde{\mathcal{V}}$. In virtue of Equation (2.1), from the previous relations obtain that

$$\kappa(2x) = \kappa \circ \sigma(x, x) = \sigma(\kappa(x), \kappa(x)) = 2\kappa(x)$$

for every $x \in \tilde{\mathcal{V}}$. Let us consider a star shaped neighbourhood $\mathcal{W}^* \subseteq \tilde{\mathcal{V}}$ of the origin. Then for every point $x \in \mathcal{V}^*$ we have $x_1 = \frac{1}{2}x \in \mathcal{V}^*$, and $\tau(\frac{1}{2}x, \frac{1}{2}x) = x$. By induction we get $x_m = \frac{1}{2^m}x \in \mathcal{V}^*$ for all natural numbers m. Thus we can write

$$\kappa\left(\frac{1}{2^m}x\right) = \frac{1}{2^m}\kappa(x)$$

[Arch. Math., **55** (1990), 498-502]

for all $x \in \mathcal{V}^*$.

In such a way we have found a sequence of real numbers $\left\{\frac{1}{2^m}\right\}_{m=1}^{\infty}$ in a star shaped neighbourhood \mathcal{V}^* such that the conditions of the Main lemma are satisfied. Thus the morphism κ is a restriction of a linear map which was to be proved. \Box

Let us now observe some consequences of the theorem. First we formulate a statement regarding to the subloops of a local differentiable loop.

Corollary 3.2. In a CCS any *m*-parameter subloop is an *m*-plane, and the restriction of a CCS of the loop is a CCS of the subloop.

Proof. Firstly, by the Main lemma κ is a linear mapping in an appropriate neighbourhood \mathcal{V}^* . Now taking into account the linearity of κ in \mathcal{V}^* obtain that $\kappa(\mathcal{V}^*)$ is locally a linear *m*-dimensional subspace of \mathbf{R}^n near 0. That is, $\kappa = \psi \circ \xi \circ \varphi^{-1}$ is a mapping of \mathcal{V}^* onto the linear subspace $\kappa(\mathcal{V}^*) \subseteq \tilde{\mathcal{L}}$, in other words, a local *m*-parameter subloop is locally an *m*-dimensional plane in \mathbf{R}^n .

Secondly, let us consider the local loop $(\mathbf{R}^n; \tau)$ in the coordinate-system $(\psi \circ \xi(\mathcal{U}), \mathrm{id})$ which is, by definition, a CCS. We have seen that the subloop $(\mathbf{R}^m; \sigma)$ is locally an *m*-dimensional plane in \mathbf{R}^n , through the origin. Then a usual linear parametrization of this plane is exactly a CCS for this subloop.

Let the morphism ξ be the identity map. Then the following statement is a straightforward consequence of the theorem (see also [1]).

Corollary 3.3. A CCS is (locally) unique up to a linear isomorphism.

Remarks. 1. There is a former theorem ([1], Theorem 3) analogous to our Corollary 3.2. It states that one-parameter subgroups are linear in a CCS.

2. The formulation of Corollary 3.2 might have been complemented with the following: *'if the loop has any subloop at all'*. In fact, there are loops without one-parameter subloops (see [2]).

The author expresses his sincere thanks to K. H. Hofmann and P. T. Nagy for their interest and their suggestions.

References

 J. Kozma, On the differentiability of loop-multiplication in canonical coordinate syste. Publ Math. Debrecen, 37, (1990), 313-325.

[2] J. Kozma, Loops with an without subloops, Acta Sci. Math., 55, (1991), 21-31.

BOLYAI INSTITUTE, UNIVERSITY OF SZEGED, ARADI VÉRTANÚK TERE 1, 6725 SZEGED (HUN-GARY)

E-mail address: kozma@math.u-szeged.hu

4