BEHAVIOUR OF LOOPS IN A CANONICAL COORDINATE SYSTEM

JÓZSEF KOZMA

1. Introduction

This paper deals with the basic theory of local loops of class C^{k}.
First we set up the framework of our further considerations. The following definition is standard.

Definition 1.1. Let \mathcal{F} be an n-dimensional differentiable manifold. Apartial mapping f of class C^{k}

$$
f: \mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}:(x, y) \mapsto z \quad(x, y, z \in \mathcal{F})
$$

is called a local loop-multiplication of class C^{k} and $(\mathcal{F} ; f)$ is called a local loop of class C^{k} if the following conditions are satisfied.
a) The multiplication is local quasigroup, that is, there exist open neighbourhoods $\mathcal{V}, \mathcal{U}(\mathcal{V} \subseteq \mathcal{U} \mathcal{F})$ such that $f: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{U}$ and $f(x, y)=z \in \mathcal{U}$ for all $x, y \in \mathcal{V}$. Furthermore, for arbitrary elements $x \in \mathcal{V}, z \in m c v$ (respectively, $y \in \mathcal{V}, z \in \mathcal{V}$) there exists one and only one $y \in \mathcal{U}$ (respectively, $x \in \mathcal{V}$) for which $f(x, y)=z$.
b) The loop has a unit element, that is, there is an element $e \in \mathcal{V}$ such that $f(x, e)=f(e, x)=x$ for all $x \in \mathcal{V}$.
c) The loop-multiplication is of class C^{k}.

We shall consider charts $\left(\mathcal{U}_{i}\right.$, quarphi $\left.i_{i}\right)$ for which $\varphi_{i}: \mathcal{U}_{i} \rightarrow \mathcal{W}_{i} \subseteq \mathbf{R}^{n} ; e \mapsto 0$, where 0 is the origin of \mathbf{R}^{n}.

A loop on an m-dimensional manifold \mathcal{F} is called an m-parameter loop. Instead of $(\mathcal{F} ; f)$ we shall frequently write f.

Since the canonical coordinate-systemdefined in [1] takes a prominent part in our investigations now, we recall its definition.
Definition 1.2. Let us consider a loop of class $C^{k}(k \geq 2)$. We shall say that a coordinate-system φ given by the chart $(\mathcal{U}, \varphi) f: \mathcal{U} \rightarrow \mathbf{R}^{n}, \varphi(e)=0$ is a canonical coordinate-system (CCS) with respect to f if in these coordinates we have

$$
f(x, x)=2 x
$$

for all $x \in \varphi(\mathcal{V})$, where

$$
F=\varphi \circ f\left(\varphi^{-1} \times \varphi^{-1}\right) .
$$

This definition is feasible on account of the following result.
Theorem 1.3 ([1], Theorem 1). If f is a loop of class $C^{k}(k \geq 2)$, then there exists a CCS wirh respect to f, of class C^{k}.

2. Morphisms and differentiable subloops

Further on, by a loop we mean a local loop of class $C^{k}(k \geq 2)$. Finally, we give the definition of morphisms and differentiable subloops.
Definition 2.1. Let $(\mathcal{F} ; f)$ and $(\mathcal{G} ; g)$ be two loops, and let ξ be a local map $\xi: \mathcal{F} \rightarrow \mathcal{G}$ of class C^{k}. If

$$
f(\xi(x), \xi(y)=\xi(f(x, y))
$$

for all $x, y \in \mathcal{F}$ for which the product $f(x, y)$ is defined, then ξ is called a local morphism from $(\mathcal{F} ; f)$ to $(\mathcal{G} ; g)$. If, in particular, ξ is a local embedding of class C^{k}, then $(\mathcal{F} ; f)$ is called a local m-parameter subloop of $(\mathcal{G} ; g)$.

Our main goal now to show that any morphism of local loops, when trnsposed to a canonical coordinate-system; is the restriction of a linear map.

We first explain what we mean by transposing morphism to canonical coordinate system. Let $(\mathcal{F} ; f)$ be a loop with the CCS given by $(\mathcal{U} ; \varphi)$, and $(\mathcal{G} ; g)$ a loop with CCSgiven by $(\mathcal{L} ; \psi)$, and let $\xi:(\mathcal{F} ; f) \rightarrow(\mathcal{G} ; g)$ be a C^{k}-morphism, $\xi \in C^{k}$. We can dfine loops ($\mathbf{R}^{n} ; \sigma$) is \mathbf{R}^{n} and $\left(\mathbf{R}^{n} ; \tau\right)$ in \mathbf{R}^{n} by diffeomorphisms φ and ψ. The loop-multiplication σ is defined by

$$
\sigma: \tilde{\mathcal{V}} \times \tilde{\mathcal{V}} \rightarrow \tilde{\mathcal{U}}, \quad \sigma=\varphi \circ f \circ\left(\varphi^{-1} \times \varphi^{-1}\right)
$$

where $0 \in \tilde{\mathcal{V}} \subseteq \mathbf{R}^{m}$.
In the $\operatorname{CCS}(\mathcal{L} ; \psi)$ of the loop $(\mathcal{G} ; g)$ the loop-multiplication τ is defined as follows

$$
\tau: \tilde{\mathcal{W}} \times \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{L}}, \quad \tau=\psi \circ g \circ\left(\psi^{-1} \times \psi^{-1}\right)
$$

By the defintion of the morphism ξ, for the loop $(\mathcal{G} ; g)$ we have

$$
g: \tilde{\mathcal{W}} \times \tilde{\mathcal{W}} \rightarrow \tilde{\mathcal{L}}, \quad \xi \circ f=g(\xi \times \xi)
$$

and the unit element of g is $e_{g}: e_{g}=\xi\left(e_{f}\right)$, where e_{f} is the unit element of

$$
g\left(\xi\left(e_{f}\right), \xi(x)\right)=\xi\left(g\left(e_{f}\right), x\right)(\xi(x) .)
$$

It is clear that the mapping $\kappa=\varphi \circ \xi \circ \psi^{-1}$ is a ,orphism from the loop $\left(\mathbf{R}^{n} ; \tau\right)$ to the loop ($\mathbf{R}^{n} ; \sigma$), that is,

$$
\begin{equation*}
\kappa \circ \sigma(x, y)=\tau \circ(\kappa \times \kappa)(x, y) \tag{2.1}
\end{equation*}
$$

holds for any $x, y \in \mathcal{V}$. Furthermore if, in particular, ξ is an embedding, then κ is a local embedding, as well.

The mapping κ is said to be the transposed mapping of the morphism ξ by the mappings φ and ψ.
[Arch. Math., 55 (1990), 498-502]

3. Linearity in a CCS

Now we ae going to show that κ is linear. With the notations introduced above the theorem in question can be stated as follows.

Theorem 3.1. The transposed mapping κ of the morphism ξ by the homeomorphisms φ and ψ is linear, that is, there exists a linear mapping $T: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}$ such that κ is the restriction of T to $\tilde{\mathcal{U}}$.

In order to prove this theorem we require the following lemma.
Main lemma. Let κ be a differentiable map of a star shaped neighbourhood \mathcal{W}^{*} in \mathbf{R}^{m} onto a neighbourhood of \mathbf{R}^{n} keeping the origin fixed. If there exists a sequence of real numbers $\left\{r_{m}\right\}, r_{m} \neq 0$, converging to 0 an such that for each m

$$
\begin{equation*}
\kappa\left(r_{m} x\right)=r_{m} \cdot \kappa(x) \tag{3.1}
\end{equation*}
$$

holds for all x in \mathcal{V}^{*}, then κ is a linear mapping (that is, the restriction of a linear map).

Proof of the Main lemma. As κ is differentiable at 0 , we have

$$
\kappa(x)=D \kappa(0)(x)+\|x\| \cdot \varepsilon(x)
$$

for all $x \in \mathcal{V}^{*}$, where $\left\|\|\right.$ denotes the usual Euclidean norm, and $\lim _{x \rightarrow 0} \varepsilon(x)=0$. We can substitute $r_{m} x$ for x :

$$
\kappa\left(r_{m} x\right)=D \kappa(0)\left(r_{m} x\right)+\left\|r_{m} x\right\| \cdot \varepsilon\left(r_{m} x\right) .
$$

Taking into account of linearity of of $D \kappa(0)$, and relation (3.1), we obtain the following

$$
r_{m} \cdot \kappa(x)=r_{m} \cdot D \kappa(0)(x)+r_{m} \cdot\|x\| \cdot \varepsilon\left(r_{m} x\right)
$$

for all $x \in \mathcal{V}^{*}$. Multiplying both sides with r_{m}^{-1}, and comparing the two equalities for $\kappa(x)$ we get

$$
\|x\| \cdot \varepsilon(x)=\|x\| \cdot \varepsilon\left(r_{m} x\right)
$$

for all $x \in \mathcal{V}^{*}$ and for all m. It follows that

$$
\varepsilon(x)=\lim _{m \rightarrow \infty} \varepsilon\left(r_{m} x\right)=\lim _{x \rightarrow 0} \varepsilon(x)=0
$$

which shows that $\kappa=\left.D K(0)\right|_{\mathcal{V}^{*}}$, that is, κ is a restriction of a linear map, which was to be shown.

Proof of the Theorem. Since φ and ψ determine a CCS, we have

$$
\sigma(x, x)=2 x
$$

and

$$
\sigma(\kappa(x), \kappa(x))=2 \kappa(x)
$$

for every $x \in \tilde{\mathcal{V}}$. In virtue of Equation (2.1), from the previous relations obtain that

$$
\kappa(2 x)=\kappa \circ \sigma(x, x)=\sigma(\kappa(x), \kappa(x))=2 \kappa(x)
$$

for every $x \in \tilde{\mathcal{V}}$. Let us consider a star shaped neighbourhood $\mathcal{W}^{*} \subseteq \tilde{\mathcal{V}}$ of the origin. Then for every point $x \in \mathcal{V}^{*}$ we have $x_{1}=\frac{1}{2} x \in \mathcal{V}^{*}$, and $\tau\left(\frac{1}{2} x, \frac{1}{2} x\right)=x$. By induction we get $x_{m}=\frac{1}{2^{m}} x \in \mathcal{V}^{*}$ for all natural numbers m. Thus we can write

$$
\kappa\left(\frac{1}{2^{m}} x\right)=\frac{1}{2^{m}} \kappa(x)
$$

[Arch. Math., 55 (1990), 498-502]
for all $x \in \mathcal{V}^{*}$.
In such a way we have found a sequence of real numbers $\left\{\frac{1}{2^{m}}\right\}_{m=1}^{\infty}$ in a star shaped neighbourhood \mathcal{V}^{*} such that the conditions of the Main lemma are satisfied. Thus the morphism κ is a restriction of a linear map which was to be proved.

Let us now observe some consequences of the theorem. First we formulate a statement regarding to the subloops of a local differentiable loop.
Corollary 3.2. In a CCS any m-parameter subloop is an m-plane, and the restriction of a CCS of the loop is a CCS of the subloop.

Proof. Firstly, by the Main lemma κ is a linear mapping in an appropriate neighbourhood \mathcal{V}^{*}. Now taking into account the linearity of κ in \mathcal{V}^{*} obtain that $\kappa\left(\mathcal{V}^{*}\right)$ is locally a linear m-dimensional subspace of \mathbf{R}^{n} near 0 . That is, $\kappa=\psi \circ \xi \circ \varphi^{-1}$ is a mapping of \mathcal{V}^{*} onto the linear subspace $\kappa\left(\mathcal{V}^{*}\right) \subseteq \tilde{\mathcal{L}}$, in other words, a local m-parameter subloop is locally an m-dimensional plane in \mathbf{R}^{n}.

Secondly, let us consider the local loop $\left(\mathbf{R}^{n} ; \tau\right)$ in the coordinate-system $(\psi \circ$ $\xi(\mathcal{U}), \mathrm{id})$ which is, by definition, a CCS. We have seen that the subloop $\left(\mathbf{R}^{m} ; \sigma\right)$ is locally an m-dimensional plane in \mathbf{R}^{n}, through the origin. Then a usual linear parametrization of this plane is exactly a CCS for this subloop.

Let the morphism ξ be the identity map. Then the following statement is a straightforward consequence of the theorem(see also [1]).

Corollary 3.3. A CCS is (locally) unique up to a linear isomorphism.
Remarks. 1. There is a former theorem ([1], Theorem 3) analogous to our Corollary 3.2. It states that one-parameter subgroups are linear in a CCS.
2. The formulation of Corollary 3.2 might have been complemented with the following: 'if the loop has any subloop at all'. In fact, there are loops without one-parameter subloops (see [2]).

The author expresses his sincere thanks to K. H. Hofmann and P. T. Nagy for their interest and their suggestions.

References

[1] J. Kozma, On the differentiability of loop-multiplication in canonical coordinate syste. Publ Math. Debrecen, 37, (1990), 313-325.
[2] J. Kozma, Loops with an without subloops, Acta Sci. Math., 55, (1991), 21-31.
Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725 Szeged (HunGARY)

E-mail address: kozma@math.u-szeged.hu
[Arch. Math., 55 (1990), 498-502]

