BEHAVIOUR OF LOOPS IN A CANONICAL COORDINATE
SYSTEM

JOZSEF KOZMA

1. INTRODUCTION

This paper deals with the basic theory of local loops of class C*.
First we set up the framework of our further considerations. The following
definition is standard.

Definition 1.1. Let F be an n-dimensional differentiable manifold. Apartial map-
ping f of class C*

[ FXF—=F:(v,y) =2z (z,y,2€F)
is called a local loop-multiplication of class C* and (F; f) is called a local loop of
class C* if the following conditions are satisfied.

a) The multiplication is local quasigroup, that is, there exist open neighbour-
hoods V,U (V C UF)such that f: V xV — U and f(z,y) = z € U for all
x,y € V. Furthermore, for arbitrary elements x € V, z € mcv (respectively,
y € V,z € V) there exists one and only one y € U (respectively, x € V) for
which f(z,y) = 2.
b) The loop has a unit element, that is, there is an element e € V such that
f(z,e) = f(e,z) =z for all z € V.
¢) The loop-multiplication is of class C*.
We shall consider charts (U;, quarphi;) for which ¢;: Uy — W; € R e — 0,
where 0 is the origin of R™.
A loop on an m-dimensional manifold F is called an m-parameter loop. Instead
of (F; f) we shall frequently write f.
Since the canonical coordinate-systemdefined in [1] takes a prominent part in
our investigations now, we recall its definition.

Definition 1.2. Let us consider a loop of class C* (k > 2). We shall say that a
coordinate-systeme given by the chart (U, ¢) f: U — R", p(e) = 0 is a canonical
coordinate-system(CCS) with respect to f if in these coordinates we have

flz,z) =2z
for all € p(V), where
F=poflp~t x¢™).
This definition is feasible on account of the following result.

Theorem 1.3 ([1], Theorem 1). If f is a loop of class C* (k > 2), then there exists
a CCS wirh respect to f, of class C*.

Date: April 19, 1989.



2 J. KOZMA

2. MORPHISMS AND DIFFERENTIABLE SUBLOOPS

Further on, by a loop we mean a local loop of class C* (k > 2). Finally, we give
the definition of morphisms and differentiable subloops.

Definition 2.1. Let (F; f) and (G;¢g) be two loops, and let £ be a local map
& F — G of class Ck. 1If

F(&(@),€(y) = &(f(z,y))
for all z,y € F for which the product f(x,y) is defined, then ¢ is called a local
morphism from (F; f) to (G;g). If, in particular, £ is a local embedding of class
C*, then (F; f) is called a local m-parameter subloop of (G;g).

Our main goal now to show that any morphism of local loops, when trnsposed
to a canonical coordinate-system; is the restriction of a linear map.

We first explain what we mean by transposing morphism to canonical coordinate
system. Let (F; f) be a loop with the CCS given by (U; ¢), and (G; g) a loop with
CCSgiven by (L;1), and let £ : (F; f) — (G;g) be a CF-morphism, ¢ € Ck. We
can dfine loops (R";0) is R"™ and (R™;7) in R™ by diffeomorphisms ¢ and 1. The
loop-multiplication o is defined by

1

o:VxV U, o=gpofo(p ' xph),

where 0 € V C R™.
In the CCS (£; %) of the loop (G; g) the loop-multiplication 7 is defined as follows
TWXW =L, T=1vogo (@ xyh).
By the defintion of the morphism &, for the loop (G; g) we have
gWXW L, Eof=g(¢x¥),
and the unit element of g is e4: ey = &(ey), where ey is the unit element of
9(E(es),€(2)) = E(gley), 2) (E(2).)

It is clear that the mapping k = ¢ o £ 091 is a ,orphism from the loop (R";7) to
the loop (R"™;0), that is,

(2.1) koo(z,y) =70 (kX K)(z,y)

holds for any =,y € V. Furthermore if, in particular, £ is an embedding, then & is
a local embedding, as well.

VXV Slvxely W x W
2 |
U 3 . [ Plvxyly
Y\;Xﬂpv "
2 ~ ~ K/l\"}X’{l\} ~ ~
YV xV \VIV x W
R™ DU 5 LCR"

The mapping x is said to be the transposed mapping of the morphism & by the
mappings ¢ and .
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3. LINEARITY IN A CCS

Now we ae going to show that « is linear. With the notations introduced above
the theorem in question can be stated as follows.

Theorem 3.1. The transposed mapping k of the morphism £ by the homeomor-
phisms ¢ and 1 is linear, that is, there exists a linear mapping T': R™ — R™ such
that K is the restriction of T to U.

In order to prove this theorem we require the following lemma.

Main lemma. Let k be a differentiable map of a star shaped neighbourhood W* in
R™ onto a neighbourhood of R™ keeping the origin fized. If there exists a sequence
of real numbers {rm}, rm # 0, converging to 0 an such that for each m

(3.1) K(Tm@) = T - k()
holds for all x in V*, then k is a linear mapping (that is, the restriction of a linear
map).
Proof of the Main lemma. As k is differentiable at 0, we have
k(z) = Dr(0)(x) + [[=]] - £(x)
for all x € V*, where ||| denotes the usual Euclidean norm, and lin%) g(x) = 0. We
xr—r
can substitute r,,x for x:
K(rma) = D(0)(rmx) + [|[rmz] - e(rma).

Taking into account of linearity of of Dx(0), and relation (3.1), we obtain the
following

Tm - K(2) = T - DR(0)(2) + 7y - ||2]] - €(rm)
for all z € V*. Multiplying both sides with 7!, and comparing the two equalities

for k(z) we get
2| - e(z) = [|z] - e(rm®)
for all z € V* and for all m. It follows that

e(x) = n}gnooa(rma:) = };13}) e(xr) =0

which shows that kK = DK (0)|y~, that is, x is a restriction of a linear map, which
was to be shown. |
Proof of the Theorem. Since ¢ and 1 determine a CCS, we have

o(x,z) =2x

o(r(x). K(x)) =

for every z € V. In virtue of Equatlon (2 ) from the previous relations obtain
that

and

k(2z) = koo(z,x) = o(k(x), k(z)) = 2k(2)
for every € V. Let us consider a star shaped neighbourhood W* C V of the

origin. Then for every point x € V* we have xz; = %x € V*, and T( x, éx) =2x. By

induction we get z,, = 2%1‘ € V* for all natural numbers m. Thus we can write
1 1
K (x) = —&k(x)
2m 2m
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for all x € V*.

In such a way we have found a sequence of real numbers {2%}:::1 in a star
shaped neighbourhood V* such that the conditions of the Main lemma are satisfied.
Thus the morphism k is a restriction of a linear map which was to be proved. 0O

Let us now observe some consequences of the theorem. First we formulate a

statement regarding to the subloops of a local differentiable loop.

Corollary 3.2. In a CCS any m-parameter subloop is an m-plane, and the re-
striction of a CCS of the loop is a CCS of the subloop.

Proof. Firstly, by the Main lemma & is a linear mapping in an appropriate neigh-
bourhood V*. Now taking into account the linearity of x in V* obtain that x(V*)
is locally a linear m-dimensional subspace of R™ near 0. That is, x = ) oo~}
is a mapping of V* onto the linear subspace x(V*) C L, in other words, a local
m-parameter subloop is locally an m-dimensional plane in R"™.

Secondly, let us consider the local loop (R";T) in the coordinate-system (¢ o
f(u),id) which is, by definition, a CCS. We have seen that the subloop (R™;0)
is locally an m-dimensional plane in R, through the origin. Then a usual linear
parametrization of this plane is exactly a CCS for this subloop. (]

Let the morphism £ be the identity map. Then the following statement is a
straightforward consequence of the theorem(see also [1]).

Corollary 3.3. A CCS is (locally) unique up to a linear isomorphism.

Remarks. 1. There is a former theorem ([1], Theorem 3) analogous to our Corol-
lary 3.2. It states that one-parameter subgroups are linear in a CCS.

2. The formulation of Corollary 3.2 might have been complemented with the
following: ‘if the loop has any subloop at all’. In fact, there are loops without
one-parameter subloops (see [2]).

The author expresses his sincere thanks to K. H. Hofmann and P. T. Nagy for
their interest and their suggestions.
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