A+ | A- | Ø
 
  • English
 
 
2014. november 01. szombat 05:50
A Bolyai Intézet által aktuálisan oktatott kurzusok

Vissza

A tárgy kódja és neveMMN027E Problémamegoldási stratégiák a matematikában I.
Meghirdető tanszék(csoport)Analízis Tanszék 
Felelős oktatóDr. Kosztolányi József 
Kredit
Heti óraszám
Típusaelőadás 
Számonkéréskollokvium 


Tematika

A kurzus keretében Pólya György heurisztikus problémamegoldási modelljének Alan H. Schoenfeld által módosított (részletezett) változata alapján zömében középiskolás módszerekkel is megoldható feladatokat, problémákat tárgyalunk az egyes problémamegoldási stratégiáknak, módszereknek megfelelő csoportosításban.
A kurzus célja az egyes stratégiák megismertetésével a problémamegoldási készség fejlesztése.
1. Vizsgáljunk speciális eseteket!
a) A feladatra közvetlenül megoldást kapunk speciális értékek behelyettesítésével.
b) A konkrét példa világossá teszi a feladatot, megteremti egy új, más irányú megközelítés lehetőségét.
c) A határesetek vizsgálata révén rögzíthetjük a lehetőségek tartományát.
d) Ha a probléma jellege olyan, konkrét természetes számok behelyettesítésével induktív következtetéseket fogalmazhatunk meg, rekurziót alkalmazhatunk. Teljes indukciós bizonyítások különböző típusai: nem egyet lépünk, visszafelé lépünk, több változó szerinti teljes indukció, dimenziószám szerinti teljes indukció. Végtelen leszállás módszere (lehetetlenségi bizonyítások).
e) Ellenpéldát találhatunk.
2. Vizsgáljuk a problémát kevesebb változóra!
a) A kevesebb változó esetén kapott eredmények felhasználhatók az eredeti probléma megoldása során.
b) A kevesebb változót tartalmazó probléma megoldási módszere működik több változóra is.
c) A változókat egy kivételével rögzítve a nem rögzített változó szerepe vizsgálható.
3. Készítsünk ábrát!
4. Következtessünk visszafelé!


Ajánlott irodalom

  1. Arthur Engel: Problem-Solving Strategies, Springer-Verlag, 1998.
  2. Loren C. Larson: Problem-Solving Through Problems, Springer-Verlag, 1983.
  3. Alan H. Schoenfeld: Problem-Solving in the Mathematics Curriculum, The Mathematical Association of America, 1983.
  4. Alan H. Schoenfeld: Mathematical Problem Solving, Academic Press, Inc., 1985.
  5. Pólya György magyarul megjelent könyvei
  6. Kosztolányi József - Makay Géza - Pintér Klára - Pintér Lajos: Matematikai problémakalauz I., POLYGON Kiadó, Szeged, 1999.