A+ | A- | Ø
 
  • Magyar
 
 
Thursday, 23 October 2014
Math courses taught by the Bolyai Institute

Back

Course code and titleMMN017E Univerzális algebra
Responsible DepartmentDepartment of Algebra and Number Theory 
Responsible instructorDr. Zádori László 
Credit
Contact lecture hours
Typelecture 
Type of examexam 


Curriculum

Algebra, kifejezésfüggvény, polinomfüggvény. Részalgebra. Izomorfizmus, homomorfizmus. Kongruenciareláció, faktoralgebra. Homomorfiatétel, általános izomorfiatételek. Direkt szorzat, további szorzatfajták. Szubdirekt fölbontás, Birkhoff tétele. Lezárási operátorok, lezárási rendszerek. Kísérő struktúrák (endomorfizmus-monoidok, automorfizmus-csoportok, részalgebra-hálók, kongruenciaháló). Szóalgebra, szabad algebra. A H, S, P lezárási operátorok algebraosztályokon. Varietások, Birkhoff varietástétele, s kapcsolat a szóalgebrák teljesen invariáns kongruenciáival. Birkhoff-féle teljességi tétel. Magari tétele. Varietások ekvivalenciája. Azonosságokkal jellemezhető tulajdonságok varietásokon. Malcev és Pixley tétele. A modulusvarietások jellemzése. Elsőrendű nyelvek és struktúrák. Ultraszorzat, kompaktsági tétel. Speciális varietások (pl. monounáris varietások, minimális varietások, diszkriminátorvarietások).


Suggested literature

  1. Bálintné Szendrei Mária, Czédli Gábor, Szendrei Ágnes: Absztrakt algebrai feladatok, Tankönyvkiadó, 1985, 1988, JATE Press, 1993, 1998, Polygon, 2005.
  2. S. Burris, H. P. Sankappanavar: Bevezetés az univerzális algebrába, Tankönyvkiadó, 1988.