Konvex és algoritmikus geometria ea. (MSc 2017 elõtt)

Tanszék: Geometria Tanszék

Tematika:
Konvexitás, Charatheodory-tétel, Radon-tétel, Helly-tétel. Szeparációs tételek. Konvex halmazok polaritása, lapok és extremális részhalmazok. Poliéderek algebrai leírása, a lineáris programozás alapfeladata. Farkas-lemma. Politopok laphálója, felsõ korlát tétel. Politopok kombinatorikus típusa, Steinitz tétele. Poliéderek merevsége, Cauchy tétele. Konvexitás: konvex burok, konvex burok és konvex kombináció, konvex halmazok metszetei, konvex poliéderek laphálója, kombinatorikus izomorfizmus, élgráfok és poliédertípusok, rúdrendszerek merevsége. Algoritmikus geometria: poligonok és pontrendszerek triangulálása, konvex burkot keresõ algoritmusok, poliéderek reprezentációja, DV-cella keresése. Zárt töröttvonal belsejének meghatározása, ponthalmazok szétdarabolása. Legbõvebb konvex részhalmaz keresése. Minimális háromszögek. Legközelebbi szomszéd keresése, pontrendszerek alakja. Képtárproblémák. Mozgástervezés.

Előfeltétel: nincs.

Helyettesítő tárgyak: nincsenek.

Előadások:
Kurzuskód: MML431E Kredit: 4 Óraszám: 12 félévente
Kurzuskód: MMN431E Kredit: 4 Óraszám: 2 hetente

Gyakorlatok:
Kurzuskód: MMN431G Kredit: 0 Óraszám: 1 hetente
Kurzuskód: MML431G Kredit: 0 Óraszám: 4 félévente