Optimalizálási eljárások ea. (lev. MSc 2017 elõtt)

Tanszék: Halmazelmélet és Matematikai Logika Tanszék

Tematika:
Folytonos és sztochasztikus optimalizálás. Alternatíva tételek, Minkowski-Weyl-tétel, pivot és belsõpontos algoritmusok, elipszoid-módszer; konvex optimalizálás: szeparációs tételek, konvex Farkas-tétel, Karush-Kuhn-Tucker-tétel, Lagrange-függvény és nyeregpont-tétel, Newton-módszer, belsõ pontos algoritmus; a sztochasztikus programozás alapmodelljei és megoldó módszerei; gyakorlati problémák. Diszkrét optimalizálás. Max folyam min vágás, Egerváry-dualitás, poliéderes kombinatorika, teljesen duális egészértékûség, párosítás-poliéder; gráfalgoritmusok, Magyar-módszer, Edmonds-Karp-algoritmus; NP-teljes problémák algoritmikus megközelítései: dinamikus programozás, Lagrange-relaxáció, korlátozás és szétválasztás, mohó algoritmusok; gyakorlati problémák.

Előfeltétel: nincs.

Helyettesítő tárgyak: nincsenek.

Előadás:
Kurzuskód: MML411E Kredit: 5 Óraszám: 12 félévente

Gyakorlat:
Kurzuskód: MML411G Kredit: 0 Óraszám: 8 félévente