Recent results on k-arcs in Galois Geometries

Angelo Sonnino

A k-arc in a finite projective space $\mathrm{PG}(r, q)$, with $q=p^{h}$ and p a prime, is a set \mathcal{K} consisting of k points no $r+1$ of which are contained in a hyperplane. A k-arc is said to be complete in $\operatorname{PG}(r, q)$ if it is not contained in a $(k+1)$-arc.

A strong motivation for the study of arcs comes from coding theory. In fact, it is well known that k-arcs and Maximum Distance Separable codes are equivalent objects, and many known "good" covering codes and saturating sets arise from complete arcs. Furthermore, k-arcs in finite projective spaces are used in cryptography in order to produce some multilevel secret sharing schemes.

For $q>4$ and $r=3$ the upper bound for the size of a k-arc is $q+1$. If q is odd, then any $(q+1)$-arc is projectively equivalent to a rational normal curve

$$
\left\{\left(t^{3}: t^{2}: t: 1\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(1: 0: 0: 0)\}
$$

while for $q=2^{h}$ any ($q+1$)-arc is projectively equivalent to a curve

$$
\left\{\left(t^{2^{n}+1}: t^{2^{n}}: t: 1\right) \mid t \in \mathbb{F}_{q}\right\} \cup\{(1: 0: 0: 0)\}
$$

with $\operatorname{MCD}(n, k)=1$. So far very little is known about k-arcs in the projective space $\operatorname{PG}(3, q)$ which are not contained in a $(q+1)$-arc.

The group of projectivities fixing a $(q+1)$-arc \mathcal{K} in $\operatorname{PG}(3, q)$ is isomorphic to the subgroup $\operatorname{PGL}(2, q)$ of $\operatorname{PGL}(4, q)$, and acts on \mathcal{K} as $\operatorname{PGL}(2, q)$ in its natural 3-transitive permutation group representation. Hence, every $(q+1)$-arc in $\operatorname{PG}(3, q)$ is transitive. Here the term of a "transitive" arc of $\operatorname{PG}(3, q)$ is used to denote a k-arc \mathcal{K} such that the projectivity group fixing \mathcal{K} acts transitively on the points of \mathcal{K}. This poses the problem of finding a suitable finite group acting faithfully as a projectivity group in $\mathrm{PG}(3, q)$. Actually, such groups can exist under certain conditions on q.

The projective space $\operatorname{PG}(3, q)$ has a projectivity group isomorphic to the classical group $\operatorname{PSL}(2,7)$ if and only if $q \equiv 1(\bmod 7)$. The question arises whether or not a $\operatorname{PSL}(2,7)$-invariant k-arc exists in $\operatorname{PG}(3, q)$ for a fixed k and infinitely many values of q. In this talk we address the case of transitive k-arcs fixed by a projectivity group isomorphic to $\operatorname{PSL}(2,7)$ in $\operatorname{PG}\left(3, q^{2}\right)$, with $k=42$, $q \geq 29$ and $q \equiv 1 \quad(\bmod 7)$. Interestingly, for $q=29$ these 42 -arcs turn out to be complete in $\operatorname{PG}\left(3,29^{2}\right)$.

Motivated by applications to multilevel secret sharing schemes, we also investigate k-arcs contained in a $(q+1)$ arc Γ of $\mathrm{PG}\left(3,2^{h}\right)$ which have only a small number of focuses on a real axis of Γ.

