# Ground state sign-changing solutions for critical Choquard equations with steep well potential 

Yong-Yong Li ${ }^{1}$, Gui-Dong Li $^{2}$ and Chun-Lei Tang ${ }^{\boxtimes 3}$<br>${ }^{1}$ College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, China,<br>${ }^{2}$ School of Mathematics and Statistics, Guizhou University, Guiyang, 550025, China,<br>${ }^{3}$ School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

Received 7 May 2022, appeared 31 October 2022
Communicated by Dimitri Mugnai

Abstract. In this paper, we study sign-changing solution of the Choquard type equation

$$
-\Delta u+(\lambda V(x)+1) u=\left(I_{\alpha} *|u|^{2_{\alpha}^{*}}\right)|u|_{\alpha}^{2_{\alpha}^{*}-2} u+\mu|u|^{p-2} u \text { in } \mathbb{R}^{N},
$$

where $N \geq 3, \alpha \in\left((N-4)^{+}, N\right), I_{\alpha}$ is a Riesz potential, $p \in\left[2_{\alpha}^{*}, \frac{2 N}{N-2}\right), 2_{\alpha}^{*}:=\frac{N+\alpha}{N-2}$ is the upper critical exponent in terms of the Hardy-Littlewood-Sobolev inequality, $\mu>0, \lambda>0, V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ is nonnegative and has a potential well. By combining the variational methods and sign-changing Nehari manifold, we prove the existence and some properties of ground state sign-changing solution for $\lambda, \mu$ large enough. Further, we verify the asymptotic behaviour of ground state sign-changing solutions as $\lambda \rightarrow+\infty$ and $\mu \rightarrow+\infty$, respectively.
Keywords: Choquard equation, upper critical exponent, steep well potential, ground state sign-changing solution, asymptotic behaviour.
2020 Mathematics Subject Classification: 35J15, 35J20, 35B33, 35D30.

## 1 Introduction and main results

The Choquard equation has a physical prototype, namely the Hartree type evolution equation

$$
\begin{equation*}
-i \partial_{t} \psi=\Delta \psi+\left(I_{2} *|\psi|^{2}\right) \psi, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R}_{+} \tag{1.1}
\end{equation*}
$$

where $\mathbb{R}_{+}=[0,+\infty), I_{2}(x)=\frac{1}{4 \pi|x|}, \forall x \in \mathbb{R}^{3} \backslash\{0\}$, and $*$ is convolution in $\mathbb{R}^{3}$. Eq. (1.1) was firstly proposed by Pekar to describe a resting polaron in [24]. Two decades later, Choquard [16] introduced Eq. (1.1) as a certain approximation to Hartree-Fock theory of one component plasma, and used it to characterize an electron trapped in its own hole. Afterwards, viewing the quantum state reduction as a gravitational phenomenon in quantum gravity, Penrose et al. [20] proposed Eq. (1.1) in the form of Schrödinger-Newton system to model a single particle moving in its own gravitational field.

[^0]As we know, standing wave solution of Eq. (1.1) corresponds to solution of the Choquard equation

$$
\begin{equation*}
-\Delta u+u=\left(I_{2} *|u|^{2}\right) u \quad \text { in } \mathbb{R}^{3} . \tag{1.2}
\end{equation*}
$$

In detail, with a suitable scaling, the wave function $\psi(x, t)=e^{-i t} u(x)$ is a solution of Eq. (1.1) once $u$ is a solution of Eq. (1.2). Lieb demonstrated the seminal work on Eq. (1.2) in [16], in which he certified the existence and uniqueness (up to translations) of positive radial ground state solution by applying symmetrically decreasing rearrangement inequalities. After this, Lions [18] studied the same problem and further proved the existence of infinitely many radial solutions via the variational methods.

From mathematical perspective, scholars prefer to study the general Choquard equation

$$
\begin{equation*}
-\Delta u+W(x) u=\gamma\left(I_{\alpha} * G(u)\right) g(u) \quad \text { in } \mathbb{R}^{N}, \tag{1.3}
\end{equation*}
$$

where $N \geq 3, \gamma \in \mathbb{R}^{+}, I_{\alpha}$ is the Riesz potential of order $\alpha \in(0, N)$ defined for $x \in \mathbb{R}^{N} \backslash\{0\}$ by

$$
I_{\alpha}(x)=\frac{A_{\alpha}}{|x|^{N-\alpha}} \quad \text { with } \quad A_{\alpha}=\frac{\Gamma\left(\frac{N-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right) 2^{\alpha} \pi^{\frac{N}{2}}},
$$

$\Gamma$ is the Gamma function, $*$ is convolution, $W \in C\left(\mathbb{R}^{N}, \mathbb{R}\right), g \in C(\mathbb{R}, \mathbb{R})$ and $G(u)=\int_{0}^{u} g(s) d s$.
To establish the variational framework for Choquard equations, we need the following celebrated Hardy-Littlewood-Sobolev inequality.

Proposition 1.1 ([17, Theorem 4.3]). Let $r, s>1,0<\alpha<N$ satisfy $\frac{1}{r}+\frac{1}{s}=1+\frac{\alpha}{N}$. Then there exists a sharp constant $C(N, \alpha, r, s)>0$ such that, for all $f \in L^{r}\left(\mathbb{R}^{N}\right)$ and $h \in L^{s}\left(\mathbb{R}^{N}\right)$, there holds

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{f(x) h(y)}{|x-y|^{N-\alpha}} d x d y\right| \leq C(N, \alpha, r, s)|f|_{r}|h|_{s} . \tag{1.4}
\end{equation*}
$$

In particular, if $r=s=\frac{2 N}{N+\alpha}$, then the constant $C(N, \alpha, r, s)$ admits a precise expression, namely,

$$
C(N, \alpha):=C(N, \alpha, r, s)=\pi^{\frac{N-\alpha}{2}} \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{N+\alpha}{2}\right)}\left[\frac{\Gamma\left(\frac{N}{2}\right)}{\Gamma(N)}\right]^{-\frac{\alpha}{N}} .
$$

Thanks to (1.4), the integral $\int_{\mathbb{R}^{N}}\left(I_{\alpha} *|u|^{p}\right)|u|^{p} d x$ is well defined in $H^{1}\left(\mathbb{R}^{N}\right)$ once $p \in\left[2_{*}^{\alpha}, 2_{\alpha}^{*}\right]$, where $2_{\alpha}^{*}:=\frac{N+\alpha}{N-2}$ and $2_{*}^{\alpha}:=\frac{N+\alpha}{N}$ are usually called upper and lower critical exponents with respect to the Hardy-Littlewood-Sobolev inequality, respectively. It is easy to clarify that the critical terms $\int_{\mathbb{R}^{N}}\left(I_{\alpha} *|u|^{2_{\alpha}^{*}}\right)|u|^{2_{\alpha}^{*}} d x$ and $\int_{\mathbb{R}^{N}}\left(I_{\alpha} *|u|^{2_{*}^{*}}\right)|u|^{2_{*}^{\alpha}} d x$ are invariant under the scaling actions $\sigma^{\frac{N-2}{2}} u(\sigma \cdot)$ and $\sigma^{\frac{N}{2}} u(\sigma \cdot)(\sigma>0)$, respectively, and these two scaling actions served as group actions are noncompact on $H^{1}\left(\mathbb{R}^{N}\right)$. Consequently, from the perspective of variational methods, the critical exponents $2_{*}^{\alpha}$ and $2_{\alpha}^{*}$ may provoke two kinds of lack of compactness. However, fortunately, similar to the Sobolev critical case studied in [3], these two kinds of loss of compactness can be recovered to some extent by using the extremal functions of the Hardy-Littlewood-Sobolev inequality.

In [21], Moroz and Van Schaftingen studied the case of Eq. (1.3) that $W(x) \equiv 1, \gamma=\frac{1}{p}$ and $G(u)=|u|^{p}(p>1)$, they proved the existence, regularity, radially symmetry and decaying property at infinity of ground state solution when $p \in\left(2_{*}^{\alpha}, 2_{\alpha}^{*}\right)$. Meanwhile, based on the regularity of solutions, they established a Nehari-Pohožaev type identity and then showed
the nonexistence of nontrivial solutions for Eq. (1.3) when $p \notin\left(2_{*}^{\alpha}, 2_{\alpha}^{*}\right)$. Afterwards, in [22], they extended the existence results in [21] to the case of Eq. (1.3) that $g$ satisfies the so-called almost necessary conditions of Berestycki-Lions type. For the critical cases of Eq. (1.3), with the nonexistence result of [21] in hand, an increasing number of scholars devote to studying Eq. (1.3) with critical term and a noncritical perturbed term. We refer the interested readers to $[4,9,14,30]$ for upper critical case, $[23,26]$ for lower critical case and $[15,25,31]$ for doubly critical case.

When it comes to the case $W(x) \not \equiv$ const., we focus our attention on steep well potential of the form $\lambda V(x)+b$, where $\lambda>0, b \in \mathbb{R}$ and $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ satisfies the following hypotheses:
$\left(V_{1}\right) V$ is bounded from below, $\Omega:=\operatorname{int} V^{-1}(0)$ is nonempty and $\bar{\Omega}=V^{-1}(0)$,
$\left(V_{2}\right)$ there exists some constant $M>0$ such that $\left|\left\{x \in \mathbb{R}^{N}: V(x) \leq M\right\}\right|<+\infty$.
This type of potential was firstly introduced by Bartch and Wang in [2] to study the existence and multiplicity of nontrivial solutions for subcritical Schrödinger equations in the case of $b>0$. Later, Ding and Szulkin further considered the case $b=0$ in [8]. Since $|\Omega|<+\infty$, then $-\Delta$ possesses a sequence of positive Dirichlet eigenvalues $\mu_{1}<\mu_{2}<\cdots<\mu_{n} \rightarrow+\infty$. Assuming $b<0$ and $b \neq-\mu_{i}$ for any $i \in \mathbb{N}_{+}$, Clapp and Ding [6], together with Tang [27], studied the existence and concentration of ground state solution for critical Schrödinger equation. Recently, the pre-existing results on Schrödinger equations have been extended to the Choquard equations, see e.g. $[1,14,15,19]$ and the references therein.

As we concerned here, sign-changing solution of elliptic equation is a focusing topic due to its wide application in biology and physics etc. In [7], Clapp and Salazar investigated the Choquard equation

$$
-\Delta u+W(x) u=\left(I_{\alpha} *|u|^{p}\right)|u|^{p-2} u \quad \text { in } \Omega,
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is an exterior domain, $p \in\left[2,2_{\alpha}^{*}\right), \alpha \in\left((N-4)^{+}, N\right)$ and $W \in$ $C\left(\mathbb{R}^{N}, \mathbb{R}\right)$. Under symmetrical assumptions on $\Omega$ and decaying properties on $W$, they derived multiple sign-changing solutions. After this, many scholars considered the same topic in the whole Euclidean space, namely,

$$
\begin{equation*}
-\Delta u+W(x) u=\left(I_{\alpha} *|u|^{p}\right)|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} . \tag{1.5}
\end{equation*}
$$

In [11], Ghimenti and Van Schaftingen studied the case that $N \geq 1, \alpha \in\left((N-4)^{+}, N\right)$, $W(x) \equiv 1$ and $p \in\left(2,2_{\alpha}^{*}\right)$ of Eq. (1.5). There, by introducing a new minimax principle and concentration-compactness lemmas for sign-changing Palais-Smale sequences, they obtained a ground state sign-changing solution. Also, they proved that the least energy in the signchanging Nehari manifold has no minimizers when $p \in\left(2_{*}^{\alpha}, \max \left\{2,2_{\alpha}^{*}\right\}\right)$. Further, Ghimenti, Moroz and Van Schaftingen [10] constructed a ground state sign-changing solution of Eq. (1.5) when $p=2$ by approaching the case $p=2$ with the cases $p \in\left(2,2_{\alpha}^{*}\right)$. Van Schaftingen and Xia [28] assumed that $N \geq 1, \alpha \in\left((N-4)^{+}, N\right), p \in\left[2,2_{\alpha}^{*}\right)$ and $W \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ satisfies the coercive condition $\lim _{|x| \rightarrow \infty} W(x)=+\infty$. By using a constrained minimization argument in sign-changing Nehari manifold, they derived a ground state sign-changing solution of Eq. (1.5) (see the similar result in [32]). Moreover, Zhong and Tang [33] studied the following Choquard equation

$$
-\Delta u+(\lambda V(x)+1) u=\left(I_{\alpha} *\left(K|u|^{p}\right)\right) K(x)|u|^{p-2} u+|u|^{2^{*}-2} u \quad \text { in } \mathbb{R}^{N},
$$

where $N \geq 3,2^{*}=\frac{2 N}{N-2}, \alpha \in\left((N-4)^{+}, N\right), p \in\left(2,2_{\alpha}^{*}\right), \lambda<0$ and the functions $V, K$ satisfy
$\left(V_{3}\right) V \in L^{\frac{N}{2}}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ is nonnegative,
$\left(V_{4}\right)$ there exist constants $\rho, \beta, C>0$ such that $V(x) \geq C|x|^{-\beta}$ for all $|x|<\rho$,
$\left(K_{1}\right) K \in L^{r}\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ for some $r \in\left[\frac{2 N}{N+\alpha-p(N-2)},+\infty\right)$ and $K$ is nonnegative.
It follows from ( $V_{3}$ ) that the first eigenvalue $\lambda_{1}$ of $-\Delta u+u=\lambda V(x) u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ is positive. When $\lambda \in\left(-\lambda_{1}, 0\right)$ and $\beta \in\left(2-\min \left\{\frac{N+\alpha}{2 p}-\frac{N-2}{2}, \frac{N-2}{2}\right\}, 2\right)$, following the ideas in [5], they derived a ground state sign-changing solution by using minimization arguments in sign-changing Nehari manifold.

Motivated by the above works, in the present paper, we study the Choquard equation

$$
\begin{equation*}
-\Delta u+(\lambda V(x)+1) u=\left(I_{\alpha} *|u|^{2_{\alpha}^{*}}\right)|u|^{2_{\alpha}^{*}-2} u+\mu|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \tag{1.6}
\end{equation*}
$$

where $\lambda>0, \mu>0, N \geq 3, \alpha \in\left((N-4)^{+}, N\right), p \in\left[2_{\alpha}^{*}, 2^{*}\right)$, and $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ satisfies the hypotheses
$\left(V_{5}\right) V(x) \geq 0$ in $\mathbb{R}^{N}$ and there exists some $M>0$ such that $\left|\left\{x \in \mathbb{R}^{N}: V(x) \leq M\right\}\right|<+\infty$, $\left(V_{6}\right) \Omega:=$ int $V^{-1}(0)$ is a nonempty set with smooth boundary and $\bar{\Omega}=V^{-1}(0)$.

Let $E_{\lambda}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} \lambda V(x) u^{2} d x<+\infty\right\}$ be equipped with the inner product

$$
(u, v)_{\lambda}:=\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+(\lambda V(x)+1) u v d x, \quad \forall u, v \in E_{\lambda},
$$

and the norm $\|\cdot\|_{\lambda}=(\cdot, \cdot)_{\lambda}^{\frac{1}{2}}$ for any $\lambda>0$. Since $V \geq 0$ in $\mathbb{R}^{N}$, it is easy to see that $E_{\lambda} \hookrightarrow H^{1}\left(\mathbb{R}^{N}\right)$ and, for any $s \in\left[2,2^{*}\right]$, there is some constant $v_{s}>0$ such that, for all $\lambda>0$,

$$
\begin{equation*}
|u|_{s} \leq v_{s}\|u\| \leq v_{s}\|u\|_{\lambda}, \quad \forall u \in E_{\lambda} . \tag{1.7}
\end{equation*}
$$

By (1.4) and (1.7), we deduce the energy functional $\mathcal{J}_{\lambda, \mu}$ of Eq. (1.6) belongs to $C^{1}\left(E_{\lambda}, \mathbb{R}\right)$, where

$$
\mathcal{J}_{\lambda, \mu}(u)=\frac{1}{2}\|u\|_{\lambda}^{2}-\frac{1}{2 \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *|u|^{2_{\alpha}^{*}}\right)|u|^{2_{\alpha}^{*}} d x-\frac{\mu}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x .
$$

Now we are prepared to state our main results.
Theorem 1.2. Assume that $N \geq 3, \alpha \in\left((N-4)^{+}, N\right), p \in\left[2_{\alpha}^{*}, 2^{*}\right)$ and $\left(V_{5}\right),\left(V_{6}\right)$ hold. Then there exist $\Lambda>0$ and $\mu_{*}>0$ such that Eq. (1.6) admits a ground state sign-changing solution $u_{\lambda, \mu}$ for any $\lambda \geq \Lambda$ and $\mu \geq \mu_{*}$. Further, for any $\mu \geq \mu_{*}$ and sequence $\left\{\lambda_{n}\right\} \subset[\Lambda,+\infty)$ satisfying $\lambda_{n} \rightarrow+\infty$, the sequence $\left\{u_{\lambda_{n}, \mu}\right\}$ of ground state sign-changing solutions to Eq. (1.6) strongly converges to some $u_{\mu}$ in $H^{1}\left(\mathbb{R}^{N}\right)$ in the sense of subsequence, where $u_{\mu}$ is a ground state sign-changing solution of

$$
\begin{cases}-\Delta u+u=A_{\alpha} \int_{\Omega} \frac{|u(y)|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} d y|u|^{2_{\alpha}^{*}-2} u+\mu|u|^{p-2} u & \text { in } \Omega,  \tag{1.8}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Moreover, for any $\lambda \geq \Lambda$ and sequence $\left\{\mu_{n}\right\} \subset\left[\mu_{*,},+\infty\right)$ with $\mu_{n} \rightarrow+\infty$, the sequence $\left\{u_{\lambda, \mu_{n}}\right\}$ of ground state sign-changing solutions to Eq.(1.6) strongly converges to 0 in $H^{1}\left(\mathbb{R}^{N}\right)$ up to a subsequence.

Remark 1.3. Similar to the proof of Theorem 1.1 in [14], by minimizing $\mathcal{J}_{\lambda, \mu}$ on the Nehari manifold

$$
\mathcal{N}_{\lambda, u}=\left\{u \in E_{\lambda} \backslash\{0\},\left\langle\mathcal{J}_{\lambda, \mu}^{\prime}(u), u\right\rangle=0\right\},
$$

we can demonstrate that Eq. (1.6) has a positive ground state solution $v_{\lambda, \mu}$ for any $\lambda, \mu>0$ large enough. It is easy to show $\mathcal{J}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)>\mathcal{J}_{\lambda, \mu}\left(v_{\lambda, \mu}\right)$. Indeed, if $\mathcal{J}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)=\mathcal{J}_{\lambda, \mu}\left(v_{\lambda, \mu}\right)$, then $\left|u_{\lambda, \mu}\right| \in \mathcal{N}_{\lambda, \mu}$ satisfies $\mathcal{J}_{\lambda, \mu}\left(\left|u_{\lambda, \mu}\right|\right)=\inf _{\mathcal{N}_{\lambda, \mu}} \mathcal{J}_{\lambda, \mu}$. Thereby, in a standard way, we may deduce $\mathcal{J}_{\lambda, \mu}^{\prime}\left(\left|u_{\lambda, \mu}\right|\right)=0$. Whereas, the strong maximum principle implies $\left|u_{\lambda, \mu}\right|>0$ in $\mathbb{R}^{N}$, and the regular estimates for Choquard equations (see e.g. [21,22]) implies $u_{\lambda, \mu} \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$, thus $u_{\lambda, \mu}$ has constant sign in $\mathbb{R}^{N}$, which contradicts with $u_{\lambda, \mu}^{ \pm} \neq 0$. Furthermore, due to the presence of the perturbed term $\mu|u|^{p-2} u$, the methods introduced in [11,32] to verify that the least energy of sign-changing solutions is less than twice the least energy of nontrivial solutions seem invalid here, we propose an open question whether $\mathcal{J}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)<2 \mathcal{J}_{\lambda, \mu}\left(v_{\lambda, \mu}\right)$.

Remark 1.4. To our knowledge, there seem to be no results on (ground state) sign-changing solutions for Choquard equations with upper critical exponent, even on the bounded domain. Our present work extends and improves the existence results of sign-changing solutions verified in $[7,10,11,28,33]$. In [5], the authors studied the ground state sign-changing solutions for a class of critical Schrödinger equations

$$
\begin{cases}-\Delta u-\lambda u=|u|^{2^{*}-2} u & \text { in } \mathcal{D}, \\ u=0 & \text { on } \partial \mathcal{D},\end{cases}
$$

where $\mathcal{D} \subset \mathbb{R}^{N}(N \geq 6)$ is a bounded domain and $\lambda \in\left(0, \lambda_{1}\right)$, with $\lambda_{1}$ denoting the first eigenvalue of $-\Delta$ on $\mathcal{D}$. They proved that any sign-changing $(P S)_{c}$ sequence is relatively compact once $c<c_{0}+\frac{1}{N} S^{\frac{N}{2}}$, where $c_{0}$ is the least energy of nontrivial solutions. As a counterpart for the work in [5], Zhong and Tang studied a class of Choquard equations with critical Sobolev exponent in [33], where they showed the relative compactness of sign-changing $(P S)_{c}$ sequence with $c$ less than the similar threshold. However, in this paper, due to the presence of the upper critical nonlocal term $\left(I_{\alpha} *|u|^{2 *}\right)|u|^{2_{\alpha}^{*}-2} u$ in Eq. (1.6), the relative compactness of sign-changing $(P S)_{c}$ sequence with

$$
c \in\left[\frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}, \inf _{\mathcal{N}_{\lambda, \mu}} \mathcal{J}_{\lambda, \mu}+\frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}\right)
$$

cannot be deduced as expected, where $S_{\alpha}$ is defined by (2.12) hereinafter. Also, it seems intractable to search for sign-changing $(P S)_{c}$ sequence such that $c<\frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{(N+\alpha) /(2+\alpha)}$ for small $\mu>0$. Naturally, we attempt to construct a sign-changing $(P S)_{c}$ sequence with $c<$ $\frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{(N+\alpha) /(2+\alpha)}$ by assuming that $\mu>0$ is sufficiently large. Therefrom, by applying the properties of steep well potential $\lambda V$, we can standardly prove the relative compactness of this type of sign-changing $(P S)_{c}$ sequence and then obtain ground state sign-changing solution.

We will give the proof of Theorem 1.2 in the forthcoming section. Throughout this paper, we use the following notations:

中 $L^{p}\left(\mathbb{R}^{N}\right)$ is the usual Lebesgue space with the norm $|u|_{p}=\left(\int_{\mathbb{R}^{N}}|u|^{p} d x\right)^{\frac{1}{p}}$ for $p \in[1,+\infty)$.
$\boldsymbol{A} L^{\infty}\left(\mathbb{R}^{N}\right)$ is the space of measurable functions with the norm $|u|_{\infty}=\operatorname{ess} \sup _{x \in \mathbb{R}^{N}}|u(x)|$.

内 $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ consists of infinitely times differentiable functions with compact support in $\mathbb{R}^{N}$.
© $H^{1}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right):|\nabla u| \in L^{2}\left(\mathbb{R}^{N}\right)\right\}$ endowed with the inner product and norm

$$
(u, v)=\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+u v d x \text { and }\|u\|=(u, u)^{\frac{1}{2}} .
$$

© $H_{0}^{1}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in $H^{1}(\Omega)$ with the norm $\|u\|_{\Omega}=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}$.
© $D^{1,2}\left(\mathbb{R}^{N}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm $\|u\|_{D}=|\nabla u|_{2}$.
© The best Sobolev constant $S=\inf \left\{\|u\|_{D}^{2}: u \in D^{1,2}\left(\mathbb{R}^{N}\right)\right.$ and $\left.|u|_{2^{*}}=1\right\}$.

- $u^{ \pm}(x):= \pm \max \{ \pm u(x), 0\}$ and $\left(E^{*},\|\cdot\|_{*}\right)$ is the dual space of Banach space $(E,\|\cdot\|)$.
© $o(1)$ is a quantity tending to 0 as $n \rightarrow \infty$ and $|\Omega|$ is the Lebesgue measure of $\Omega \subset \mathbb{R}^{N}$.
© $\mathbb{B}_{r}(y)=\left\{x \in \mathbb{R}^{N}:|x-y|<r\right\}, \mathbb{B}_{r}^{c}(y)=\mathbb{R}^{N} \backslash \mathbb{B}_{r}(y)$ and $\mathbb{B}_{r}(0)=\mathbb{B}_{r}$ for $r>0, y \in \mathbb{R}^{N}$.


## 2 Proof of Theorem 1.2

For the limiting problem of Eq. (1.6) as $\lambda \rightarrow+\infty$, namely Eq. (1.8), its energy functional is

$$
\mathcal{J}_{\infty, \mu}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+u^{2} d x-\frac{A_{\alpha}}{2 \cdot 2_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{|u(x)|^{2_{\alpha}^{*}}|u(y)|^{2_{\alpha}^{*}}}{\left.|x-y|\right|^{N-\alpha}} d x d y-\frac{\mu}{p} \int_{\Omega}|u|^{p} d x .
$$

Due to (1.4) and $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega), \mathcal{J}_{\infty, \mu} \in C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$. Define the sign-changing Nehari manifolds

$$
\begin{aligned}
& \mathcal{M}_{\lambda, \mu}=\left\{u \in E_{\lambda}: u^{ \pm} \neq 0,\left\langle\mathcal{J}_{\lambda, \mu}^{\prime}(u), u^{ \pm}\right\rangle=0\right\}, \\
& \mathcal{M}_{\infty, \mu}=\left\{u \in H_{0}^{1}(\Omega): u^{ \pm} \neq 0,\left\langle\mathcal{J}_{\infty, \mu}^{\prime}(u), u^{ \pm}\right\rangle=0\right\} .
\end{aligned}
$$

Clearly, $\mathcal{M}_{\lambda, \mu}$ and $\mathcal{M}_{\infty, \mu}$ contain all of the sign-changing solutions of Eqs. (1.6) and (1.8), respectively. To search for ground state sign-changing solutions, we consider the following minimization problems:

$$
\begin{aligned}
& m_{\lambda, \mu}=\inf \left\{\mathcal{J}_{\lambda, \mu}(u): u \in \mathcal{M}_{\lambda, \mu}\right\}, \\
& m_{\infty, \mu}=\inf \left\{\mathcal{J}_{\infty, \mu}(u): u \in \mathcal{M}_{\infty, \mu}\right\} .
\end{aligned}
$$

Before completing the proof of Theorem 1.2, we establish several preliminary lemmas.
Lemma 2.1. For any $\lambda>0, \mu>0$ and $u \in E_{\lambda}$ with $u^{ \pm} \neq 0$, there exists a unique pair $\left(s_{\lambda, \mu, u}, t_{\lambda, \mu, u}\right)$ of positive numbers such that $s_{\lambda, \mu, u}^{\frac{1}{2 \pi}} u^{+}+t_{\lambda, \mu, u}^{\frac{1}{2}} u^{-} \in \mathcal{M}_{\lambda, \mu}$, also,

$$
\mathcal{J}_{\lambda, \mu}\left(s_{\lambda, \mu, u}^{\frac{1}{2 \pi}} u^{+}+t_{\lambda, \mu, u}^{\frac{1}{2_{\alpha}^{*}}} u^{-}\right)=\max _{s, t \geq 0} \mathcal{J}_{\lambda, \mu}\left(s^{\frac{1}{2 \alpha}} u^{+}+t^{\frac{1}{2 \alpha}} u^{-}\right) .
$$

Proof. Firstly, we certify the existence of such pair of numbers. For any $\lambda>0, \mu>0$ and
$u \in E_{\lambda}$ with $u^{ \pm} \neq 0$, define the function $\mathcal{F}_{\lambda, \mu, u}(s, t)$ for any $(s, t) \in[0,+\infty)^{2}$ by

$$
\begin{aligned}
\mathcal{F}_{\lambda, \mu, u}(s, t)= & \mathcal{J}_{\lambda, \mu}\left(s^{\frac{1}{2_{\alpha}^{2}}} u^{+}+t^{\frac{1}{2_{\alpha}^{*}}} u^{-}\right) \\
= & \frac{s^{\frac{2}{2_{\alpha}^{*}}}}{2}\left\|u^{+}\right\|_{\lambda}^{2}-\frac{s^{2}}{2 \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|u^{+}\right|^{2_{\alpha}^{*}}\right)\left|u^{+}\right|^{2_{\alpha}^{*}} d x-\frac{\mu s^{\frac{p}{2_{\alpha}^{*}}}}{p} \int_{\mathbb{R}^{N}}\left|u^{+}\right|^{p} d x \\
& +\frac{t^{\frac{2}{2_{\alpha}^{*}}}}{2}\left\|u^{-}\right\|_{\lambda}^{2}-\frac{t^{2}}{2 \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|u^{-}\right|^{2_{\alpha}^{*}}\right)\left|u^{-}\right|^{2_{\alpha}^{*}} d x-\frac{\mu t^{\frac{p}{2_{\alpha}^{*}}}}{p} \int_{\mathbb{R}^{N}}\left|u^{-}\right|^{p} d x \\
& -\frac{s t}{2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|u^{+}\right|^{2_{\alpha}^{*}}\right)\left|u^{-}\right|^{2_{\alpha}^{*}} d x .
\end{aligned}
$$

It is easy to derive $\lim _{|(s, t)| \rightarrow 0} \mathcal{F}_{\lambda, \mu, u}(s, t)=0$ and $\lim _{|(s, t)| \rightarrow+\infty} \mathcal{F}_{\lambda, \mu, u}(s, t)=-\infty$. Then there exists some point $\left(s_{\lambda, u, u}, t_{\lambda, u, u}\right) \in[0,+\infty)^{2}$ such that

$$
\mathcal{F}_{\lambda, \mu, u}\left(s_{\lambda, \mu, u}, t_{\lambda, \mu, u}\right)=\max _{(s, t) \in[0,+\infty)^{2}} \mathcal{F}_{\lambda, \mu, u}(s, t)
$$

Since $\mathcal{F}_{\lambda, \mu, u}\left(s, t_{\lambda, \mu, u}\right)$ is increasing in $s$ for $s>0$ small enough, there results $s_{\lambda, \mu, u} \neq 0$. Similarly, we deduce $t_{\lambda, \mu, u} \neq 0$. Thereby, $\left(s_{\lambda, \mu, u,} t_{\lambda, \mu, u}\right) \in(0,+\infty)^{2}$. Then

$$
\frac{\partial \mathcal{F}_{\lambda, \mu, u}}{\partial s}\left(s_{\lambda, \mu, u}, t_{\lambda, \mu, u}\right)=\frac{\partial \mathcal{F}_{\lambda, \mu, u}}{\partial t}\left(s_{\lambda, \mu, u}, t_{\lambda, \mu, u}\right)=0
$$

Naturally, $s_{\lambda, \mu, u}^{\frac{1}{2_{\alpha}^{*}}} u^{+}+t_{\lambda, \mu, u}^{\frac{1}{2_{\alpha}^{*}}} u^{-} \in \mathcal{M}_{\lambda, \mu}$.
Further, we claim such pair of numbers is unique. For brevity, we introduce the notation

$$
B(u, v):=\frac{1}{2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *|u|^{2_{\alpha}^{*}}\right)|v|^{2_{\alpha}^{*}} d x, \quad \forall u, v \in E_{\lambda}
$$

Through direct calculation, we deduce that the Hessian matrix of $\mathcal{F}_{\lambda, \mu, u}$ at $(s, t) \in(0,+\infty)^{2}$ is

$$
\begin{aligned}
H_{\lambda, u, u}(s, t)= & \frac{2-2_{\alpha}^{*}}{\left(2_{\alpha}^{*}\right)^{2}}\left(\begin{array}{cc}
s^{\frac{2}{2_{\alpha}^{*}}-2}\left\|u^{+}\right\|_{\lambda}^{2} & 0 \\
0 & t^{\frac{2}{2 \alpha}-2}\left\|u^{-}\right\|_{\lambda}^{2}
\end{array}\right) \\
& -\left(\begin{array}{cc}
B\left(u^{+}, u^{+}\right) & B\left(u^{+}, u^{-}\right) \\
B\left(u^{+}, u^{-}\right) & B\left(u^{-}, u^{-}\right)
\end{array}\right)-\frac{\mu\left(p-2_{\alpha}^{*}\right)}{\left(2_{\alpha}^{*}\right)^{2}}\left(\begin{array}{cc}
s^{\frac{p}{2_{\alpha}^{*}}-2}\left|u^{+}\right|_{p}^{p} & 0 \\
0 & t^{\frac{p}{2_{\alpha}^{*}}-2}\left|u^{-}\right|_{p}^{p}
\end{array}\right) .
\end{aligned}
$$

It follows from [17, Theorem 9.8] that $B\left(u^{+}, u^{-}\right)^{2}<B\left(u^{+}, u^{+}\right) B\left(u^{-}, u^{-}\right)$. Then, noting $p \geq 2_{\alpha}^{*}$, we conclude that $H_{\lambda, \mu, u}(s, t)$ is negative defined for any $(s, t) \in(0,+\infty)^{2}$. Thereby, it is easy to know that $\mathcal{F}_{\lambda, \mu, u}$ has at most one critical point on $(0,+\infty)^{2}$. Thus, $\left(s_{\lambda, \mu, u}, t_{\lambda, \mu, u}\right)$ is the unique pair of positive numbers such that $s_{\lambda, \mu, u}^{\frac{1}{2_{*}^{*}}} u^{+}+t_{\lambda, \mu, u}^{\frac{1}{2_{\alpha}^{*}}} u^{-} \in \mathcal{M}_{\lambda, \mu}$, and this lemma is proved.

As a by-product, we may derive $\mathcal{M}_{\infty, \mu} \neq \varnothing$. Indeed, since $\mathcal{J}_{\lambda, \mu}=\mathcal{J}_{\infty, \mu}$ in $H_{0}^{1}(\Omega)$, we have
Remark 2.2. For any $\mu>0$ and $u \in H_{0}^{1}(\Omega)$ with $u^{ \pm} \neq 0$, there exists a unique pair $\left(s_{\mu, u}, t_{\mu, u}\right)$ of positive numbers such that $s_{\mu, u}^{\frac{1}{2^{*}}} u^{+}+t_{\mu, u}^{\frac{1}{2 *}} u^{-} \in \mathcal{M}_{\infty, \mu}$ and

$$
\mathcal{J}_{\infty, \mu}\left(s_{\mu, u}^{\frac{1}{2_{\alpha}^{*}}} u^{+}+t_{\mu, u}^{\frac{1}{2 \times}} u^{-}\right)=\max _{s, t \geq 0} \mathcal{J}_{\infty, \mu}\left(s^{\frac{1}{2 \alpha}} u^{+}+t^{\frac{1}{2_{\alpha}^{\alpha}}} u^{-}\right)
$$

To facilitate the subsequent discussion, we show some properties of $\mathcal{M}_{\lambda, \mu}$ in the following
Lemma 2.3. For any $\lambda>0$ and $\mu>0$, if $\left\{u_{n}\right\} \subset \mathcal{M}_{\lambda, \mu}$ and $\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(u_{n}\right)=m_{\lambda, \mu}$, then $m_{\lambda, \mu}>$ 0 and there exist some constants $C_{\lambda, \mu, 1}, C_{\lambda, \mu, 2}>0$ such that $C_{\lambda, \mu, 2} \leq\left\|u_{n}^{ \pm}\right\|_{\lambda},\left\|u_{n}\right\|_{\lambda} \leq C_{\lambda, \mu, 1}$ for all $n$.

Proof. From $\mathcal{M}_{\lambda, \mu} \neq \varnothing$, we know $m_{\lambda, \mu}<+\infty$ for any $\lambda, \mu>0$. Since $\left\{u_{n}\right\} \subset \mathcal{M}_{\lambda, \mu}$, there holds

$$
\begin{equation*}
m_{\lambda, \mu}+o(1)=\mathcal{J}_{\lambda, \mu}\left(u_{n}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \geq \frac{p-2}{2 p}\left\|u_{n}\right\|_{\lambda}^{2} . \tag{2.1}
\end{equation*}
$$

Then there is constant $C_{\lambda, \mu, 1}>0$ such that $\sup _{n}\left\|u_{n}\right\|_{\lambda} \leq C_{\lambda, \mu, 1}$. Thereby, (1.4) and (1.7) imply

$$
\begin{aligned}
\left\|u_{n}^{ \pm}\right\|_{\lambda}^{2} & =\int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|u_{n}\right|^{2_{\alpha}^{*}}\right)\left|u_{n}^{ \pm}\right|^{2_{\alpha}^{*}} d x+\mu \int_{\mathbb{R}^{N}}\left|u_{n}^{ \pm}\right|^{p} d x \\
& \leq A_{\alpha} C(N, \alpha) v_{2^{2}}^{2 \cdot 2_{\alpha}^{*}}\left\|u_{n}\right\|_{\lambda}^{2_{\alpha}^{*}}\left\|u_{n}^{ \pm}\right\|_{\lambda}^{2_{\alpha}^{*}}+\mu v_{p}^{p}\left\|u^{ \pm}\right\|_{\lambda}^{p} \\
& \leq A_{\alpha} C(N, \alpha) v_{2^{*}}^{2 \cdot 2_{\alpha}^{*}} C_{\lambda, \mu, 1}^{2_{\alpha}^{*}}\left\|u_{n}^{ \pm}\right\|_{\lambda}^{2_{\alpha}^{*}}+\mu v_{p}^{p}\left\|u^{ \pm}\right\|_{\lambda}^{p} .
\end{aligned}
$$

As a consequence, there exists some constant $C_{\lambda, \mu, 2}>0$ such that $\inf _{n}\left\|u_{n}^{ \pm}\right\|_{\lambda} \geq C_{\lambda, \mu, 2}$. Further, we deduce from (2.1) that $m_{\lambda, \mu}>0$. Thus we complete the proof of this lemma.

Next, following [5], we construct a sign-changing $(P S)_{c}$ sequence $\left\{u_{n}\right\}$ for $\mathcal{J}_{\lambda, \mu}$, (i.e. $u_{n}^{ \pm} \neq 0$ for any $n, \mathcal{J}_{\lambda, \mu}\left(u_{n}\right) \rightarrow c$ and $\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $E_{\lambda}^{*}$ as $\left.n \rightarrow \infty\right)$. Let $P_{\lambda}$ be the cone of nonnegative functions in $E_{\lambda}, Q=[0,1]^{2}$ and $\Gamma_{\lambda, \mu}$ be the set of continuous maps $\gamma: Q \rightarrow E_{\lambda}$ such that, for any $(s, t) \in Q$,
(a) $\gamma(s, 0)=0, \gamma(0, t) \in P_{\lambda}$ and $\gamma(1, t) \in-P_{\lambda}$,
(b) $\left(\mathcal{J}_{\lambda, \mu} \circ \gamma\right)(s, 1) \leq 0$ and

$$
\frac{\int_{\mathbb{R}^{N}}\left[\left(I_{\alpha} *|\gamma(s, 1)|^{2_{\alpha}^{*}}\right)|\gamma(s, 1)|^{2_{\alpha}^{*}}+\mu|\gamma(s, 1)|^{p}\right] d x}{\|\gamma(s, 1)\|_{\lambda}^{2}} \geq 2 .
$$

For any $u \in E_{\lambda}$ with $u^{ \pm} \neq 0$, define $\gamma_{\sigma, u}(s, t)=\sigma t(1-s) u^{+}+\sigma t s u^{-}$for $\sigma>0$ and $(s, t) \in Q$. It is easy to show $\gamma_{\sigma, u} \in \Gamma_{\lambda, \mu}$ for $\sigma>0$ large enough. Therefore, $\Gamma_{\lambda, \mu} \neq \varnothing$. Define the functional

$$
\mathcal{L}_{\lambda, \mu}(u, v)= \begin{cases}\frac{\int_{\mathbb{R}^{N}}\left[\left(I_{\alpha} *|u|^{2_{\kappa}^{*}}\right)\left(|u|^{2_{\alpha}^{*}}+|v|^{2_{\alpha}^{*}}\right)+\mu|u|^{p}\right] d x}{\|u\|_{\lambda}^{2}}, & u \neq 0, \\ 0, & u=0 .\end{cases}
$$

Clearly, $\mathcal{L}_{\lambda, \mu}>0$ if $u \neq 0$. Moreover, $u \in \mathcal{M}_{\lambda, \mu}$ if and only if $\mathcal{L}_{\lambda, \mu}\left(u^{+}, u^{-}\right)=\mathcal{L}_{\lambda, \mu}\left(u^{-}, u^{+}\right)=1$.
As a start point, we display a minimax characterization on $m_{\lambda, \mu}$ for any $\lambda>0$ and $\mu>0$.
Lemma 2.4. For any $\lambda>0$ and $\mu>0$, there holds

$$
\begin{equation*}
m_{\lambda, \mu}=\inf _{\gamma \in \Gamma_{\lambda, \mu}} \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}(\gamma(s, t)) . \tag{2.2}
\end{equation*}
$$

Proof. On the one hand, for every $u \in \mathcal{M}_{\lambda, \mu}, \gamma_{u}(s, t)=\sigma t(1-s) u^{+}+\sigma t s u^{-} \in \Gamma_{\lambda, \mu}$ for some $\sigma>0$ large enough. Then it follows from Lemma 2.1 that

$$
\mathcal{J}_{\lambda, \mu}(u)=\max _{s, t \geq 0} \mathcal{J}_{\lambda, \mu}\left(s u^{+}+t u^{-}\right) \geq \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}\left(\gamma_{u}(s, t)\right) \geq \inf _{\gamma \in \Gamma_{\lambda, \mu}} \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}(\gamma(s, t)) .
$$

Thereby, due to the arbitrariness of $u \in \mathcal{M}_{\lambda, \mu}$, there results

$$
m_{\lambda, \mu} \geq \inf _{\gamma \in \Gamma_{\lambda, \mu}} \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}(\gamma(s, t))
$$

On the other hand, for each $\gamma \in \Gamma_{\lambda, \mu}$ and $t \in[0,1]$, since $\gamma(0, t) \in P_{\lambda}$ and $\gamma(1, t) \in-P_{\lambda}$, we conclude

$$
\begin{align*}
& \mathcal{L}_{\lambda, \mu}\left(\gamma(0, t)^{+}, \gamma(0, t)^{-}\right)-\mathcal{L}_{\lambda, \mu}\left(\gamma(0, t)^{-}, \gamma(0, t)^{+}\right)=\mathcal{L}_{\lambda, \mu}\left(\gamma(0, t)^{+}, \gamma(0, t)^{-}\right) \geq 0  \tag{2.3}\\
& \mathcal{L}_{\lambda, \mu}\left(\gamma(1, t)^{+}, \gamma(1, t)^{-}\right)-\mathcal{L}_{\lambda, \mu}\left(\gamma(1, t)^{-}, \gamma(1, t)^{+}\right)=-\mathcal{L}_{\lambda, \mu}\left(\gamma(1, t)^{-}, \gamma(1, t)^{+}\right) \leq 0 \tag{2.4}
\end{align*}
$$

Meanwhile, due to $\gamma(s, 0)=0$ for all $s \in[0,1]$, there holds

$$
\begin{equation*}
\mathcal{L}_{\lambda, \mu}\left(\gamma(s, 0)^{+}, \gamma(s, 0)^{-}\right)+\mathcal{L}_{\lambda, \mu}\left(\gamma(s, 0)^{-}, \gamma(s, 0)^{+}\right)-2=-2, \quad \forall s \in[0,1] \tag{2.5}
\end{equation*}
$$

And, for each $\gamma \in \Gamma_{\lambda, \mu}$, by the definition of $\mathcal{L}_{\lambda, \mu}$ and the property $(b)$ we have, for all $s \in[0,1]$,

$$
\begin{align*}
& \mathcal{L}_{\lambda, \mu}\left(\gamma(s, 1)^{+}, \gamma(s, 1)^{-}\right)+\mathcal{L}_{\lambda, \mu}\left(\gamma(s, 1)^{-}, \gamma(s, 1)^{+}\right)-2 \\
& \quad \geq \frac{\int_{\mathbb{R}^{N}}\left[\left(I_{\alpha} *|\gamma(s, 1)|^{2}\right)|\gamma(s, 1)|^{2_{\alpha}^{*}}+\mu|\gamma(s, 1)|^{p}\right] d x}{\|\gamma(s, 1)\|_{\lambda}^{2}}-2 \geq 0 \tag{2.6}
\end{align*}
$$

Moreover, it is easy to verify that, for any $(s, t) \in \partial Q$,

$$
\begin{equation*}
\binom{\mathcal{L}_{\lambda, \mu}\left(\gamma(s, t)^{+}, \gamma(s, t)^{-}\right)-\mathcal{L}_{\lambda, \mu}\left(\gamma(s, t)^{-}, \gamma(s, t)^{+}\right)}{\mathcal{L}_{\lambda, \mu}\left(\gamma(s, t)^{+}, \gamma(s, t)^{-}\right)+\mathcal{L}_{\lambda, \mu}\left(\gamma(s, t)^{-}, \gamma(s, t)^{+}\right)-2} \neq\binom{ 0}{0} \tag{2.7}
\end{equation*}
$$

Then, by combining (2.3)-(2.7) with the Miranda theorem (see e.g. Lemma 2.4 in [13]), we derive that there exists some $\left(s_{\gamma}, t_{\gamma}\right) \in(0,1)^{2}$ satisfying

$$
\begin{aligned}
& \mathcal{L}_{\lambda, \mu}\left(\gamma\left(s_{\gamma}, t_{\gamma}\right)^{+}, \gamma\left(s_{\gamma}, t_{\gamma}\right)^{-}\right)-\mathcal{L}_{\lambda, \mu}\left(\gamma\left(s_{\gamma}, t_{\gamma}\right)^{-}, \gamma\left(s_{\gamma}, t_{\gamma}\right)^{+}\right)=0 \\
& \mathcal{L}_{\lambda, \mu}\left(\gamma\left(s_{\gamma}, t_{\gamma}\right)^{+}, \gamma\left(s_{\gamma}, t_{\gamma}\right)^{-}\right)+\mathcal{L}_{\lambda, \mu}\left(\gamma\left(s_{\gamma}, t_{\gamma}\right)^{-}, \gamma\left(s_{\gamma}, t_{\gamma}\right)^{+}\right)=2
\end{aligned}
$$

In view of this fact, we easily obtain

$$
\mathcal{L}_{\lambda, \mu}\left(\gamma\left(s_{\gamma}, t_{\gamma}\right)^{+}, \gamma\left(s_{\gamma}, t_{\gamma}\right)^{-}\right)=\mathcal{L}_{\lambda, \mu}\left(\gamma\left(s_{\gamma}, t_{\gamma}\right)^{-}, \gamma\left(s_{\gamma}, t_{\gamma}\right)^{+}\right)=1
$$

which implies $\gamma\left(s_{\gamma}, t_{\gamma}\right) \in \mathcal{M}_{\lambda, \mu}$. Consequently, from the arbitrariness of $\gamma \in \Gamma_{\lambda, \mu}$, we deduce

$$
\inf _{\gamma \in \Gamma_{\lambda, \mu}} \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}(\gamma(s, t)) \geq m_{\lambda, \mu}
$$

Now, by combining the above two sides, we know (2.2) holds. Thus this lemma is showed.
Lemma 2.5. For any $\lambda>0$ and $\mu>0, \mathcal{J}_{\lambda, \mu}$ possesses a sign-changing $(P S)_{m_{\lambda, \mu}}$ sequence $\left\{u_{n}\right\} \subset E_{\lambda}$.
Proof. We will end the proof in two steps. Firstly, we construct a $(P S)_{m_{\lambda, \mu}}$ sequence for $\mathcal{J}_{\lambda, \mu}$. Take a minimizing sequence $\left\{w_{n}\right\} \subset \mathcal{M}_{\lambda, \mu}$ for $m_{\lambda, \mu}$ and set $\gamma_{\sigma, n}(s, t)=\sigma t(1-s) w_{n}^{+}+\sigma t s w_{n}^{-}$. By Lemma 2.3, it is easy to choose a sufficiently large constant $\bar{\sigma}>0$ such that $\left\{\gamma_{\bar{\sigma}, n}\right\} \subset \Gamma_{\lambda, \mu}$. Due to Lemmas 2.1 and 2.4, there holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}\left(\gamma_{\bar{\sigma}, n}(s, t)\right)=\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(w_{n}\right)=m_{\lambda, \mu} \tag{2.8}
\end{equation*}
$$

We assert that there exists some sequence $\left\{u_{n}\right\} \subset E_{\lambda}$ such that, as $n \rightarrow \infty$,

$$
\begin{equation*}
\mathcal{J}_{\lambda, \mu}\left(u_{n}\right) \rightarrow m_{\lambda, \mu,} \quad \mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0, \quad \min _{(s, t) \in Q}\left\|u_{n}-\gamma_{\bar{\sigma}, n}(s, t)\right\|_{\lambda} \rightarrow 0 . \tag{2.9}
\end{equation*}
$$

If not, there exists some constant $\delta_{\lambda, \mu}>0$ such that, for $n$ suitably large, $\gamma_{\bar{\sigma}, n}(Q) \cap U_{\delta_{\lambda, \mu}}=\varnothing$, in which

$$
U_{\delta_{\lambda, \mu}} \triangleq\left\{u \in E_{\lambda}: \exists v \in E_{\lambda} \text { s.t. }\|v-u\|_{\lambda} \leq \delta_{\lambda, \mu}\left\|\nabla \mathcal{J}_{\lambda, \mu}(v)\right\| \leq \delta_{\lambda, \mu}\left|\mathcal{J}_{\lambda, \mu}(v)-m_{\lambda, \mu}\right| \leq \delta_{\lambda, \mu}\right\} .
$$

Then, by a variant of the classical deformation lemma due to Hofer (see [12, Lemma 1]), there exists a continuous map $\eta_{\lambda, \mu}:[0,1] \times E_{\lambda} \rightarrow E_{\lambda}$, which satisfies that, for some $\varepsilon_{\lambda, \mu} \in\left(0, \frac{m_{\lambda, \mu}}{2}\right)$,
(i) $\eta_{\lambda, \mu}(0, u)=u, \eta_{\lambda, \mu}(\tau,-u)=-\eta_{\lambda, \mu}(\tau, u), \forall \tau \in[0,1], u \in E_{\lambda}$,
(ii) $\eta_{\lambda, \mu}(\tau, u)=u, \forall u \in \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}} \varepsilon_{\lambda, \mu} \cup\left(E_{\lambda} \backslash \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}+\varepsilon_{\lambda, \mu}}\right), \forall \tau \in[0,1]$,
(iii) $\eta_{\lambda, \mu}\left(1, \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}+\frac{\varepsilon_{\lambda, \mu}}{2}} \backslash U_{\delta_{\lambda, \mu}}\right) \subset \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}}{ }^{\varepsilon_{\lambda, \mu}}$,
(iv) $\eta_{\lambda, \mu}\left(1,\left(\mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}} \frac{\varepsilon_{\lambda, \mu}}{2} \cap P_{\lambda}\right) \backslash U_{\delta_{\lambda, \mu}}\right) \subset \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}} \frac{\varepsilon_{\lambda, \mu}}{2} \cap P_{\lambda}$,
where the sublevel set $\mathcal{J}_{\lambda, \mu}^{d}:=\left\{u \in E_{\lambda}: \mathcal{J}_{\lambda, \mu}(u) \leq d\right\}$ for $d \in \mathbb{R}$. By (2.8), we choose large $n$ such that

$$
\begin{equation*}
\gamma_{\bar{\sigma}, n}(Q) \subset \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}+\frac{\varepsilon_{\lambda, \mu}}{2}} \quad \text { and } \quad \gamma_{\bar{\sigma}, n}(Q) \cap U_{\delta_{\lambda, \mu}}=\varnothing . \tag{2.10}
\end{equation*}
$$

Set the continuous map $\widetilde{\gamma}_{\lambda, \mu, n}(s, t)=\eta_{\lambda, \mu}\left(1, \gamma_{\bar{\sigma}, n}(s, t)\right)$ for any $(s, t) \in Q$. We claim $\widetilde{\gamma}_{\lambda, \mu, n} \in \Gamma_{\lambda, \mu}$.
Indeed, from $\gamma_{\bar{\sigma}, n}(s, 0)=0$ and (ii), it follows that $\widetilde{\gamma}_{\lambda, \mu, n}(s, 0)=\eta_{\lambda, \mu}(1,0)=0$ for any $s \in[0,1]$. Since $\gamma_{\bar{\sigma}, n}(0, t),-\gamma_{\bar{\sigma}, n}(1, t) \in P_{\lambda}$ and (2.10) implies $\gamma_{\bar{\sigma}, n}(0, t),-\gamma_{\bar{\sigma}, n}(1, t) \in$ $\mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}+\frac{\varepsilon_{\lambda, \mu}^{2}}{2}} \backslash U_{\delta_{\lambda, \mu},}$ we deduce from (i), (iv) that $\widetilde{\gamma}_{\lambda, \mu, n}(0, t) \in P_{\lambda}$ and $\widetilde{\gamma}_{\lambda, \mu, n}(1, t) \in-P_{\lambda}$ for all $t \in[0,1]$. Also, $\mathcal{J}_{\lambda, \mu}\left(\gamma_{\bar{\sigma}, n}(s, 1)\right) \leq 0$ and (ii) imply $\widetilde{\gamma}_{\lambda, \mu, n}(s, 1)=\eta_{\lambda, \mu}\left(1, \gamma_{\bar{\sigma}, n}(s, 1)\right)=\gamma_{\bar{\sigma}, n}(s, 1)$ for any $s \in[0,1]$. Then, by $\gamma_{\bar{\sigma}, n} \in \Gamma_{\lambda, \mu}$, we know $\widetilde{\gamma}_{\lambda, \mu, n}$ satisfies the property (b). From the above arguments, we derive our claim $\widetilde{\gamma}_{\lambda, \mu, n} \in \Gamma_{\lambda, \mu}$.

Thereby, since (2.10) and (iii) imply $\widetilde{\gamma}_{\lambda, \mu, n}(Q) \subset \mathcal{J}_{\lambda, \mu}^{m_{\lambda, \mu}-\frac{\varepsilon_{\lambda, \mu}}{2}}$, we conclude

$$
m_{\lambda, \mu} \leq \max _{(s, t) \in Q} \mathcal{J}_{\lambda, \mu}\left(\widetilde{\gamma}_{\lambda, \mu, n}(s, t)\right) \leq m_{\lambda, \mu}-\frac{\varepsilon_{\lambda, \mu}}{2},
$$

which is a contradiction. Thus there is a sequence $\left\{u_{n}\right\} \subset E_{\lambda}$ possessing the properties in (2.9).
Secondly, we prove $u_{n}^{ \pm} \neq 0$ for all large $n$. By (2.9), there exists a sequence $\left\{v_{n}\right\}$ such that

$$
\begin{equation*}
v_{n}=\alpha_{n} w_{n}^{+}+\beta_{n} w_{n}^{-} \in \gamma_{\bar{\sigma}, n}(Q) \text { and }\left\|v_{n}-u_{n}\right\|_{\lambda} \xrightarrow{n} 0 . \tag{2.11}
\end{equation*}
$$

Due to $\left\{w_{n}\right\} \subset \mathcal{M}_{\lambda, \mu}$ and $p \in\left(2,2^{*}\right)$, from (1.4), Lemma 2.3 and the Young inequality we have

$$
\left\|w_{n}^{ \pm}\right\|_{\lambda}^{2} \leq A_{\alpha} C(N, \alpha)\left(v_{2^{*}} C_{\lambda, \mu, 1}\right)^{2_{\alpha}^{*}}\left|w_{n}^{ \pm}\right|_{2^{*}}^{2^{*}}+\frac{2^{*}-p}{2^{*}-2}\left|w_{n}^{ \pm}\right|_{2}^{2}+\frac{\mu^{\frac{2^{*}-2}{p-2}}(p-2)}{2^{*}-2}\left|w_{n}^{ \pm}\right|_{2^{*}}^{2^{*}} .
$$

Then, by (1.7), there holds

$$
\frac{p-2}{\left(2^{*}-2\right) v_{2^{*}}^{2}}\left|w_{n}^{ \pm}\right|_{2^{*}}^{2} \leq A_{\alpha} C(N, \alpha)\left(v_{2^{*}} C_{\lambda, \mu, 1}\right)^{2_{\alpha}^{*}}\left|w_{n}^{ \pm}\right|_{2^{*}}^{2_{\alpha}^{*}}+\frac{\mu^{\frac{2^{*}-2}{p-2}}(p-2)}{2^{*}-2}\left|w_{n}^{ \pm}\right|_{2^{*}}^{2^{*}},
$$

which implies $\inf _{n}\left|w_{n}^{ \pm}\right|_{2^{*}}>0$. In view of this fact, the second limiting formula in (2.11) and (1.7), to show $u_{n}^{ \pm} \neq 0$ for $n$ large enough, it suffices to verify that $\alpha_{n} \nrightarrow 0$ and $\beta_{n} \nrightarrow 0$ up to subsequences. Suppose inversely $\alpha_{n} \rightarrow 0$ up to a subsequence. Then it follows from $\mathcal{J}_{\lambda, \mu} \in C\left(E_{\lambda}, \mathbb{R}\right)$ and Lemma 2.3 that

$$
m_{\lambda, \mu}=\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(v_{n}\right)=\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(\alpha_{n} w_{n}^{+}+\beta_{n} w_{n}^{-}\right)=\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(\beta_{n} w_{n}^{-}\right),
$$

which together with $m_{\lambda, \mu}>0$ implies $\bar{\beta}:=\sup _{n} \beta_{n}<+\infty$. Further, by Lemma 2.1, the Fubini theorem, Lemma 2.3, (1.4) and (1.7), we deduce

$$
\begin{aligned}
& m_{\lambda, \mu}=\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(w_{n}\right) \\
& =\lim _{n \rightarrow \infty} \max _{s, t \geq 0} \mathcal{J}_{\lambda, \mu}\left(s w_{n}^{+}+t w_{n}^{-}\right) \\
& \geq \lim _{n \rightarrow \infty} \max _{s \geq 0} \mathcal{J}_{\lambda, \mu}\left(s w_{n}^{+}+\beta_{n} w_{n}^{-}\right) \\
& =\lim _{n \rightarrow \infty} \max _{s \geq 0}\left[\frac{s^{2}}{2}\left\|w_{n}^{+}\right\|_{\lambda}^{2}-\frac{s^{2} \cdot 2_{\alpha}^{*}}{2 \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|w_{n}^{+}\right|^{2_{\alpha}^{*}}\right)\left|w_{n}^{+}\right|^{2_{\alpha}^{*}} d x-\frac{\mu s^{p}}{p} \int_{\mathbb{R}^{N}}\left|w_{n}^{+}\right|^{p} d x\right. \\
& +\frac{\beta_{n}^{2}}{2}\left\|w_{n}^{-}\right\|_{\lambda}^{2}-\frac{\beta_{n}^{2 \cdot 2_{\alpha}^{*}}}{2 \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|w_{n}^{-}\right|^{2_{\alpha}^{*}}\right)\left|w_{n}^{-}\right|^{2_{\alpha}^{*}} d x-\frac{\mu \beta_{n}^{p}}{p} \int_{\mathbb{R}^{N}}\left|w_{n}^{-}\right|^{p} d x \\
& \left.-\frac{s_{\alpha}^{2_{\alpha}^{*}} \beta_{n}^{2_{\alpha}^{*}}}{2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|w_{n}^{+}\right|^{2_{\alpha}^{*}}\right)\left|w_{n}^{-}\right|^{2_{\alpha}^{*}} d x\right] \\
& =\lim _{n \rightarrow \infty} \max _{s \geq 0}\left[\frac{s^{2}}{2}\left\|w_{n}^{+}\right\|_{\lambda}^{2}-\frac{s^{2 \cdot 2 \cdot 2_{\alpha}^{*}}}{2 \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|w_{n}^{+}\right|^{2_{\alpha}^{*}}\right)\left|w_{n}^{+}\right|^{2_{\alpha}^{*}} d x\right. \\
& \left.-\frac{s^{2_{\alpha}^{*}} \beta_{n}^{2_{\alpha}^{*}}}{2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|w_{n}^{+}\right|^{2_{\alpha}^{*}}\right)\left|w_{n}^{-}\right|^{2_{\alpha}^{*}} d x-\frac{\mu s^{p}}{p} \int_{\mathbb{R}^{N}}\left|w_{n}^{+}\right|^{p} d x+\mathcal{J}_{\lambda, \mu}\left(\beta_{n} w_{n}^{-}\right)\right] \\
& \geq \max _{s \geq 0}\left[\frac{1}{2} C_{\lambda, \mu, 2}^{2} s^{2}-\frac{1}{2_{\alpha}^{*}} A_{\alpha} C(N, \alpha)\left(v_{2^{*}} C_{\lambda, \mu, 1}\right)^{2 \cdot 2_{\alpha}^{*}} \bar{\beta}^{2}{ }^{*} s^{2}{ }^{*} \alpha-\frac{\mu}{p}\left(v_{p} C_{\lambda, \mu, 1}\right)^{p} s^{p}\right. \\
& \left.-\frac{1}{2 \cdot 2_{\alpha}^{*}} A_{\alpha} C(N, \alpha)\left(v_{2^{*}} C_{\lambda, \mu, 1}\right)^{2 \cdot 2_{\alpha}} s^{2 \cdot 2_{\alpha}}\right]+\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(\beta_{n} w_{n}^{-}\right) \\
& >m_{\lambda, \mu},
\end{aligned}
$$

a contradiction. Naturally, $\left\{\alpha_{n}\right\}$ has no subsequence tending to 0 . Similarly, we can show $\left\{\beta_{n}\right\}$ has no subsequence tending to 0 . Thus $u_{n}^{ \pm} \neq 0$ for $n$ large enough. This lemma is proved.

Now, we estimate the least energy $m_{\lambda, \mu}$ from above. By [9, Lemma 1.2], the best constant

$$
\begin{equation*}
S_{\alpha}:=\inf \left\{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x: u \in D^{1,2}\left(\mathbb{R}^{N}\right) \text { and } \int_{\mathbb{R}^{N}}\left(I_{\alpha} *|u|^{2_{\alpha}^{*}}\right)|u|^{2_{\alpha}^{*}} d x=1\right\} \tag{2.12}
\end{equation*}
$$

is attained by the functions

$$
U_{\varepsilon}(\cdot)=\frac{\left[N(N-2) \varepsilon^{2}\right]^{\frac{N-2}{4}}}{\left[C(N, \alpha) A_{\alpha} S^{\frac{\alpha}{2}}\right]^{\frac{N-2}{4+2 \alpha}}\left(\varepsilon^{2}+|\cdot|^{2}\right)^{\frac{N-2}{2}}}, \quad \varepsilon>0 .
$$

Take $\delta>0$ such that $\mathbb{B}_{5 \delta} \subset \Omega$, and extract two cut-off functions $\varphi, \psi \in C_{0}^{\infty}(\Omega,[0,1])$ satisfying

$$
\varphi(x)=\left\{\begin{array}{ll}
1, & x \in \mathbb{B}_{\delta,} \\
0, & x \in \mathbb{B}_{2 \delta}^{c}
\end{array} \quad \text { and } \quad \psi(x)= \begin{cases}0, & x \in \mathbb{B}_{2 \delta}, \\
1, & x \in \mathbb{B}_{4 \delta} \backslash \mathbb{B}_{3 \delta}, \\
0, & x \in \mathbb{B}_{5 \delta}^{c} .\end{cases}\right.
$$

Define $u_{\varepsilon}=\varphi U_{\varepsilon}$ and $v_{\varepsilon}=\psi U_{\varepsilon}$. As in [3,4], through direct computation, we obtain, as $\varepsilon \rightarrow 0^{+}$,

$$
\begin{array}{r}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x=S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}+O\left(\varepsilon^{N-2}\right), \\
\int_{\Omega}\left|u_{\varepsilon}\right|^{2} d x= \begin{cases}O(\varepsilon), & N=3, \\
O\left(\varepsilon^{2}|\ln \varepsilon|\right), & N=4 \\
O\left(\varepsilon^{2}\right), & N \geq 5\end{cases} \tag{2.14}
\end{array}
$$

and

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \frac{\left|u_{\varepsilon}(x)\right|^{2}\left|u_{\varepsilon}(y)\right|^{2 *}}{|x-y|^{N-\alpha}} d x d y=A_{\alpha}^{-1} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}+O\left(\varepsilon^{\frac{N+\alpha}{2}}\right) . \tag{2.15}
\end{equation*}
$$

Additionally, as $\varepsilon \rightarrow 0^{+}$,

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{2}+v_{\varepsilon}^{2} d x=O\left(\varepsilon^{N-2}\right) \quad \text { and } \quad \int_{\Omega}\left|v_{\varepsilon}(x)\right|^{p} d x \geq d_{p} \varepsilon^{\frac{(N-2) p}{2}} \text { for some } d_{p}>0 \tag{2.16}
\end{equation*}
$$

Lemma 2.6. There exists some $\mu_{*}>0$ independent of $\lambda$ such that, for any $\lambda>0$ and $\mu \geq \mu_{*}$,

$$
m_{\lambda, \mu} \leq m_{\infty, \mu}<m_{*}:=\frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}} .
$$

Proof. Since $\mathcal{M}_{\infty, \mu} \subset \mathcal{M}_{\lambda, \mu}$ and $\mathcal{J}_{\lambda, \mu}=\mathcal{J}_{\infty, \mu}$ on $\mathcal{M}_{\infty, \mu}$, we easily derive $m_{\lambda, \mu} \leq m_{\infty, \mu}$. For any $\varepsilon>0$ and $\mu>0$, by Remark 2.2, there exist some constants $s_{\mu, \varepsilon}>0, t_{\mu, \varepsilon}>0$ such that $s_{\mu, \varepsilon} u_{\varepsilon}-t_{\mu, \varepsilon} v_{\varepsilon} \in \mathcal{M}_{\infty, \mu}$ and $\mathcal{J}_{\infty, \mu}\left(s_{\mu, \varepsilon} u_{\varepsilon}-t_{\mu, \varepsilon} v_{\varepsilon}\right)=\max _{s, t>0} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}-t v_{\varepsilon}\right)$. It suffices to show $\max _{s, t>0} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}-t v_{\varepsilon}\right)<m_{*}$ for $\varepsilon>0$ small enough. Noting spt $u_{\varepsilon} \cap$ spt $v_{\varepsilon}=\varnothing$, we deduce

$$
\begin{equation*}
\max _{s, t>0} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}-t v_{\varepsilon}\right) \leq \max _{s>0} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}\right)+\max _{t>0} \mathcal{J}_{\infty, \mu}\left(t v_{\varepsilon}\right) . \tag{2.1}
\end{equation*}
$$

It easily follows from (2.13)-(2.15) that, for $\varepsilon>0$ sufficiently small and all $\mu>0, s>0$,

$$
\mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}\right) \leq S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}\left(s^{2}-\frac{1}{4 \cdot 2_{\alpha}^{*}} s^{2 \cdot 2 \cdot 2_{\alpha}^{*}}\right) .
$$

In view of this, there exist some sufficiently small $s_{1}>0$ and sufficiently large $s_{2}>0$ independent of $\varepsilon, \mu$ such that, for $\varepsilon>0$ small enough and all $\mu>0$,

$$
\max _{s \in\left(0, s_{1}\right)} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}\right)<m_{*} \quad \text { and } \max _{s \in\left(s_{2},+\infty\right)} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}\right)<0 .
$$

Moreover, from (2.13)-(2.15) again we conclude, for $\varepsilon>0$ sufficiently small and any $\mu>0$,

$$
\begin{aligned}
\max _{s \in\left[s_{1}, s_{2}\right]} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}\right) \leq & \max _{s>0}\left(\frac{s^{2}}{2} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x-\frac{s^{2 \cdot 2_{\alpha}^{*}} A_{\alpha}}{2 \cdot 2_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{\left|u_{\varepsilon}(x)\right|^{*}\left|u_{\varepsilon}(y)\right|^{*}}{|x-y|^{N-\alpha}} d x d y\right) \\
& +\frac{s_{2}^{2}}{2} \int_{\Omega}\left|u_{\varepsilon}\right|^{2} d x-\frac{\mu s_{1}^{p}}{p} \int_{\Omega}^{\left|u_{\varepsilon}\right|^{p} d x} \\
\leq & \frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}\left[1+O\left(\varepsilon^{N-2}\right)\right]\left[1-O\left(\varepsilon^{\frac{N+\alpha}{2}}\right)\right] \\
& +\frac{s_{2}^{2}}{2} \int_{\Omega}\left|u_{\varepsilon}\right|^{2} d x-\frac{\mu s_{1}^{p} \varepsilon^{N-\frac{(N-2) p}{2}}}{p} \int_{\mathbb{B}_{1}}\left|U_{1}\right|^{p} d x \\
= & \frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}}+O\left(\varepsilon^{N-2}\right)+\frac{s_{2}^{2}}{2} \int_{\Omega}\left|u_{\varepsilon}\right|^{2} d x-\frac{\mu s_{1}^{p} \varepsilon^{N-\frac{(N-2) p}{2}}}{p} \int_{\mathbb{B}_{1}}\left|U_{1}\right|^{p} d x .
\end{aligned}
$$

If $N \geq 4$, or $N=3$ and $\alpha \in(1,3)$, by (2.14) and $p \geq 2_{\alpha}^{*}$ we deduce, for $\varepsilon>0$ small enough and $\mu>0$,

$$
\eta_{N}(\varepsilon):=O\left(\varepsilon^{N-2}\right)+\frac{s_{2}^{2}}{2} \int_{\Omega}\left|u_{\varepsilon}\right|^{2} d x-\frac{\mu s_{1}^{p} \varepsilon^{N-\frac{(N-2) p}{2}}}{p} \int_{\mathbb{B}_{1}}\left|U_{1}\right|^{p} d x<0
$$

If $N=3$ and $\alpha \in(0,1]$, take $\mu=\varepsilon^{\frac{\alpha-3}{2}}$, by (2.14), there exists small $\varepsilon_{1}>0$ such that $\eta_{3}(\varepsilon)<0$ for all $\varepsilon \in\left(0, \varepsilon_{1}\right]$. Based on the above discussion, for $\varepsilon>0$ small enough and any $\mu \geq \varepsilon_{1}^{\frac{2}{\alpha-3}}$ if $N=3$ and $\alpha \in(0,1)$, also, for $\varepsilon>0$ small enough and any $\mu>0$ if $N \geq 4$ or $N=3$ and $\alpha \in(1,3)$, we conclude

$$
\begin{equation*}
\max _{s>0} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}\right)<m_{*} . \tag{2.18}
\end{equation*}
$$

In addition, due to (2.16), there exists some $C_{1}>0$ such that, for $\varepsilon>0$ small enough and any $\mu>0$,

$$
\begin{equation*}
\max _{t>0} \mathcal{J}_{\infty, \mu}\left(t v_{\varepsilon}\right) \leq \max _{t>0}\left[C_{1} \varepsilon^{N-2} t^{2}-\mu d_{p}\left(\varepsilon^{N-2} t^{2}\right)^{\frac{p}{2}}\right] \leq \frac{(p-2)\left(2 C_{1}\right)^{\frac{p}{p-2}}}{2 p\left(\mu p d_{p}\right)^{\frac{2}{p-2}}} . \tag{2.19}
\end{equation*}
$$

Now, by combining (2.17), (2.18) and (2.19), there exists some large $\mu_{*} \in\left[\frac{1}{\varepsilon_{1}},+\infty\right)$ such that $\max _{s, t>0} \mathcal{J}_{\infty, \mu}\left(s u_{\varepsilon}-t v_{\varepsilon}\right)<m_{*}$ for any $\mu \geq \mu_{*}$ and small $\varepsilon>0$. Thus this lemma is proved.

In the forthcoming lemma, we show that $\mathcal{J}_{\lambda, \mu}$ satisfies the local (PS) ${ }_{c}$ condition for $\lambda$ large.
Lemma 2.7. There exists some $\Lambda>0$ independent of $\mu$ such that, for any $\lambda \geq \Lambda$ and $\mu \geq \mu_{*}$, each $(P S)_{c}$ sequence $\left\{u_{n}\right\} \subset E_{\lambda}$ for $\mathcal{J}_{\lambda, u}$, with level $c \in\left(0, m_{*}\right)$, has a convergent subsequence.
Proof. From the definition of $\left\{u_{n}\right\}$, there results

$$
m_{*}+o(1)+o\left(\left\|u_{n}\right\|_{\lambda}\right) \geq \mathcal{J}_{\lambda, \mu}\left(u_{n}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \geq \frac{p-2}{2 p}\left\|u_{n}\right\|_{\lambda}^{2} .
$$

Then there exists some $C_{2}>0$ independent of $\lambda$ and $\mu$ such that $\limsup _{n}\left\|u_{n}\right\|_{\lambda} \leq C_{2}$. Naturally, $\left\{u_{n}\right\}$ is bounded in $E_{\lambda}$. Hence, there exists some $u \in E_{\lambda}$ such that, up to subsequences,

$$
\begin{cases}u_{n} \rightharpoonup u & \text { in } E_{\lambda},  \tag{2.20}\\ u_{n} \rightarrow u & \text { in } L_{l o c}^{s}\left(\mathbb{R}^{N}\right), \forall s \in\left[1,2^{*}\right), \text { as } n \rightarrow \infty . \\ u_{n}(x) \rightarrow u(x) & \text { a.e. in } \mathbb{R}^{N},\end{cases}
$$

Set $v_{n}=u_{n}-u$. Clearly, $\lim \sup _{n}\left\|v_{n}\right\|_{\lambda} \leq 2 C_{2}$. We will show $\left\|v_{n}\right\|_{\lambda} \xrightarrow{n} 0$ up to a subsequence. Define

$$
\beta=\limsup \sup _{n \rightarrow \infty} \int_{y \in \mathbb{R}^{N}} \int_{\mathbb{B}_{1}(y)} v_{n}^{2} d x .
$$

We assert $\beta=0$. Otherwise, $\beta>0$. Due to $\left(V_{5}\right)$, there exists some large $R>0$ such that

$$
\left|\left\{x \in \mathbb{B}_{R}^{c}(0): V(x) \leq M\right\}\right| \leq\left(\frac{\beta S}{16 C_{2}^{2}}\right)^{\frac{N}{2}}
$$

Then it follows from the Hölder and Sobolev inequalities that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\left\{x \in \mathbb{B}_{R}^{c}(0): V(x) \leq M\right\}} v_{n}^{2} d x \leq\left|\left\{x \in \mathbb{B}_{R}^{c}(0): V(x) \leq M\right\}\right|^{\frac{2}{N}} S^{-1} \limsup _{n \rightarrow \infty}\left\|v_{n}\right\|_{\lambda}^{2} \leq \frac{\beta}{4} \tag{2.21}
\end{equation*}
$$

Moreover, if taking $\Lambda=\frac{1}{M}\left(16 C_{2}^{2} \beta^{-1}-1\right)$ and letting $\lambda \geq \Lambda$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\left\{x \in \mathbb{B}_{R}^{c}(0): V(x)>M\right\}} v_{n}^{2} d x \leq \frac{1}{\lambda M+1} \limsup _{n \rightarrow \infty}\left\|v_{n}\right\|_{\lambda}^{2} \leq \frac{\beta}{4} . \tag{2.22}
\end{equation*}
$$

Consequently, combining (2.20)-(2.22) leads to

$$
\beta \leq \underset{n \rightarrow \infty}{\limsup } \int_{\mathbb{R}^{N}} v_{n}^{2} d x=\limsup _{n \rightarrow \infty} \int_{\mathbb{B}_{\mathbb{R}}^{c}(0)} v_{n}^{2} d x \leq \frac{\beta}{2},
$$

which contradicts $\beta>0$. That is, our claim $\beta=0$ is true. Then, thanks to [29, Lemma 1.21],

$$
\begin{equation*}
v_{n} \rightarrow 0 \quad \text { in } L^{s}\left(\mathbb{R}^{N}\right), \quad \forall s \in\left(2,2^{*}\right) . \tag{2.23}
\end{equation*}
$$

By (2.20), it is easy to show $\mathcal{J}_{\lambda, \mu}^{\prime}(u)=0$. Further, with $\left\langle\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=o(1)$ in hand, we deduce from (2.20), (2.23) and the nonlocal version of the Brézis-Lieb lemma (see e.g. [4, Lemma 2.2]) that

$$
\begin{equation*}
o(1)=\left\|v_{n}\right\|_{\lambda}^{2}-\int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|v_{n}\right|^{2_{\alpha}^{*}}\right)\left|v_{n}\right|^{2_{\alpha}^{*}} d x \tag{2.24}
\end{equation*}
$$

Set $\kappa=\lim \sup _{n \rightarrow \infty}\left\|v_{n}\right\|_{\lambda}$. Due to (2.24) and the definition of $S_{\alpha}$, there results $\kappa=0$ or $\kappa \geq S_{\alpha}^{\frac{N+\alpha}{2(2+\alpha)}}$. We claim $\kappa=0$. If not, because $\mathcal{J}_{\lambda, \mu}(u) \geq 0$, it follows from (2.20), (2.24) and Lemma 2.2 in [4] that

$$
c=\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda, \mu}\left(u_{n}\right)=\mathcal{J}_{\lambda, \mu}(u)+\frac{2+\alpha}{2(N+\alpha)} \limsup _{n \rightarrow \infty}\left\|v_{n}\right\|_{\lambda}^{2} \geq \frac{2+\alpha}{2(N+\alpha)} S_{\alpha}^{\frac{N+\alpha}{2+\alpha}},
$$

which contradicts $c<m_{*}$. Thus $u_{n} \rightarrow u$ in $E_{\lambda}$ up to a subsequence. This lemma is proved.
Based on the above preliminary lemmas, we shall complete the proof of main results below.

Proof of Theorem 1.2. Let $\lambda \geq \Lambda$ and $\mu \geq \mu_{*}$. Thanks to Lemmas 2.5 and 2.6, $\mathcal{J}_{\lambda, \mu}$ has a sign-changing $(P S)_{m_{\lambda, \mu}}$ sequence $\left\{u_{n}\right\} \subset E_{\lambda}$, with $m_{\lambda, \mu}<m_{*}$. From Lemma 2.7, we derive that $u_{n} \rightarrow u_{\lambda, \mu}$ in $E_{\lambda}$ in the sense of subsequence. Then, there result $\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{\lambda, \mu}\right)=0$ in $E_{\lambda}^{*}$ and $\mathcal{J}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)=m_{\lambda, \mu}$. Further, Lemma 2.3 implies $u_{\lambda, \mu}^{ \pm} \neq 0$. That is, Eq. (1.6) has a ground state sign-changing solution $u_{\lambda, \mu}$.

Next, we show the concentration of ground state sign-changing solutions for Eq. (1.6) as $\lambda \rightarrow+\infty$. Given $\mu \geq \mu_{*}$ arbitrarily. For sequence $\left\{\lambda_{n}\right\} \subset[\Lambda,+\infty)$ with $\lambda_{n} \rightarrow+\infty$, let $u_{\lambda_{n}, \mu} \in E_{\lambda_{n}}$ be such that

$$
u_{\lambda_{n}, \mu}^{ \pm} \neq 0, \quad \mathcal{J}_{\lambda_{n}, \mu}^{\prime}\left(u_{\lambda_{n}, \mu}\right)=0 \quad \text { in } E_{\lambda_{n}}^{*} \quad \quad \mathcal{J}_{\lambda_{n}, \mu}\left(u_{\lambda_{n}, \mu}\right)=m_{\lambda_{n}, \mu}
$$

By Lemma 2.6, it is easy to obtain

$$
\begin{equation*}
m_{*}>\mathcal{J}_{\lambda_{n}, \mu}\left(u_{\lambda_{n, \mu}}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\lambda_{n, \mu}}^{\prime}\left(u_{\lambda_{n}, \mu}\right), u_{\lambda_{n, \mu}}\right\rangle>\frac{p-2}{2 p}\left\|u_{\lambda_{n}, \mu}\right\|_{\lambda_{n}}^{2} \tag{2.25}
\end{equation*}
$$

Obviously, $\left\{u_{\lambda_{n}, \mu}\right\}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$. Then, there exists some $u_{\mu} \in H^{1}\left(\mathbb{R}^{N}\right)$ such that, up to subsequences,

$$
\begin{cases}u_{\lambda_{n}, \mu} \stackrel{n}{\rightharpoonup} u_{\mu} & \text { in } H^{1}\left(\mathbb{R}^{N}\right),  \tag{2.26}\\ u_{\lambda_{n}, \mu} \xrightarrow{n} u_{\mu} & \text { in } L_{l o c}^{s}\left(\mathbb{R}^{N}\right), \forall s \in\left[1,2^{*}\right), \\ u_{\lambda_{n}, \mu}(x) \xrightarrow{n} u_{\mu}(x) & \text { a.e. in } \mathbb{R}^{N} .\end{cases}
$$

It follows from the Fatou lemma, (2.25) and (2.26) that

$$
0 \leq \int_{\Omega^{c}} V(x) u_{\mu}^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} V(x) u_{\lambda_{n}, \mu}^{2} d x \leq \liminf _{n \rightarrow \infty} \frac{\left\|u_{\lambda_{n}, \mu}\right\|_{\lambda_{n}}^{2}}{\lambda_{n}}=0
$$

which together with $\left(V_{6}\right)$ implies $\left.u_{\mu}\right|_{\Omega^{c}}=0$. Then, $u_{\mu} \in H_{0}^{1}(\Omega)$, since $\partial \Omega$ is smooth. Thereby, for any $\omega \in H_{0}^{1}(\Omega)$, we derive from $\left\langle\mathcal{J}_{\lambda_{n}, \mu}^{\prime}\left(u_{\lambda_{n}, \mu}\right), \omega\right\rangle=0$ and (2.26) that $\mathcal{J}_{\infty, \mu}^{\prime}\left(u_{\mu}\right)=0$.

Set $v_{\mu, n}=u_{\lambda_{n}, \mu}-u_{\mu}$. For any $\varepsilon>0$, by $\left(V_{5}\right)$, there exists some large $R_{\varepsilon}>0$ such that

$$
\left|\left\{x \in \mathbb{B}_{R_{\varepsilon}}^{c}: V(x) \leq M\right\}\right|<\left[\frac{(p-2) S \varepsilon}{4 p m_{*}}\right]^{\frac{N}{2}}
$$

Then, due to the Hölder and Sobolev inequalities, the weakly lower semicontinuity of norm and (2.25), there holds

$$
\int_{\left\{x \in \mathbb{B}_{R_{\varepsilon}}^{c}: V(x) \leq M\right\}} v_{\mu, n}^{2} d x \leq\left|\left\{x \in \mathbb{B}_{R_{\varepsilon}}^{c}: V(x) \leq M\right\}\right|^{\frac{2}{N}} S^{-1}\left\|v_{n, \mu}\right\|_{\lambda_{n}}^{2}<\varepsilon
$$

From the weakly lower semicontinuity of norm and (2.25), it follows that

$$
\int_{\left\{x \in \mathbb{B}_{R_{\varepsilon}}^{c}: V(x) \geq M\right\}} v_{\mu, n}^{2} d x \leq \frac{\left\|v_{n, \mu}\right\|_{\lambda_{n}}^{2}}{\lambda_{n} M} \leq \frac{4 p m_{*}}{(p-2) M \lambda_{n}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Thereby, we deduce from (2.26) that $\left|v_{\mu, n}\right|_{2} \xrightarrow{n} 0$. Further, by (2.25), the Hölder and Sobolev inequalities, there holds

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|v_{\mu, n}\right|^{p} d x & \leq \limsup _{n \rightarrow \infty}\left(\left|v_{\mu, n}\right|_{2^{\frac{2\left(2^{*}-p\right)}{2^{*}-2}}}\left|v_{\mu, n}\right|_{2^{*}}^{\frac{2^{*}(p-2)}{2^{*}-2}}\right) \\
& \leq\left[\frac{4 p m_{*}}{(p-2) S}\right]^{\frac{2^{*}(p-2)}{2\left(2^{*}-2\right)}} \limsup _{n \rightarrow \infty}\left|v_{\mu, n}\right|_{2}^{\frac{2\left(2^{*}-p\right)}{2^{*}-2}}=0 . \tag{2.27}
\end{align*}
$$

By (2.26), (2.27), the nonlocal type of the Brézis-Lieb Lemma 2.2 in [4] and $\mathcal{J}_{\infty, \mu}^{\prime}\left(u_{\mu}\right)=0$, we have

$$
\begin{equation*}
0=\left\langle\mathcal{J}_{\lambda_{n}, \mu}^{\prime}\left(u_{\lambda_{n}, \mu}\right), u_{\lambda_{n}, \mu}\right\rangle=\left\|v_{\mu, n}\right\|_{\lambda_{n}}^{2}-\int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|v_{\mu, n}\right|^{2_{\alpha}^{*}}\right)\left|v_{\mu, n}\right|^{2_{\alpha}^{*}} d x+o(1) \tag{2.28}
\end{equation*}
$$

Denote $\kappa_{\mu}=\lim \sup _{n \rightarrow \infty}\left\|v_{\mu, n}\right\|_{\lambda_{n}}$. It follows from (2.28) and the definition of $S_{\alpha}$ that $\kappa_{\mu}^{2} \leq$ $S_{\alpha}^{-2_{\alpha}^{*}} \kappa_{\mu}^{2 \cdot 22_{\alpha}^{*}}$. Then, by (2.25), there results $\kappa_{\mu}=0$ or $\kappa_{\mu} \geq S_{\alpha}^{\frac{N+\alpha}{2(2+\alpha)}}$. We assert $\kappa_{\mu}=0$. If not, from Lemma 2.6, (2.25)-(2.28), the nonlocal type of the Brézis-Lieb lemma and $\mathcal{J}_{\infty, \mu}^{\prime}\left(u_{\mu}\right)=0$, we have

$$
\begin{aligned}
m_{*} & >\lim _{n \rightarrow \infty} \mathcal{J}_{\lambda_{n}, \mu}\left(u_{\lambda_{n, \mu}}\right) \\
& =\mathcal{J}_{\infty, \mu}\left(u_{\mu}\right)+\frac{2+\alpha}{2(N+\alpha)} \limsup _{n \rightarrow \infty}\left\|v_{\mu, n}\right\|_{\lambda_{n}}^{2} \\
& =\mathcal{J}_{\infty, \mu}\left(u_{\mu}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\infty, \mu}^{\prime}\left(u_{\mu}\right), u_{\mu}\right\rangle+\frac{2+\alpha}{2(N+\alpha)} k_{\mu}^{2} \\
& \geq m_{*},
\end{aligned}
$$

a contradiction. Hence, $\left\|u_{\lambda_{n, \mu}}-u_{\mu}\right\|_{\lambda_{n}} \xrightarrow{n} 0$. Then, it is easy to show $u_{\lambda_{n}, \mu} \rightarrow u_{\mu}$ in $H^{1}\left(\mathbb{R}^{N}\right)$.
From $\left\langle\mathcal{J}_{\lambda_{n, \mu}}^{\prime}\left(u_{\lambda_{n, \mu}}\right), u_{\lambda_{n}, \mu}^{ \pm}\right\rangle=0$, (1.4), the Young and Sobolev inequalities, we deduce that

$$
\begin{aligned}
S\left|u_{\lambda_{n}, \mu}^{ \pm}\right|_{2^{*}}^{2} & \leq\left\|u_{\lambda_{n}, \mu}^{ \pm}\right\|_{\lambda_{n}}^{2}=\int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|u_{\lambda_{n}, \mu}\right|^{2_{\alpha}^{*}}\right)\left|u_{\lambda_{n, \mu}}^{ \pm}\right|^{2_{\alpha}^{*}} d x+\mu\left|u_{\lambda_{n, \mu}}^{ \pm}\right|_{p}^{p} \\
& \leq A_{\alpha} C(N, \alpha)\left|u_{\lambda_{n}, \mu}\right|_{2^{*}}^{2^{*}}\left|u_{\lambda_{n}, \mu}^{ \pm}\right|_{2^{*}}^{2^{*}}+\frac{2^{*}-p}{2^{*}-2}\left\|u_{\lambda_{n, \mu}}^{ \pm}\right\|_{\lambda_{n}}^{2}+\frac{p-2}{2^{*}-2} \mu^{\frac{2^{*}-2}{p-2}}\left|u_{\lambda_{n}, \mu}^{ \pm}\right|_{2^{*}}^{2^{*}}
\end{aligned}
$$

which together with (2.25) implies

$$
S\left|u_{\lambda_{n}, \mu}^{ \pm}\right|_{2^{*}}^{2} \leq \frac{A_{\alpha} C(N, \alpha)\left(2^{*}-2\right)}{p-2}\left[\frac{2 p m_{*}}{S(p-2)}\right]^{\frac{2_{\alpha}^{*}}{2}}\left|u_{\lambda_{n, \mu}}^{ \pm}\right|_{2^{*}}^{2^{*}}+\mu^{\frac{2^{*}-2}{p-2}}\left|u_{\lambda_{n, \mu}}^{ \pm}\right|_{2^{*}}^{2^{*}}
$$

In view of this, there holds $\inf _{n}\left|u_{\lambda_{n}, \mu}^{ \pm}\right|_{2^{*}}>0$. Thereby, $\left\|u_{\lambda_{n}, \mu}-u_{\mu}\right\| \xrightarrow{n} 0$ implies $\left|u_{\mu}^{ \pm}\right|_{2^{*}}>0$. Naturally, $u_{\mu}^{ \pm} \neq 0$ and then $u_{\mu} \in \mathcal{M}_{\infty, \mu}$. Thus we derive from (2.26), the Fatou lemma and Lemma 2.6 that

$$
\begin{aligned}
m_{\infty, \mu} & \leq \mathcal{J}_{\infty, \mu}\left(u_{\mu}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\infty, \mu}^{\prime}\left(u_{\mu}\right), u_{\mu}\right\rangle \\
& =\frac{p-2}{2 p} \int_{\Omega}\left(\left|\nabla u_{\mu}\right|^{2}+u_{\mu}^{2}\right) d x+\frac{\left(2 \cdot 2_{\alpha}^{*}-p\right) A_{\alpha}}{2 p \cdot 2_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{\left|u_{\mu}(x)\right|^{2_{\alpha}^{*}}\left|u_{\mu}(y)\right|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} d x d y \\
& \leq \lim _{n \rightarrow \infty}\left[\left.\frac{p-2}{2 p}\left\|u_{\lambda_{n, \mu}}\right\|_{\lambda_{n}}^{2}+\frac{2 \cdot 2_{\alpha}^{*}-p}{2 p \cdot 2_{\alpha}^{*}} \int_{\mathbb{R}^{N}}\left(I_{\alpha} *\left|u_{\lambda_{n, \mu}}\right|^{2_{\alpha}^{*}}\right) \right\rvert\, u_{\lambda_{n, \mu},\left.\right|^{2_{\alpha}^{*}}} d x\right] \\
& =\lim _{n \rightarrow \infty}\left[\mathcal{J}_{\lambda_{n, \mu}}\left(u_{\lambda_{n, \mu}}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\lambda_{n, \mu}}^{\prime}\left(u_{\lambda_{n, \mu}}\right), u_{\lambda_{n, \mu}}\right\rangle\right] \\
& \leq m_{\infty, \mu}
\end{aligned}
$$

which leads to $\mathcal{J}_{\infty, \mu}\left(u_{\mu}\right)=m_{\infty, \mu}$. Therefore, $u_{\mu}$ is a ground state sign-changing solution for Eq. (1.8).

Further, we certify the asymptotic behavior of ground state sign-changing solutions for Eq. (1.6) as $\mu \rightarrow+\infty$. Fix $\lambda \geq \Lambda$. For any sequence $\left\{\mu_{n}\right\} \subset\left[\mu_{*},+\infty\right)$ with $\mu_{n} \rightarrow+\infty$, let $\left\{u_{\lambda, u_{n}}\right\} \subset E_{\lambda}$ satisfy

$$
u_{\lambda, u_{n}}^{ \pm} \neq 0, \quad \mathcal{J}_{\lambda, \mu_{n}}^{\prime}\left(u_{\lambda, \mu_{n}}\right)=0 \quad \text { in } E_{\lambda}^{*}, \quad \mathcal{J}_{\lambda, \mu_{n}}\left(u_{\lambda, \mu_{n}}\right)=m_{\lambda, \mu_{n}} .
$$

It easily follows that

$$
\begin{equation*}
m_{\lambda, \mu_{n}}=\mathcal{J}_{\lambda, \mu_{n}}\left(u_{\lambda, \mu_{n}}\right)-\frac{1}{p}\left\langle\mathcal{J}_{\lambda, \mu_{n}}^{\prime}\left(u_{\lambda, \mu_{n}}\right), u_{\lambda, \mu_{n}}\right\rangle \geq \frac{p-2}{2 p}\left\|u_{\lambda, \mu_{n}}\right\|_{\lambda}^{2} \tag{2.29}
\end{equation*}
$$

We assert that $\lim _{n \rightarrow \infty} m_{\lambda, \mu_{n}} \rightarrow 0$ in the sense of subsequence. Take $\omega \in H_{0}^{1}(\Omega)$ such that $\omega^{ \pm} \neq 0$. Due to Remark 2.2, there exist $s_{n}>0$ and $t_{n}>0$ such that $s_{n} \omega^{+}+t_{n} \omega^{-} \in \mathcal{M}_{\infty, \mu_{n}}$. Then we have

$$
\begin{align*}
& s_{n}^{2} \int_{\Omega}\left|\nabla \omega^{+}\right|^{2}+\left|\omega^{+}\right|^{2} d x \\
& =A_{\alpha} s_{n}^{2 \cdot 2_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{\left|\omega^{+}(x)\right|^{2_{\alpha}^{*}}\left|\omega^{+}(y)\right|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} d x d y \\
& +A_{\alpha}\left(s_{n} t_{n}\right)^{2_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{\left|\omega^{+}(x)\right|^{2_{\alpha}^{*}}\left|\omega^{-}(y)\right|^{2_{\alpha}^{*}}}{|x-y|^{N-\alpha}} d x d y+\mu_{n} s_{n}^{p} \int_{\Omega}\left|\omega^{+}\right|^{p} d x,  \tag{2.30}\\
& t_{n}^{2} \int_{\Omega}\left|\nabla \omega^{-}\right|^{2}+\left|\omega^{-}\right|^{2} d x \\
& =A_{\alpha} t_{n}^{2 \cdot 22_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{\left|\omega^{-}(x)\right|^{*}\left|\omega^{-}(y)\right|^{2}}{|x-y|^{N-\alpha}} d x d y \\
& +A_{\alpha}\left(t_{n} s_{n}\right)^{2_{\alpha}^{*}} \int_{\Omega} \int_{\Omega} \frac{\left|\omega^{+}(x)\right|^{2 *}\left|\omega^{-}(y)\right|^{2 *}}{|x-y|^{N-\alpha}} d x d y+\mu_{n} t_{n}^{p} \int_{\Omega}\left|\omega^{-}\right|^{p} d x . \tag{2.31}
\end{align*}
$$

From (2.30) and (2.31), we easily deduce that both $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are bounded. Thereby, $s_{n} \rightarrow$ $s_{0}$ and $t_{n} \rightarrow t_{0}$ up to subsequences. By using (2.30) and (2.31) again, we derive $s_{0}=t_{0}=0$. Consequently, Lemmas 2.3 and 2.6 imply

$$
\begin{aligned}
0 & \leq \limsup _{n \rightarrow \infty} m_{\lambda, \mu_{n}} \leq \limsup _{n \rightarrow \infty} m_{\infty, \mu_{n}} \leq \limsup _{n \rightarrow \infty} \mathcal{J}_{\infty, \mu_{n}}\left(s_{n} \omega^{+}+t_{n} \omega^{-}\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(s_{n}^{2} \int_{\Omega}\left|\nabla \omega^{+}\right|^{2}+\left|\omega^{+}\right|^{2} d x+t_{n}^{2} \int_{\Omega}\left|\nabla \omega^{-}\right|^{2}+\left|\omega^{-}\right|^{2} d x\right)=0 .
\end{aligned}
$$

Now, from (2.29) we conclude $u_{\lambda, \mu_{n}} \xrightarrow{n} 0$ in $E_{\lambda}$. Naturally $u_{\lambda, \mu_{n}} \xrightarrow{n} 0$ in $H^{1}\left(\mathbb{R}^{N}\right)$ in the sense of subsequence. Thus, based on the above arguments, we complete the proof of Theorem 1.2.

## Acknowledgements

This work was partially supported by National Natural Science Foundation of China (No. 11971393) and NWNU-LKQN2022-02. The authors would like to thank the referees and editors for carefully reading this paper and making valuable comments and suggestions, which greatly improve the original manuscript.

## References

[1] C. O. Alves, A. B. Nóbrega, M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations 55(2016), No. 3, 28 pp. https://doi.org/10.1007/s00526-016-0984-9; MR3498940; Zbl 1347.35097
[2] T. Bartsch, Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations 20(1995), No. 9-10, 1725-1741. https://doi.org/10.1080/03605309508821149; MR1349229; Zbl 0837.35043
[3] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36(1983), No. 4, 437-477. https : //doi.org/10.1002/cpa.3160360405; MR0709644; Zbl 0541.35029
[4] D. Cassani, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev uppercritical growth, Adv. Nonlinear Anal. 8(2019), No. 1, 1184-1212. https://doi.org/10. 1515/anona-2018-0019; MR3918425; Zbl 1418.35168
[5] G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69(1986), No. 3, 289-306. https://doi.org/10.1016/0022-1236(86)90094-7; MR0867663; Zbl 0614.35035
[6] M. Clapp, Y. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys. 55(2004), No. 4, 592-605. https ://doi.org/10.1007/s00013-004-1084-9; MR2107669; Zbl 1060.35130
[7] M. Clapp, D. Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl. 407(2013), No. 1, 1-15. https ://doi .org/10.1016/j . jmaa. 2013.04.081; MR3063100; Zbl 1310.35114
[8] Y. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with signchanging potential, Calc. Var. Partial Differential Equations 29(2007), No. 3, 397-419. https://doi.org/10.1007/s00526-006-0071-8; MR2321894; Zbl 1119.35082
[9] F. Gao, M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61(2018), No. 7, 1219-1242. https://doi.org/10.1007/ s11425-016-9067-5; MR3817173; Zbl 1397.35087
[10] M. Ghimenti, V. Moroz, J. Van Schaftingen, Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc. 145(2017), No. 2, 737-747. https : //doi.org/10.1090/proc/13247; MR3577874; Zbl 1355.35079
[11] M. Ghimenti, J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271(2016), No. 1, 107-135. https://doi.org/10.1016/j.jfa.2016.04.019; MR3494244; Zbl 1345.35046
[12] H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261(1982), No. 4, 493-514. https://doi.org/10.1007/BF01457453; MR0682663; Zbl 0488.47034
[13] G. Li, X. Luo, W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl. 455(2017), No. 2, 1559-1578. https://doi.org/10.1016/j . jmaa.2017.06.048; MR3671239; Zbl 1375.35199
[14] Y.-Y. Li, G.-D. Li, C.-L. Tang, Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well, Nonlinear Anal. 200(2020), 21 pp. https://doi.org/10.1016/j.na.2020.111997; MR4111761; Zbl 1448.35223
[15] Y.-Y. Li, G.-D. Li, C.-L. Tang, Existence and concentration of solutions for Choquard equations with steep potential well and doubly critical exponents, Adv. Nonlinear Stud. 21(2021), No. 1, 135-154. https://doi.org/10.1515/ans-2020-2110; MR4234085; Zbl 1487.35202
[16] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math. 57(1976/1977), No. 2, 93-105. https://doi.org/10.1002/ sapm197757293; MR0471785; Zbl 0369.35022
[17] E. H. Lieb, M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, Vol. 14, 2001. https ://doi.org/10.1090/gsm/014; MR1817225; Zbl 0966.26002
[18] P. L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4(1980), No. 6, 1063-1072. https://doi.org/10.1016/0362-546X(80)90016-4; MR0591299; Zbl 0453.47042
[19] D. Lü, Existence and concentration of solutions for a nonlinear Choquard equation, Mediterr. J. Math. 12(2015), No. 3, 839-850. https://doi.org/10.1007/s00009-014-04288; MR3376815; Zbl 1022.45001
[20] I. M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the SchrödingerNewton equations, Classical Quantum Gravity 15(1998), No. 9, 2733-2742. https://doi. org/10.1088/0264-9381/15/9/019; MR1649671; Zbl 0936.83037
[21] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265(2013), No. 2, 153-184. https://doi.org/10.1016/j.jfa.2013.04.007; MR3056699; Zbl 1285.35048
[22] V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367(2015), No. 9, 6557-6579. https://doi. org/10.1090/S0002-9947-2014-06289-2; MR3356947; Zbl 1325.35052
[23] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17(2015), No. 5, 12 pp. https://doi.org/10.1142/S0219199715500054; MR3404747; Zbl 1326.35109
[24] S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle (in German), AkademieVerlag, Berlin, 1954. https://doi .org/10.1515/9783112649305; Zbl 0058.45503
[25] J. Sеок, Nonlinear Choquard equations: Doubly critical case, Appl. Math. Lett. 76(2018), 148-156. https://doi.org/10.1016/j .aml.2017.08.016; MR3713509; Zbl 1384.35032
[26] X. Tang, J. Wei, S. Chen, Nehari-type ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation, Math. Methods Appl. Sci. 43(2020), No. 10, 6627-6638. https ://doi .org/10.1002/mma .6404; MR4112822; Zbl 1454.35089
[27] Z. Tang, Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials, Commun. Pure Appl. Anal. 13(2014), No. 1, 237-248. https://doi.org/10.3934/cpaa.2014.13.237; MR3082559; Zbl 1291.35366
[28] J. Van Schaftingen, J. Xia, Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl. 24(2017), No. 1, 24 pp. https://doi.org/ 10.1007/s00030-016-0424-8; MR3582827; Zbl 1378.35144
[29] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and Their Applications, Vol. 24, Birkhäuser, Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1; MR1400007; Zbl 0856.49001
[30] J. XiA, X. Zhang, Saddle solutions for the critical Choquard equation, Calc. Var. Partial Differential Equations 60(2021), No. 1, 29 pp. https://doi.org/10.1007/s00526-021-01919-5; MR4214461; Zbl 1459.35216
[31] M. Yang, F. Zhao, S. Zhao, Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents, Discrete Contin. Dyn. Syst. 41(2021), No. 11, 5209-5241. https://doi.org/10.3934/dcds.2021074; MR4305583; Zbl 1473.35306
[32] H. Ye, The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in $\mathbb{R}^{N}$, J. Math. Anal. Appl. 431(2015), No. 2, 935-954. https : //doi.org/10.1016/j.jmaa.2015.06.012; MR3365848; Zbl 1329.35203
[33] X.-J. Zhong, C.-L. Tang, Ground state sign-changing solutions for a class of subcritical Choquard equations with a critical pure power nonlinearity in $\mathbb{R}^{N}$, Comput. Math. Appl. 76(2018), No. 1, 23-34. https://doi.org/10.1016/j.camwa.2018.04.001; MR3805524; Zbl 1423.35123


[^0]:    ${ }^{\boxtimes}$ Corresponding author. Email: tangcl@swu.edu.cn

