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Abstract. In this paper, we study sign-changing solution of the Choquard type equation

−∆u + (λV(x) + 1) u =
(

Iα ∗ |u|2
∗
α
)
|u|2∗α−2u + µ|u|p−2u in RN ,

where N ≥ 3, α ∈ ((N − 4)+, N), Iα is a Riesz potential, p ∈
[
2∗α, 2N

N−2
)
, 2∗α := N+α

N−2
is the upper critical exponent in terms of the Hardy–Littlewood–Sobolev inequality,
µ > 0, λ > 0, V ∈ C(RN , R) is nonnegative and has a potential well. By combining the
variational methods and sign-changing Nehari manifold, we prove the existence and
some properties of ground state sign-changing solution for λ, µ large enough. Further,
we verify the asymptotic behaviour of ground state sign-changing solutions as λ → +∞
and µ → +∞, respectively.
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1 Introduction and main results

The Choquard equation has a physical prototype, namely the Hartree type evolution equation

−i∂tψ = ∆ψ +
(

I2 ∗ |ψ|2
)

ψ, (x, t) ∈ R3 × R+, (1.1)

where R+ = [0,+∞), I2(x) = 1
4π|x| , ∀ x ∈ R3\{0}, and ∗ is convolution in R3. Eq. (1.1) was

firstly proposed by Pekar to describe a resting polaron in [24]. Two decades later, Choquard
[16] introduced Eq. (1.1) as a certain approximation to Hartree–Fock theory of one component
plasma, and used it to characterize an electron trapped in its own hole. Afterwards, viewing
the quantum state reduction as a gravitational phenomenon in quantum gravity, Penrose et al.
[20] proposed Eq. (1.1) in the form of Schrödinger–Newton system to model a single particle
moving in its own gravitational field.
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As we know, standing wave solution of Eq. (1.1) corresponds to solution of the Choquard
equation

−∆u + u =
(

I2 ∗ |u|2
)

u in R3. (1.2)

In detail, with a suitable scaling, the wave function ψ(x, t) = e−itu(x) is a solution of Eq. (1.1)
once u is a solution of Eq. (1.2). Lieb demonstrated the seminal work on Eq. (1.2) in [16], in
which he certified the existence and uniqueness (up to translations) of positive radial ground
state solution by applying symmetrically decreasing rearrangement inequalities. After this,
Lions [18] studied the same problem and further proved the existence of infinitely many
radial solutions via the variational methods.

From mathematical perspective, scholars prefer to study the general Choquard equation

−∆u + W(x)u = γ (Iα ∗ G(u)) g(u) in RN , (1.3)

where N ≥ 3, γ ∈ R+, Iα is the Riesz potential of order α ∈ (0, N) defined for x ∈ RN\{0} by

Iα(x) =
Aα

|x|N−α
with Aα =

Γ(N−α
2 )

Γ( α
2 )2

απ
N
2

,

Γ is the Gamma function, ∗ is convolution, W ∈ C(RN , R), g ∈ C(R, R) and G(u) =
∫ u

0 g(s)ds.
To establish the variational framework for Choquard equations, we need the following

celebrated Hardy–Littlewood–Sobolev inequality.

Proposition 1.1 ([17, Theorem 4.3]). Let r, s > 1, 0 < α < N satisfy 1
r +

1
s = 1 + α

N . Then there
exists a sharp constant C(N, α, r, s) > 0 such that, for all f ∈ Lr(RN) and h ∈ Ls(RN), there holds∣∣∣∣∫

RN

∫
RN

f (x)h(y)
|x − y|N−α

dxdy
∣∣∣∣ ≤ C(N, α, r, s)| f |r|h|s. (1.4)

In particular, if r = s = 2N
N+α , then the constant C(N, α, r, s) admits a precise expression, namely,

C(N, α) := C(N, α, r, s) = π
N−α

2
Γ( α

2 )

Γ(N+α
2 )

[
Γ(N

2 )

Γ(N)

]− α
N

.

Thanks to (1.4), the integral
∫

RN (Iα ∗ |u|p)|u|pdx is well defined in H1(RN) once p ∈ [2α
∗, 2∗α],

where 2∗α := N+α
N−2 and 2α

∗ := N+α
N are usually called upper and lower critical exponents with

respect to the Hardy–Littlewood–Sobolev inequality, respectively. It is easy to clarify that the
critical terms

∫
RN (Iα ∗ |u|2

∗
α)|u|2∗α dx and

∫
RN (Iα ∗ |u|2

α
∗)|u|2α

∗dx are invariant under the scaling
actions σ

N−2
2 u(σ·) and σ

N
2 u(σ·) (σ > 0), respectively, and these two scaling actions served as

group actions are noncompact on H1(RN). Consequently, from the perspective of variational
methods, the critical exponents 2α

∗ and 2∗α may provoke two kinds of lack of compactness.
However, fortunately, similar to the Sobolev critical case studied in [3], these two kinds of
loss of compactness can be recovered to some extent by using the extremal functions of the
Hardy–Littlewood–Sobolev inequality.

In [21], Moroz and Van Schaftingen studied the case of Eq. (1.3) that W(x) ≡ 1, γ = 1
p and

G(u) = |u|p (p > 1), they proved the existence, regularity, radially symmetry and decaying
property at infinity of ground state solution when p ∈ (2α

∗, 2∗α). Meanwhile, based on the
regularity of solutions, they established a Nehari–Pohožaev type identity and then showed
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the nonexistence of nontrivial solutions for Eq. (1.3) when p /∈ (2α
∗, 2∗α). Afterwards, in [22],

they extended the existence results in [21] to the case of Eq. (1.3) that g satisfies the so-called
almost necessary conditions of Berestycki–Lions type. For the critical cases of Eq. (1.3), with
the nonexistence result of [21] in hand, an increasing number of scholars devote to studying
Eq. (1.3) with critical term and a noncritical perturbed term. We refer the interested readers
to [4, 9, 14, 30] for upper critical case, [23, 26] for lower critical case and [15, 25, 31] for doubly
critical case.

When it comes to the case W(x) ̸≡ const., we focus our attention on steep well potential of
the form λV(x) + b, where λ > 0, b ∈ R and V ∈ C(RN , R) satisfies the following hypotheses:

(V1) V is bounded from below, Ω := int V−1(0) is nonempty and Ω = V−1(0),

(V2) there exists some constant M > 0 such that
∣∣{x ∈ RN : V(x) ≤ M

}∣∣ < +∞.

This type of potential was firstly introduced by Bartch and Wang in [2] to study the existence
and multiplicity of nontrivial solutions for subcritical Schrödinger equations in the case of
b > 0. Later, Ding and Szulkin further considered the case b = 0 in [8]. Since |Ω| < +∞,
then −∆ possesses a sequence of positive Dirichlet eigenvalues µ1 < µ2 < · · · < µn → +∞.
Assuming b < 0 and b ̸= −µi for any i ∈ N+, Clapp and Ding [6], together with Tang
[27], studied the existence and concentration of ground state solution for critical Schrödinger
equation. Recently, the pre-existing results on Schrödinger equations have been extended to
the Choquard equations, see e.g. [1, 14, 15, 19] and the references therein.

As we concerned here, sign-changing solution of elliptic equation is a focusing topic due
to its wide application in biology and physics etc. In [7], Clapp and Salazar investigated the
Choquard equation

−∆u + W(x)u = (Iα ∗ |u|p) |u|p−2u in Ω,

where Ω ⊂ RN (N ≥ 3) is an exterior domain, p ∈ [2, 2∗α), α ∈ ((N − 4)+, N) and W ∈
C(RN , R). Under symmetrical assumptions on Ω and decaying properties on W, they derived
multiple sign-changing solutions. After this, many scholars considered the same topic in the
whole Euclidean space, namely,

−∆u + W(x)u = (Iα ∗ |u|p) |u|p−2u in RN . (1.5)

In [11], Ghimenti and Van Schaftingen studied the case that N ≥ 1, α ∈ ((N − 4)+, N),
W(x) ≡ 1 and p ∈ (2, 2∗α) of Eq. (1.5). There, by introducing a new minimax principle and
concentration-compactness lemmas for sign-changing Palais–Smale sequences, they obtained
a ground state sign-changing solution. Also, they proved that the least energy in the sign-
changing Nehari manifold has no minimizers when p ∈ (2α

∗, max{2, 2∗α}). Further, Ghimenti,
Moroz and Van Schaftingen [10] constructed a ground state sign-changing solution of Eq. (1.5)
when p = 2 by approaching the case p = 2 with the cases p ∈ (2, 2∗α). Van Schaftingen and
Xia [28] assumed that N ≥ 1, α ∈ ((N − 4)+, N), p ∈ [2, 2∗α) and W ∈ C(RN , R) satisfies
the coercive condition lim|x|→∞ W(x) = +∞. By using a constrained minimization argument
in sign-changing Nehari manifold, they derived a ground state sign-changing solution of
Eq. (1.5) (see the similar result in [32]). Moreover, Zhong and Tang [33] studied the following
Choquard equation

−∆u + (λV(x) + 1) u =
(

Iα ∗ (K|u|p)
)
K(x)|u|p−2u + |u|2∗−2u in RN ,

where N ≥ 3, 2∗ = 2N
N−2 , α ∈ ((N − 4)+, N), p ∈ (2, 2∗α), λ < 0 and the functions V, K satisfy
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(V3) V ∈ L
N
2 (RN)\{0} is nonnegative,

(V4) there exist constants ρ, β, C > 0 such that V(x) ≥ C|x|−β for all |x| < ρ,

(K1) K ∈ Lr(RN) ∩ L∞(RN)\{0} for some r ∈
[ 2N

N+α−p(N−2) ,+∞
)

and K is nonnegative.

It follows from (V3) that the first eigenvalue λ1 of −∆u + u = λV(x)u in H1(RN) is pos-
itive. When λ ∈ (−λ1, 0) and β ∈

(
2 − min

{N+α
2p − N−2

2 , N−2
2

}
, 2
)
, following the ideas in

[5], they derived a ground state sign-changing solution by using minimization arguments in
sign-changing Nehari manifold.

Motivated by the above works, in the present paper, we study the Choquard equation

−∆u + (λV(x) + 1) u =
(

Iα ∗ |u|2
∗
α
)
|u|2∗α−2u + µ|u|p−2u in RN , (1.6)

where λ > 0, µ > 0, N ≥ 3, α ∈ ((N − 4)+, N), p ∈ [2∗α, 2∗), and V ∈ C(RN , R) satisfies the
hypotheses

(V5) V(x) ≥ 0 in RN and there exists some M > 0 such that
∣∣{x ∈ RN : V(x) ≤ M

}∣∣ < +∞,

(V6) Ω := int V−1(0) is a nonempty set with smooth boundary and Ω = V−1(0).

Let Eλ :=
{

u ∈ H1(RN) :
∫

RN λV(x)u2dx < +∞
}

be equipped with the inner product

(u, v)λ :=
∫

RN
∇u · ∇v + (λV(x) + 1) uvdx, ∀ u, v ∈ Eλ,

and the norm ∥ · ∥λ = (·, ·)
1
2
λ for any λ > 0. Since V ≥ 0 in RN , it is easy to see that

Eλ ↪→ H1(RN) and, for any s ∈ [2, 2∗], there is some constant νs > 0 such that, for all λ > 0,

|u|s ≤ νs∥u∥ ≤ νs∥u∥λ, ∀ u ∈ Eλ. (1.7)

By (1.4) and (1.7), we deduce the energy functional Jλ,µ of Eq. (1.6) belongs to C1(Eλ, R),
where

Jλ,µ(u) =
1
2
∥u∥2

λ − 1
2 · 2∗α

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2∗α dx − µ

p

∫
RN

|u|pdx.

Now we are prepared to state our main results.

Theorem 1.2. Assume that N ≥ 3, α ∈ ((N − 4)+, N), p ∈ [2∗α, 2∗) and (V5), (V6) hold. Then there
exist Λ > 0 and µ∗ > 0 such that Eq. (1.6) admits a ground state sign-changing solution uλ,µ for any
λ ≥ Λ and µ ≥ µ∗. Further, for any µ ≥ µ∗ and sequence {λn} ⊂ [Λ,+∞) satisfying λn → +∞,
the sequence

{
uλn,µ

}
of ground state sign-changing solutions to Eq. (1.6) strongly converges to some

uµ in H1(RN) in the sense of subsequence, where uµ is a ground state sign-changing solution of−∆u + u = Aα

∫
Ω

|u(y)|2∗α
|x − y|N−α

dy|u|2∗α−2u + µ|u|p−2u in Ω,

u = 0 on ∂Ω.
(1.8)

Moreover, for any λ ≥ Λ and sequence {µn} ⊂ [µ∗,+∞) with µn → +∞, the sequence {uλ,µn} of
ground state sign-changing solutions to Eq. (1.6) strongly converges to 0 in H1(RN) up to a subse-
quence.
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Remark 1.3. Similar to the proof of Theorem 1.1 in [14], by minimizing Jλ,µ on the Nehari
manifold

Nλ,µ =
{

u ∈ Eλ\{0},
〈
J ′

λ,µ(u), u
〉
= 0

}
,

we can demonstrate that Eq. (1.6) has a positive ground state solution vλ,µ for any λ, µ > 0
large enough. It is easy to show Jλ,µ(uλ,µ) > Jλ,µ(vλ,µ). Indeed, if Jλ,µ(uλ,µ) = Jλ,µ(vλ,µ),
then |uλ,µ| ∈ Nλ,µ satisfies Jλ,µ(|uλ,µ|) = infNλ,µ Jλ,µ. Thereby, in a standard way, we may
deduce J ′

λ,µ(|uλ,µ|) = 0. Whereas, the strong maximum principle implies |uλ,µ| > 0 in RN ,
and the regular estimates for Choquard equations (see e.g. [21, 22]) implies uλ,µ ∈ C(RN , R),
thus uλ,µ has constant sign in RN , which contradicts with u±

λ,µ ̸= 0. Furthermore, due to
the presence of the perturbed term µ|u|p−2u, the methods introduced in [11, 32] to verify that
the least energy of sign-changing solutions is less than twice the least energy of nontrivial
solutions seem invalid here, we propose an open question whether Jλ,µ(uλ,µ) < 2Jλ,µ(vλ,µ).

Remark 1.4. To our knowledge, there seem to be no results on (ground state) sign-changing
solutions for Choquard equations with upper critical exponent, even on the bounded domain.
Our present work extends and improves the existence results of sign-changing solutions ver-
ified in [7, 10, 11, 28, 33]. In [5], the authors studied the ground state sign-changing solutions
for a class of critical Schrödinger equations{

−∆u − λu = |u|2∗−2u in D,

u = 0 on ∂D,

where D ⊂ RN (N ≥ 6) is a bounded domain and λ ∈ (0, λ1), with λ1 denoting the first
eigenvalue of −∆ on D. They proved that any sign-changing (PS)c sequence is relatively
compact once c < c0 +

1
N S

N
2 , where c0 is the least energy of nontrivial solutions. As a counter-

part for the work in [5], Zhong and Tang studied a class of Choquard equations with critical
Sobolev exponent in [33], where they showed the relative compactness of sign-changing (PS)c

sequence with c less than the similar threshold. However, in this paper, due to the presence
of the upper critical nonlocal term (Iα ∗ |u|2

∗
α)|u|2∗α−2u in Eq. (1.6), the relative compactness of

sign-changing (PS)c sequence with

c ∈
[

2 + α

2(N + α)
S

N+α
2+α

α , inf
Nλ,µ

Jλ,µ +
2 + α

2(N + α)
S

N+α
2+α

α

)
cannot be deduced as expected, where Sα is defined by (2.12) hereinafter. Also, it seems
intractable to search for sign-changing (PS)c sequence such that c < 2+α

2(N+α)
S(N+α)/(2+α)

α for
small µ > 0. Naturally, we attempt to construct a sign-changing (PS)c sequence with c <

2+α
2(N+α)

S(N+α)/(2+α)
α by assuming that µ > 0 is sufficiently large. Therefrom, by applying the

properties of steep well potential λV, we can standardly prove the relative compactness of this
type of sign-changing (PS)c sequence and then obtain ground state sign-changing solution.

We will give the proof of Theorem 1.2 in the forthcoming section. Throughout this paper,
we use the following notations:

♠ Lp(RN) is the usual Lebesgue space with the norm |u|p =
(∫

RN |u|pdx
) 1

p for p ∈ [1,+∞).

♠ L∞(RN) is the space of measurable functions with the norm |u|∞ = ess supx∈RN |u(x)|.
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♠ C∞
0 (RN) consists of infinitely times differentiable functions with compact support in RN .

♠ H1(RN) =
{

u ∈ L2(RN) : |∇u| ∈ L2(RN)
}

endowed with the inner product and norm

(u, v) =
∫

RN
∇u · ∇v + uvdx and ∥u∥ = (u, u)

1
2 .

♠ H1
0(Ω) is the closure of C∞

0 (Ω) in H1(Ω) with the norm ∥u∥Ω =
(∫

Ω |∇u|2dx
) 1

2 .

♠ D1,2(RN) is the completion of C∞
0 (RN) with respect to the norm ∥u∥D = |∇u|2.

♠ The best Sobolev constant S = inf
{
∥u∥2

D : u ∈ D1,2(RN) and |u|2∗ = 1
}

.

♠ u±(x) := ±max {±u(x), 0} and (E∗, ∥ · ∥∗) is the dual space of Banach space (E, ∥ · ∥).

♠ o(1) is a quantity tending to 0 as n → ∞ and |Ω| is the Lebesgue measure of Ω ⊂ RN .

♠ Br(y) =
{

x ∈ RN : |x − y| < r
}

, Bc
r(y) = RN\Br(y) and Br(0) = Br for r > 0, y ∈ RN .

2 Proof of Theorem 1.2

For the limiting problem of Eq. (1.6) as λ → +∞, namely Eq. (1.8), its energy functional is

J∞,µ(u) =
1
2

∫
Ω
|∇u|2 + u2dx − Aα

2 · 2∗α

∫
Ω

∫
Ω

|u(x)|2∗α |u(y)|2∗α
|x − y|N−α

dxdy − µ

p

∫
Ω
|u|pdx.

Due to (1.4) and H1
0(Ω) ↪→ Lp(Ω), J∞,µ ∈ C1(H1

0(Ω), R). Define the sign-changing Nehari
manifolds

Mλ,µ =
{

u ∈ Eλ : u± ̸= 0,
〈
J ′

λ,µ(u), u±
〉
= 0

}
,

M∞,µ =
{

u ∈ H1
0(Ω) : u± ̸= 0,

〈
J ′

∞,µ(u), u±
〉
= 0

}
.

Clearly, Mλ,µ and M∞,µ contain all of the sign-changing solutions of Eqs. (1.6) and (1.8),
respectively. To search for ground state sign-changing solutions, we consider the following
minimization problems:

mλ,µ = inf
{
Jλ,µ(u) : u ∈ Mλ,µ

}
,

m∞,µ = inf
{
J∞,µ(u) : u ∈ M∞,µ

}
.

Before completing the proof of Theorem 1.2, we establish several preliminary lemmas.

Lemma 2.1. For any λ > 0, µ > 0 and u ∈ Eλ with u± ̸= 0, there exists a unique pair (sλ,µ,u, tλ,µ,u)

of positive numbers such that s
1

2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu− ∈ Mλ,µ, also,

Jλ,µ
(
s

1
2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu−) = max

s,t≥0
Jλ,µ(s

1
2∗α u+ + t

1
2∗α u−).

Proof. Firstly, we certify the existence of such pair of numbers. For any λ > 0, µ > 0 and
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u ∈ Eλ with u± ̸= 0, define the function Fλ,µ,u(s, t) for any (s, t) ∈ [0,+∞)2 by

Fλ,µ,u(s, t) = Jλ,µ(s
1

2∗α u+ + t
1

2∗α u−)

=
s

2
2∗α

2
∥u+∥2

λ − s2

2 · 2∗α

∫
RN

(
Iα ∗ |u+|2∗α

)
|u+|2∗α dx − µs

p
2∗α

p

∫
RN

|u+|pdx

+
t

2
2∗α

2
∥u−∥2

λ − t2

2 · 2∗α

∫
RN

(
Iα ∗ |u−|2∗α

)
|u−|2∗α dx − µt

p
2∗α

p

∫
RN

|u−|pdx

− st
2∗α

∫
RN

(
Iα ∗ |u+|2∗α

)
|u−|2∗α dx.

It is easy to derive lim|(s,t)|→0 Fλ,µ,u(s, t) = 0 and lim|(s,t)|→+∞ Fλ,µ,u(s, t) = −∞. Then there
exists some point (sλ,µ,u, tλ,µ,u) ∈ [0,+∞)2 such that

Fλ,µ,u(sλ,µ,u, tλ,µ,u) = max
(s,t)∈[0,+∞)2

Fλ,µ,u(s, t).

Since Fλ,µ,u(s, tλ,µ,u) is increasing in s for s > 0 small enough, there results sλ,µ,u ̸= 0. Similarly,
we deduce tλ,µ,u ̸= 0. Thereby, (sλ,µ,u, tλ,µ,u) ∈ (0,+∞)2. Then

∂Fλ,µ,u

∂s
(sλ,µ,u, tλ,µ,u) =

∂Fλ,µ,u

∂t
(sλ,µ,u, tλ,µ,u) = 0.

Naturally, s
1

2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu− ∈ Mλ,µ.

Further, we claim such pair of numbers is unique. For brevity, we introduce the notation

B(u, v) :=
1
2∗α

∫
RN

(
Iα ∗ |u|2

∗
α
)
|v|2∗α dx, ∀ u, v ∈ Eλ.

Through direct calculation, we deduce that the Hessian matrix of Fλ,µ,u at (s, t) ∈ (0,+∞)2 is

Hλ,µ,u(s, t) =
2 − 2∗α
(2∗α)2

(
s

2
2∗α
−2∥u+∥2

λ 0

0 t
2

2∗α
−2∥u−∥2

λ

)

−
(

B(u+, u+) B(u+, u−)

B(u+, u−) B(u−, u−)

)
− µ(p − 2∗α)

(2∗α)2

(
s

p
2∗α
−2|u+|pp 0

0 t
p

2∗α
−2|u−|pp

)
.

It follows from [17, Theorem 9.8] that B(u+, u−)2 < B(u+, u+)B(u−, u−). Then, noting p ≥ 2∗α,
we conclude that Hλ,µ,u(s, t) is negative defined for any (s, t) ∈ (0,+∞)2. Thereby, it is easy to
know that Fλ,µ,u has at most one critical point on (0,+∞)2. Thus, (sλ,µ,u, tλ,µ,u) is the unique

pair of positive numbers such that s
1

2∗α
λ,µ,uu+ + t

1
2∗α
λ,µ,uu− ∈ Mλ,µ, and this lemma is proved.

As a by-product, we may derive M∞,µ ̸= ∅. Indeed, since Jλ,µ = J∞,µ in H1
0(Ω), we have

Remark 2.2. For any µ > 0 and u ∈ H1
0(Ω) with u± ̸= 0, there exists a unique pair (sµ,u, tµ,u)

of positive numbers such that s
1

2∗α
µ,uu+ + t

1
2∗α
µ,uu− ∈ M∞,µ and

J∞,µ
(
s

1
2∗α
µ,uu+ + t

1
2∗α
µ,uu−) = max

s,t≥0
J∞,µ(s

1
2∗α u+ + t

1
2∗α u−).
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To facilitate the subsequent discussion, we show some properties of Mλ,µ in the following

Lemma 2.3. For any λ > 0 and µ > 0, if {un} ⊂ Mλ,µ and limn→∞ Jλ,µ(un) = mλ,µ, then mλ,µ >

0 and there exist some constants Cλ,µ,1, Cλ,µ,2 > 0 such that Cλ,µ,2 ≤ ∥u±
n ∥λ, ∥un∥λ ≤ Cλ,µ,1 for all n.

Proof. From Mλ,µ ̸= ∅, we know mλ,µ < +∞ for any λ, µ > 0. Since {un} ⊂ Mλ,µ, there holds

mλ,µ + o(1) = Jλ,µ(un)−
1
p

〈
J ′

λ,µ(un), un

〉
≥ p − 2

2p
∥un∥2

λ. (2.1)

Then there is constant Cλ,µ,1 > 0 such that supn ∥un∥λ ≤ Cλ,µ,1. Thereby, (1.4) and (1.7) imply

∥u±
n ∥2

λ =
∫

RN

(
Iα ∗ |un|2

∗
α
)
|u±

n |2
∗
α dx + µ

∫
RN

|u±
n |pdx

≤ AαC(N, α)ν
2·2∗α
2∗ ∥un∥2∗α

λ ∥u±
n ∥

2∗α
λ + µν

p
p∥u±∥p

λ

≤ AαC(N, α)ν
2·2∗α
2∗ C2∗α

λ,µ,1∥u±
n ∥

2∗α
λ + µν

p
p∥u±∥p

λ.

As a consequence, there exists some constant Cλ,µ,2 > 0 such that infn ∥u±
n ∥λ ≥ Cλ,µ,2. Further,

we deduce from (2.1) that mλ,µ > 0. Thus we complete the proof of this lemma.

Next, following [5], we construct a sign-changing (PS)c sequence {un} for Jλ,µ, (i.e. u±
n ̸= 0

for any n, Jλ,µ(un) → c and J ′
λ,µ(un) → 0 in E∗

λ as n → ∞). Let Pλ be the cone of nonnegative
functions in Eλ, Q = [0, 1]2 and Γλ,µ be the set of continuous maps γ : Q → Eλ such that, for
any (s, t) ∈ Q,

(a) γ(s, 0) = 0, γ(0, t) ∈ Pλ and γ(1, t) ∈ −Pλ,

(b) (Jλ,µ ◦ γ)(s, 1) ≤ 0 and∫
RN

[(
Iα ∗ |γ(s, 1)|2∗α

)
|γ(s, 1)|2∗α + µ|γ(s, 1)|p

]
dx

∥γ(s, 1)∥2
λ

≥ 2.

For any u ∈ Eλ with u± ̸= 0, define γσ,u(s, t) = σt(1− s)u++ σtsu− for σ > 0 and (s, t) ∈ Q. It
is easy to show γσ,u ∈ Γλ,µ for σ > 0 large enough. Therefore, Γλ,µ ̸= ∅. Define the functional

Lλ,µ(u, v) =


∫

RN

[
(Iα ∗ |u|2

∗
α)(|u|2∗α + |v|2∗α) + µ|u|p

]
dx

∥u∥2
λ

, u ̸= 0,

0, u = 0.

Clearly, Lλ,µ > 0 if u ̸= 0. Moreover, u ∈ Mλ,µ if and only if Lλ,µ(u+, u−) = Lλ,µ(u−, u+) = 1.
As a start point, we display a minimax characterization on mλ,µ for any λ > 0 and µ > 0.

Lemma 2.4. For any λ > 0 and µ > 0, there holds

mλ,µ = inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)). (2.2)

Proof. On the one hand, for every u ∈ Mλ,µ, γu(s, t) = σt(1 − s)u+ + σtsu− ∈ Γλ,µ for some
σ > 0 large enough. Then it follows from Lemma 2.1 that

Jλ,µ(u) = max
s,t≥0

Jλ,µ(su+ + tu−) ≥ max
(s,t)∈Q

Jλ,µ(γu(s, t)) ≥ inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)).
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Thereby, due to the arbitrariness of u ∈ Mλ,µ, there results

mλ,µ ≥ inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)).

On the other hand, for each γ ∈ Γλ,µ and t ∈ [0, 1], since γ(0, t) ∈ Pλ and γ(1, t) ∈ −Pλ, we
conclude

Lλ,µ(γ(0, t)+, γ(0, t)−)−Lλ,µ(γ(0, t)−, γ(0, t)+) = Lλ,µ(γ(0, t)+, γ(0, t)−) ≥ 0, (2.3)

Lλ,µ(γ(1, t)+, γ(1, t)−)−Lλ,µ(γ(1, t)−, γ(1, t)+) = −Lλ,µ(γ(1, t)−, γ(1, t)+) ≤ 0. (2.4)

Meanwhile, due to γ(s, 0) = 0 for all s ∈ [0, 1], there holds

Lλ,µ(γ(s, 0)+, γ(s, 0)−) + Lλ,µ(γ(s, 0)−, γ(s, 0)+)− 2 = −2, ∀ s ∈ [0, 1]. (2.5)

And, for each γ ∈ Γλ,µ, by the definition of Lλ,µ and the property (b) we have, for all s ∈ [0, 1],

Lλ,µ(γ(s, 1)+, γ(s, 1)−) + Lλ,µ(γ(s, 1)−, γ(s, 1)+)− 2

≥
∫

RN

[
(Iα ∗ |γ(s, 1)|2∗α)|γ(s, 1)|2∗α + µ|γ(s, 1)|p

]
dx

∥γ(s, 1)∥2
λ

− 2 ≥ 0. (2.6)

Moreover, it is easy to verify that, for any (s, t) ∈ ∂Q,(
Lλ,µ(γ(s, t)+, γ(s, t)−)−Lλ,µ(γ(s, t)−, γ(s, t)+)

Lλ,µ(γ(s, t)+, γ(s, t)−) + Lλ,µ(γ(s, t)−, γ(s, t)+)− 2

)
̸=
(

0
0

)
. (2.7)

Then, by combining (2.3)−(2.7) with the Miranda theorem (see e.g. Lemma 2.4 in [13]), we
derive that there exists some (sγ, tγ) ∈ (0, 1)2 satisfying

Lλ,µ(γ(sγ, tγ)
+, γ(sγ, tγ)

−)−Lλ,µ(γ(sγ, tγ)
−, γ(sγ, tγ)

+) = 0,

Lλ,µ(γ(sγ, tγ)
+, γ(sγ, tγ)

−) + Lλ,µ(γ(sγ, tγ)
−, γ(sγ, tγ)

+) = 2.

In view of this fact, we easily obtain

Lλ,µ(γ(sγ, tγ)
+, γ(sγ, tγ)

−) = Lλ,µ(γ(sγ, tγ)
−, γ(sγ, tγ)

+) = 1,

which implies γ(sγ, tγ) ∈ Mλ,µ. Consequently, from the arbitrariness of γ ∈ Γλ,µ, we deduce

inf
γ∈Γλ,µ

max
(s,t)∈Q

Jλ,µ(γ(s, t)) ≥ mλ,µ.

Now, by combining the above two sides, we know (2.2) holds. Thus this lemma is showed.

Lemma 2.5. For any λ > 0 and µ > 0, Jλ,µ possesses a sign-changing (PS)mλ,µ sequence {un} ⊂ Eλ.

Proof. We will end the proof in two steps. Firstly, we construct a (PS)mλ,µ sequence for Jλ,µ.
Take a minimizing sequence {wn} ⊂ Mλ,µ for mλ,µ and set γσ,n(s, t) = σt(1 − s)w+

n + σtsw−
n .

By Lemma 2.3, it is easy to choose a sufficiently large constant σ̄ > 0 such that {γσ̄,n} ⊂ Γλ,µ.
Due to Lemmas 2.1 and 2.4, there holds

lim
n→∞

max
(s,t)∈Q

Jλ,µ(γσ̄,n(s, t)) = lim
n→∞

Jλ,µ(wn) = mλ,µ. (2.8)
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We assert that there exists some sequence {un} ⊂ Eλ such that, as n → ∞,

Jλ,µ(un) → mλ,µ, J ′
λ,µ(un) → 0, min

(s,t)∈Q
∥un − γσ̄,n(s, t)∥λ → 0. (2.9)

If not, there exists some constant δλ,µ > 0 such that, for n suitably large, γσ̄,n(Q) ∩ Uδλ,µ = ∅,
in which

Uδλ,µ

△
=
{

u ∈ Eλ : ∃ v ∈ Eλ s.t. ∥v − u∥λ ≤ δλ,µ, ∥∇Jλ,µ(v)∥ ≤ δλ,µ, |Jλ,µ(v)− mλ,µ| ≤ δλ,µ
}

.

Then, by a variant of the classical deformation lemma due to Hofer (see [12, Lemma 1]), there
exists a continuous map ηλ,µ : [0, 1]× Eλ → Eλ, which satisfies that, for some ελ,µ ∈ (0, mλ,µ

2 ),

(i) ηλ,µ(0, u) = u, ηλ,µ(τ,−u) = −ηλ,µ(τ, u), ∀ τ ∈ [0, 1], u ∈ Eλ,

(ii) ηλ,µ(τ, u) = u, ∀ u ∈ J mλ,µ−ελ,µ
λ,µ ∪

(
Eλ\J

mλ,µ+ελ,µ
λ,µ

)
, ∀ τ ∈ [0, 1],

(iii) ηλ,µ

(
1,J mλ,µ+

ελ,µ
2

λ,µ

∖
Uδλ,µ

)
⊂ J mλ,µ−

ελ,µ
2

λ,µ ,

(iv) ηλ,µ

(
1,
(
J mλ,µ+

ελ,µ
2

λ,µ ∩ Pλ

)∖
Uδλ,µ

)
⊂ J mλ,µ−

ελ,µ
2

λ,µ ∩ Pλ,

where the sublevel set J d
λ,µ :=

{
u ∈ Eλ : Jλ,µ(u) ≤ d

}
for d ∈ R. By (2.8), we choose large n

such that

γσ̄,n(Q) ⊂ J mλ,µ+
ελ,µ

2
λ,µ and γσ̄,n(Q) ∩ Uδλ,µ = ∅. (2.10)

Set the continuous map γ̃λ,µ,n(s, t) = ηλ,µ(1, γσ̄,n(s, t)) for any (s, t) ∈ Q. We claim γ̃λ,µ,n ∈ Γλ,µ.
Indeed, from γσ̄,n(s, 0) = 0 and (ii), it follows that γ̃λ,µ,n(s, 0) = ηλ,µ(1, 0) = 0 for

any s ∈ [0, 1]. Since γσ̄,n(0, t), −γσ̄,n(1, t) ∈ Pλ and (2.10) implies γσ̄,n(0, t), −γσ̄,n(1, t) ∈

J mλ,µ+
ελ,µ

2
λ,µ

∖
Uδλ,µ , we deduce from (i), (iv) that γ̃λ,µ,n(0, t) ∈ Pλ and γ̃λ,µ,n(1, t) ∈ −Pλ for all

t ∈ [0, 1]. Also, Jλ,µ(γσ̄,n(s, 1)) ≤ 0 and (ii) imply γ̃λ,µ,n(s, 1) = ηλ,µ(1, γσ̄,n(s, 1)) = γσ̄,n(s, 1)
for any s ∈ [0, 1]. Then, by γσ̄,n ∈ Γλ,µ, we know γ̃λ,µ,n satisfies the property (b). From the
above arguments, we derive our claim γ̃λ,µ,n ∈ Γλ,µ.

Thereby, since (2.10) and (iii) imply γ̃λ,µ,n(Q) ⊂ J mλ,µ−
ελ,µ

2
λ,µ , we conclude

mλ,µ ≤ max
(s,t)∈Q

Jλ,µ(γ̃λ,µ,n(s, t)) ≤ mλ,µ −
ελ,µ

2
,

which is a contradiction. Thus there is a sequence {un} ⊂ Eλ possessing the properties in (2.9).
Secondly, we prove u±

n ̸= 0 for all large n. By (2.9), there exists a sequence {vn} such that

vn = αnw+
n + βnw−

n ∈ γσ̄,n(Q) and ∥vn − un∥λ
n−→ 0. (2.11)

Due to {wn} ⊂ Mλ,µ and p ∈ (2, 2∗), from (1.4), Lemma 2.3 and the Young inequality we have

∥∥w±
n
∥∥2

λ
≤ AαC(N, α)(ν2∗Cλ,µ,1)

2∗α
∣∣w±

n
∣∣2∗α
2∗ +

2∗ − p
2∗ − 2

∣∣w±
n
∣∣2
2 +

µ
2∗−2
p−2 (p − 2)
2∗ − 2

∣∣w±
n
∣∣2∗
2∗ .
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Then, by (1.7), there holds

p − 2
(2∗ − 2)ν2

2∗

∣∣w±
n
∣∣2
2∗ ≤ AαC(N, α)(ν2∗Cλ,µ,1)

2∗α
∣∣w±

n
∣∣2∗α
2∗ +

µ
2∗−2
p−2 (p − 2)
2∗ − 2

∣∣w±
n
∣∣2∗
2∗ ,

which implies infn |w±
n |2∗ > 0. In view of this fact, the second limiting formula in (2.11)

and (1.7), to show u±
n ̸= 0 for n large enough, it suffices to verify that αn ↛ 0 and βn ↛ 0

up to subsequences. Suppose inversely αn → 0 up to a subsequence. Then it follows from
Jλ,µ ∈ C(Eλ, R) and Lemma 2.3 that

mλ,µ = lim
n→∞

Jλ,µ(vn) = lim
n→∞

Jλ,µ(αnw+
n + βnw−

n ) = lim
n→∞

Jλ,µ(βnw−
n ),

which together with mλ,µ > 0 implies β̄ := supn βn < +∞. Further, by Lemma 2.1, the Fubini
theorem, Lemma 2.3, (1.4) and (1.7), we deduce

mλ,µ = lim
n→∞

Jλ,µ(wn)

= lim
n→∞

max
s,t≥0

Jλ,µ(sw+
n + tw−

n )

≥ lim
n→∞

max
s≥0

Jλ,µ(sw+
n + βnw−

n )

= lim
n→∞

max
s≥0

[
s2

2
∥w+

n ∥2
λ − s2·2∗α

2 · 2∗α

∫
RN

(
Iα ∗ |w+

n |2
∗
α
)
|w+

n |2
∗
α dx − µsp

p

∫
RN

|w+
n |pdx

+
β2

n
2
∥w−

n ∥2
λ − β

2·2∗α
n

2 · 2∗α

∫
RN

(
Iα ∗ |w−

n |2
∗
α
)
|w−

n |2
∗
α dx − µβ

p
n

p

∫
RN

|w−
n |pdx

− s2∗α β
2∗α
n

2∗α

∫
RN

(
Iα ∗ |w+

n |2
∗
α
)
|w−

n |2
∗
α dx
]

= lim
n→∞

max
s≥0

[
s2

2
∥w+

n ∥2
λ − s2·2∗α

2 · 2∗α

∫
RN

(
Iα ∗ |w+

n |2
∗
α
)
|w+

n |2
∗
α dx

− s2∗α β
2∗α
n

2∗α

∫
RN

(
Iα ∗ |w+

n |2
∗
α
)
|w−

n |2
∗
α dx − µsp

p

∫
RN

|w+
n |pdx + Jλ,µ(βnw−

n )

]
≥ max

s≥0

[
1
2

C2
λ,µ,2s2 − 1

2∗α
AαC(N, α)

(
ν2∗Cλ,µ,1

)2·2∗α β̄2∗α s2∗α − µ

p
(
νpCλ,µ,1

)p sp

− 1
2 · 2∗α

AαC(N, α)
(
ν2∗Cλ,µ,1

)2·2α s2·2α

]
+ lim

n→∞
Jλ,µ(βnw−

n )

> mλ,µ,

a contradiction. Naturally, {αn} has no subsequence tending to 0. Similarly, we can show {βn}
has no subsequence tending to 0. Thus u±

n ̸= 0 for n large enough. This lemma is proved.

Now, we estimate the least energy mλ,µ from above. By [9, Lemma 1.2], the best constant

Sα := inf
{∫

RN
|∇u|2dx : u ∈ D1,2(RN) and

∫
RN

(
Iα ∗ |u|2

∗
α
)
|u|2∗α dx = 1

}
(2.12)

is attained by the functions

Uε(·) =
[
N(N − 2)ε2] N−2

4[
C(N, α)AαS

α
2
] N−2

4+2α (ε2 + | · |2) N−2
2

, ε > 0.



12 Y.-Y. Li, G.-D. Li and C.-L. Tang

Take δ > 0 such that B5δ ⊂ Ω, and extract two cut-off functions φ, ψ ∈ C∞
0 (Ω, [0, 1]) satisfying

φ(x) =

{
1, x ∈ Bδ,

0, x ∈ Bc
2δ

and ψ(x) =


0, x ∈ B2δ,

1, x ∈ B4δ\B3δ,

0, x ∈ Bc
5δ.

Define uε = φUε and vε = ψUε. As in [3,4], through direct computation, we obtain, as ε → 0+,

∫
Ω
|∇uε|2dx = S

N+α
2+α

α + O
(
εN−2), (2.13)

∫
Ω
|uε|2dx =


O(ε), N = 3,

O
(
ε2| ln ε|

)
, N = 4,

O(ε2), N ≥ 5

(2.14)

and

∫
Ω

∫
Ω

|uε(x)|2∗α |uε(y)|2
∗
α

|x − y|N−α
dxdy = A−1

α S
N+α
2+α

α + O
(
ε

N+α
2
)
. (2.15)

Additionally, as ε → 0+,

∫
Ω
|∇vε|2 + v2

ε dx = O(εN−2) and
∫

Ω
|vε(x)|pdx ≥ dpε

(N−2)p
2 for some dp > 0. (2.16)

Lemma 2.6. There exists some µ∗ > 0 independent of λ such that, for any λ > 0 and µ ≥ µ∗,

mλ,µ ≤ m∞,µ < m∗ :=
2 + α

2(N + α)
S

N+α
2+α

α .

Proof. Since M∞,µ ⊂ Mλ,µ and Jλ,µ = J∞,µ on M∞,µ, we easily derive mλ,µ ≤ m∞,µ. For
any ε > 0 and µ > 0, by Remark 2.2, there exist some constants sµ,ε > 0, tµ,ε > 0 such that
sµ,εuε − tµ,εvε ∈ M∞,µ and J∞,µ(sµ,εuε − tµ,εvε) = maxs,t>0 J∞,µ(suε − tvε). It suffices to show
maxs,t>0 J∞,µ(suε − tvε) < m∗ for ε > 0 small enough. Noting spt uε ∩ spt vε = ∅, we deduce

max
s,t>0

J∞,µ(suε − tvε) ≤ max
s>0

J∞,µ(suε) + max
t>0

J∞,µ(tvε). (2.17)

It easily follows from (2.13)−(2.15) that, for ε > 0 sufficiently small and all µ > 0, s > 0,

J∞,µ(suε) ≤ S
N+α
2+α

α

(
s2 − 1

4 · 2∗α
s2·2∗α

)
.

In view of this, there exist some sufficiently small s1 > 0 and sufficiently large s2 > 0 inde-
pendent of ε, µ such that, for ε > 0 small enough and all µ > 0,

max
s∈(0,s1)

J∞,µ(suε) < m∗ and max
s∈(s2,+∞)

J∞,µ(suε) < 0.
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Moreover, from (2.13)−(2.15) again we conclude, for ε > 0 sufficiently small and any µ > 0,

max
s∈[s1,s2]

J∞,µ(suε) ≤ max
s>0

(
s2

2

∫
Ω
|∇uε|2dx − s2·2∗α Aα

2 · 2∗α

∫
Ω

∫
Ω

|uε(x)|2∗α |uε(y)|2
∗
α

|x − y|N−α
dxdy

)
+

s2
2

2

∫
Ω
|uε|2dx −

µsp
1

p

∫
Ω
|uε|pdx

≤ 2 + α

2(N + α)
S

N+α
2+α

α

[
1 + O(εN−2)

][
1 − O(ε

N+α
2 )
]

+
s2

2
2

∫
Ω
|uε|2dx −

µsp
1 εN− (N−2)p

2

p

∫
B1

|U1|pdx

=
2 + α

2(N + α)
S

N+α
2+α

α + O(εN−2) +
s2

2
2

∫
Ω
|uε|2dx −

µsp
1 εN− (N−2)p

2

p

∫
B1

|U1|pdx.

If N ≥ 4, or N = 3 and α ∈ (1, 3), by (2.14) and p ≥ 2∗α we deduce, for ε > 0 small enough
and µ > 0,

ηN(ε) := O(εN−2) +
s2

2
2

∫
Ω
|uε|2dx −

µsp
1 εN− (N−2)p

2

p

∫
B1

|U1|pdx < 0.

If N = 3 and α ∈ (0, 1], take µ = ε
α−3

2 , by (2.14), there exists small ε1 > 0 such that η3(ε) < 0

for all ε ∈ (0, ε1]. Based on the above discussion, for ε > 0 small enough and any µ ≥ ε
2

α−3
1

if N = 3 and α ∈ (0, 1), also, for ε > 0 small enough and any µ > 0 if N ≥ 4 or N = 3 and
α ∈ (1, 3), we conclude

max
s>0

J∞,µ(suε) < m∗. (2.18)

In addition, due to (2.16), there exists some C1 > 0 such that, for ε > 0 small enough and
any µ > 0,

max
t>0

J∞,µ(tvε) ≤ max
t>0

[
C1εN−2t2 − µdp

(
εN−2t2) p

2
]
≤ (p − 2)(2C1)

p
p−2

2p(µpdp)
2

p−2
. (2.19)

Now, by combining (2.17), (2.18) and (2.19), there exists some large µ∗ ∈
[ 1

ε1
,+∞

)
such that

maxs,t>0 J∞,µ(suε − tvε) < m∗ for any µ ≥ µ∗ and small ε > 0. Thus this lemma is proved.

In the forthcoming lemma, we show that Jλ,µ satisfies the local (PS)c condition for λ large.

Lemma 2.7. There exists some Λ > 0 independent of µ such that, for any λ ≥ Λ and µ ≥ µ∗, each
(PS)c sequence {un} ⊂ Eλ for Jλ,µ, with level c ∈ (0, m∗), has a convergent subsequence.

Proof. From the definition of {un}, there results

m∗ + o(1) + o(∥un∥λ) ≥ Jλ,µ(un)−
1
p

〈
J ′

λ,µ(un), un

〉
≥ p − 2

2p
∥un∥2

λ.

Then there exists some C2 > 0 independent of λ and µ such that lim supn ∥un∥λ ≤ C2. Natu-
rally, {un} is bounded in Eλ. Hence, there exists some u ∈ Eλ such that, up to subsequences,

un ⇀ u in Eλ,

un → u in Ls
loc(R

N), ∀ s ∈ [1, 2∗),

un(x) → u(x) a.e. in RN ,

as n → ∞. (2.20)
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Set vn = un − u. Clearly, lim supn ∥vn∥λ ≤ 2C2. We will show ∥vn∥λ
n−→ 0 up to a subsequence.

Define

β = lim sup
n→∞

sup
y∈RN

∫
B1(y)

v2
ndx.

We assert β = 0. Otherwise, β > 0. Due to (V5), there exists some large R > 0 such that

∣∣{x ∈ Bc
R(0) : V(x) ≤ M}

∣∣ ≤ ( βS
16C2

2

) N
2

.

Then it follows from the Hölder and Sobolev inequalities that

lim sup
n→∞

∫
{x∈Bc

R(0):V(x)≤M}
v2

ndx ≤
∣∣{x ∈ Bc

R(0) : V(x) ≤ M}
∣∣ 2

N S−1 lim sup
n→∞

∥vn∥2
λ ≤ β

4
. (2.21)

Moreover, if taking Λ = 1
M

(
16C2

2 β−1 − 1
)

and letting λ ≥ Λ, we have

lim sup
n→∞

∫
{x∈Bc

R(0):V(x)>M}
v2

ndx ≤ 1
λM + 1

lim sup
n→∞

∥vn∥2
λ ≤ β

4
. (2.22)

Consequently, combining (2.20)−(2.22) leads to

β ≤ lim sup
n→∞

∫
RN

v2
ndx = lim sup

n→∞

∫
Bc

R(0)
v2

ndx ≤ β

2
,

which contradicts β > 0. That is, our claim β = 0 is true. Then, thanks to [29, Lemma 1.21],

vn → 0 in Ls(RN), ∀ s ∈ (2, 2∗). (2.23)

By (2.20), it is easy to show J ′
λ,µ(u) = 0. Further, with ⟨J ′

λ,µ(un), un⟩ = o(1) in hand,
we deduce from (2.20), (2.23) and the nonlocal version of the Brézis–Lieb lemma (see e.g.
[4, Lemma 2.2]) that

o(1) = ∥vn∥2
λ −

∫
RN

(
Iα ∗ |vn|2

∗
α
)
|vn|2

∗
α dx. (2.24)

Set κ = lim supn→∞ ∥vn∥λ. Due to (2.24) and the definition of Sα, there results κ = 0 or

κ ≥ S
N+α

2(2+α)
α . We claim κ = 0. If not, because Jλ,µ(u) ≥ 0, it follows from (2.20), (2.24) and

Lemma 2.2 in [4] that

c = lim
n→∞

Jλ,µ(un) = Jλ,µ(u) +
2 + α

2(N + α)
lim sup

n→∞
∥vn∥2

λ ≥ 2 + α

2(N + α)
S

N+α
2+α

α ,

which contradicts c < m∗. Thus un → u in Eλ up to a subsequence. This lemma is proved.

Based on the above preliminary lemmas, we shall complete the proof of main results below.

Proof of Theorem 1.2. Let λ ≥ Λ and µ ≥ µ∗. Thanks to Lemmas 2.5 and 2.6, Jλ,µ has a
sign-changing (PS)mλ,µ sequence {un} ⊂ Eλ, with mλ,µ < m∗. From Lemma 2.7, we derive
that un → uλ,µ in Eλ in the sense of subsequence. Then, there result J ′

λ,µ(uλ,µ) = 0 in E∗
λ and

Jλ,µ(uλ,µ) = mλ,µ. Further, Lemma 2.3 implies u±
λ,µ ̸= 0. That is, Eq. (1.6) has a ground state

sign-changing solution uλ,µ.
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Next, we show the concentration of ground state sign-changing solutions for Eq. (1.6) as
λ → +∞. Given µ ≥ µ∗ arbitrarily. For sequence {λn} ⊂ [Λ,+∞) with λn → +∞, let
uλn,µ ∈ Eλn be such that

u±
λn,µ ̸= 0, J ′

λn,µ(uλn,µ) = 0 in E∗
λn

, Jλn,µ(uλn,µ) = mλn,µ.

By Lemma 2.6, it is easy to obtain

m∗ > Jλn,µ(uλn,µ)−
1
p

〈
J ′

λn,µ(uλn,µ), uλn,µ

〉
>

p − 2
2p

∥uλn,µ∥2
λn

. (2.25)

Obviously, {uλn,µ} is bounded in H1(RN). Then, there exists some uµ ∈ H1(RN) such that,
up to subsequences, 

uλn,µ
n
⇀ uµ in H1(RN),

uλn,µ
n−→ uµ in Ls

loc(R
N), ∀ s ∈ [1, 2∗),

uλn,µ(x) n−→ uµ(x) a.e. in RN .

(2.26)

It follows from the Fatou lemma, (2.25) and (2.26) that

0 ≤
∫

Ωc
V(x)u2

µdx ≤ lim inf
n→∞

∫
RN

V(x)u2
λn,µdx ≤ lim inf

n→∞

∥uλn,µ∥2
λn

λn
= 0,

which together with (V6) implies uµ|Ωc = 0. Then, uµ ∈ H1
0(Ω), since ∂Ω is smooth. Thereby,

for any ω ∈ H1
0(Ω), we derive from ⟨J ′

λn,µ(uλn,µ), ω⟩ = 0 and (2.26) that J ′
∞,µ(uµ) = 0.

Set vµ,n = uλn,µ − uµ. For any ε > 0, by (V5), there exists some large Rε > 0 such that

∣∣{x ∈ Bc
Rε

: V(x) ≤ M
}∣∣ < [ (p − 2)Sε

4pm∗

] N
2

.

Then, due to the Hölder and Sobolev inequalities, the weakly lower semicontinuity of norm
and (2.25), there holds∫

{x∈Bc
Rε

:V(x)≤M}
v2

µ,ndx ≤
∣∣{x ∈ Bc

Rε
: V(x) ≤ M

}∣∣ 2
N S−1∥vn,µ∥2

λn
< ε.

From the weakly lower semicontinuity of norm and (2.25), it follows that∫
{x∈Bc

Rε
:V(x)≥M}

v2
µ,ndx ≤

∥vn,µ∥2
λn

λn M
≤ 4pm∗

(p − 2)Mλn
→ 0 as n → ∞.

Thereby, we deduce from (2.26) that |vµ,n|2
n−→ 0. Further, by (2.25), the Hölder and Sobolev

inequalities, there holds

lim sup
n→∞

∫
RN

|vµ,n|pdx ≤ lim sup
n→∞

(
|vµ,n|

2(2∗−p)
2∗−2

2 |vµ,n|
2∗(p−2)

2∗−2
2∗

)

≤
[

4pm∗
(p − 2)S

] 2∗(p−2)
2(2∗−2)

lim sup
n→∞

|vµ,n|
2(2∗−p)

2∗−2
2 = 0. (2.27)

By (2.26), (2.27), the nonlocal type of the Brézis–Lieb Lemma 2.2 in [4] and J ′
∞,µ(uµ) = 0, we

have

0 =
〈
J ′

λn,µ(uλn,µ), uλn,µ

〉
= ∥vµ,n∥2

λn
−
∫

RN

(
Iα ∗ |vµ,n|2

∗
α
)
|vµ,n|2

∗
α dx + o(1). (2.28)
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Denote κµ = lim supn→∞ ∥vµ,n∥λn . It follows from (2.28) and the definition of Sα that κ2
µ ≤

S−2∗α
α κ

2·2∗α
µ . Then, by (2.25), there results κµ = 0 or κµ ≥ S

N+α
2(2+α)
α . We assert κµ = 0. If not, from

Lemma 2.6, (2.25)−(2.28), the nonlocal type of the Brézis–Lieb lemma and J ′
∞,µ(uµ) = 0, we

have

m∗ > lim
n→∞

Jλn,µ(uλn,µ)

= J∞,µ(uµ) +
2 + α

2(N + α)
lim sup

n→∞
∥vµ,n∥2

λn

= J∞,µ(uµ)−
1
p

〈
J ′

∞,µ(uµ), uµ

〉
+

2 + α

2(N + α)
k2

µ

≥ m∗,

a contradiction. Hence, ∥uλn,µ − uµ∥λn

n−→ 0. Then, it is easy to show uλn,µ → uµ in H1(RN).
From

〈
J ′

λn,µ(uλn,µ), u±
λn,µ

〉
= 0, (1.4), the Young and Sobolev inequalities, we deduce that

S
∣∣u±

λn,µ

∣∣2
2∗ ≤

∥∥u±
λn,µ

∥∥2
λn

=
∫

RN

(
Iα ∗ |uλn,µ|2

∗
α
)
|u±

λn,µ|
2∗α dx + µ

∣∣u±
λn,µ

∣∣p
p

≤ AαC(N, α)
∣∣uλn,µ

∣∣2∗α
2∗
∣∣u±

λn,µ

∣∣2∗α
2∗ +

2∗ − p
2∗ − 2

∥∥u±
λn,µ

∥∥2
λn

+
p − 2
2∗ − 2

µ
2∗−2
p−2
∣∣u±

λn,µ

∣∣2∗
2∗ ,

which together with (2.25) implies

S
∣∣u±

λn,µ

∣∣2
2∗ ≤

AαC(N, α)(2∗ − 2)
p − 2

[
2pm∗

S(p − 2)

] 2∗α
2 ∣∣u±

λn,µ

∣∣2∗α
2∗ + µ

2∗−2
p−2
∣∣u±

λn,µ

∣∣2∗
2∗ .

In view of this, there holds inf
n

∣∣u±
λn,µ

∣∣
2∗ > 0. Thereby, ∥uλn,µ − uµ∥

n−→ 0 implies |u±
µ |2∗ > 0.

Naturally, u±
µ ̸= 0 and then uµ ∈ M∞,µ. Thus we derive from (2.26), the Fatou lemma and

Lemma 2.6 that

m∞,µ ≤ J∞,µ(uµ)−
1
p

〈
J ′

∞,µ(uµ), uµ

〉
=

p − 2
2p

∫
Ω

(
|∇uµ|2 + u2

µ

)
dx +

(2 · 2∗α − p)Aα

2p · 2∗α

∫
Ω

∫
Ω

|uµ(x)|2∗α |uµ(y)|2
∗
α

|x − y|N−α
dxdy

≤ lim
n→∞

[
p − 2

2p
∥uλn,µ∥2

λn
+

2 · 2∗α − p
2p · 2∗α

∫
RN

(
Iα ∗ |uλn,µ|2

∗
α
)
|uλn,µ|2

∗
α dx
]

= lim
n→∞

[
Jλn,µ(uλn,µ)−

1
p

〈
J ′

λn,µ(uλn,µ), uλn,µ

〉]
≤ m∞,µ,

which leads to J∞,µ(uµ) = m∞,µ. Therefore, uµ is a ground state sign-changing solution for
Eq. (1.8).

Further, we certify the asymptotic behavior of ground state sign-changing solutions for
Eq. (1.6) as µ → +∞. Fix λ ≥ Λ. For any sequence {µn} ⊂ [µ∗,+∞) with µn → +∞, let{

uλ,µn

}
⊂ Eλ satisfy

u±
λ,µn

̸= 0, J ′
λ,µn

(uλ,µn) = 0 in E∗
λ, Jλ,µn(uλ,µn) = mλ,µn .
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It easily follows that

mλ,µn = Jλ,µn(uλ,µn)−
1
p

〈
J ′

λ,µn
(uλ,µn), uλ,µn

〉
≥ p − 2

2p
∥∥uλ,µn

∥∥2
λ

. (2.29)

We assert that limn→∞ mλ,µn → 0 in the sense of subsequence. Take ω ∈ H1
0(Ω) such that

ω± ̸= 0. Due to Remark 2.2, there exist sn > 0 and tn > 0 such that snω+ + tnω− ∈ M∞,µn .
Then we have

s2
n

∫
Ω
|∇ω+|2 + |ω+|2dx

= Aαs2·2∗α
n

∫
Ω

∫
Ω

|ω+(x)|2∗α |ω+(y)|2∗α
|x − y|N−α

dxdy

+ Aα(sntn)
2∗α
∫

Ω

∫
Ω

|ω+(x)|2∗α |ω−(y)|2∗α
|x − y|N−α

dxdy + µnsp
n

∫
Ω
|ω+|pdx, (2.30)

t2
n

∫
Ω
|∇ω−|2 + |ω−|2dx

= Aαt2·2∗α
n

∫
Ω

∫
Ω

|ω−(x)|2∗α |ω−(y)|2∗α
|x − y|N−α

dxdy

+ Aα(tnsn)
2∗α
∫

Ω

∫
Ω

|ω+(x)|2∗α |ω−(y)|2∗α
|x − y|N−α

dxdy + µntp
n

∫
Ω
|ω−|pdx. (2.31)

From (2.30) and (2.31), we easily deduce that both {sn} and {tn} are bounded. Thereby, sn →
s0 and tn → t0 up to subsequences. By using (2.30) and (2.31) again, we derive s0 = t0 = 0.
Consequently, Lemmas 2.3 and 2.6 imply

0 ≤ lim sup
n→∞

mλ,µn ≤ lim sup
n→∞

m∞,µn ≤ lim sup
n→∞

J∞,µn(snω+ + tnω−)

≤ lim sup
n→∞

(
s2

n

∫
Ω
|∇ω+|2 + |ω+|2dx + t2

n

∫
Ω
|∇ω−|2 + |ω−|2dx

)
= 0.

Now, from (2.29) we conclude uλ,µn

n−→ 0 in Eλ. Naturally uλ,µn

n−→ 0 in H1(RN) in the sense of
subsequence. Thus, based on the above arguments, we complete the proof of Theorem 1.2.
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