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Abstract. In this paper, the existence of periodic solutions to the second order Hamil-
tonian systems is investigated. By introducing a new growth condition which gener-
alizes the Ambrosetti–Rabinowitz condition, we prove a existence result of nontrivial
T-periodic solution via the variational methods. Our result is new because it can deal
with not only the superquadratic case, but also the anisotropic case which allows the po-
tential to be superquadratic growth in only one direction and asymptotically quadratic
growth in other directions.
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1 Introduction and main result

Consider the following second order Hamiltonian systems{
−ü(t) + L(t)u(t) = ∇xF(t, u(t)), a.e. t ∈ [0, T],

u(0)− u(T) = u̇(0)− u̇(T) = 0,
(1.1)

where u(t) = (u1(t), u2(t), . . . , uN(t)), N ≥ 1, T > 0, L(t) :=
(
lij(t)

)
∈ C(0, T; RN×N) is a

symmetric positive matrix and T-periodic in t, F : [0, T] × RN → R is T-periodic in t and
satisfies the following assumptions:

(A) F(t, x) is measurable in t for every x ∈ RN and continuously differentiable in x for a.e.
t ∈ [0, T], and there exist a ∈ C(R+, R+), b ∈ L1(0, T; R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇xF(t, x)| ≤ a(|x|)b(t)

for x ∈ RN and a.e. t ∈ [0, T], where x := (x1, . . . , xN), ∇xF(t, x) :=
(

∂F
∂x1

, . . . , ∂F
∂xN

)
.
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The periodic solutions to non-autonomous system (1.1) has an extensive history in the
case of singular systems (cf., e.g., Ambrosetti–Coti Zelati [1]). The first to consider it for
nonsingular potentials were Berger and Schechter [3] in 1977. Since then, the existence of
periodic solutions to system (1.1) have been deeply studied by a large number of researchers.
Many solvability conditions about the potentials have been obtained, we refer the readers to
[4, 11, 12, 16, 17, 19–23, 26–28] and their references. In 1978, Rabinowitz [13] established the
existence of a non-constant T-periodic solution when L(t) ≡ 0 by assuming that the potential
F satisfies the following superquadratic condition

(AR) there exist constants r0 > 0 and θ > 2 such that

0 < θF(t, x) ≤ (∇xF(t, x), x)

for |x| ≥ r0 and a.e. t ∈ [0, T], where (·, ·) is the inner product in RN .

This is the so-called Ambrosetti–Rabinowitz ((AR) for short) condition which plays a key
role in verifying the mountain pass geometry and the compactness for the Euler–Lagrange
functional associated to system (1.1). So (AR) condition has been widely used in follow-
up research for the superquadratic problem, for example, see [5] and their references. If
F ∈ C1([0, T]× RN , R

)
, one can easily deduce from (AR) that

F(t, x) ≥ a|x|θ − b

for x ∈ RN and a.e. t ∈ [0, T], where a, b > 0. This implies a more intrinsic superquadratic
condition

(SQ) lim|x|→∞
F(t,x)
|x|2 = +∞ uniformly in a.e. t ∈ [0, T].

Under condition (SQ), one can also add some other conditions on F to guarantee the existence
of T-periodic solutions. For example, Fei [7] assumed the nonquadratic condition

(NQ) lim inf|x|→∞
(∇x F(t,x),x)−2F(t,x)

|x|β > 0 uniformly in a.e. t ∈ [0, T],

where β > 1. Luan–Mao [10] supposed that F satisfied the following condition

(LM) there exist c > 0, r1 > 0 and some σ > 1 such that

|∇xF(t, x)|σ
|x|σ ≤ cH(x, s)

for |x| ≥ r1 and a.e. t ∈ [0, T] , where H(x, s) := (∇xF(t, x), x)− 2F(t, x).

Wu and Tang [24] introduced a new superquadratic situation

(WT) there exist c > 0, r2 > 0 such that

F(t, x)
|x|2 ≤ cH(x, s)

for |x| ≥ r2 and a.e. t ∈ [0, T].

Ye–Tang [30] and Li–Schechter [9] studied the situation that F satisfied the following mono-
tonic condition
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(M) there exist D ≥ 1 and C∗ ∈ L1(0, T; R+) such that

H(t, sx) ≤ DH(t, x) + C∗(t), ∀s ∈ [0, 1]

for x ∈ RN and a.e. t ∈ [0, T].

Schechter [18] assumed

(S1) 2F(t, x) ≥ λl−1|x|2 for x ∈ RN and a.e. t ∈ [0, T], where λi is the ith eigenvalue of the
operator − d2

dt2 + L(t),

(S2) there are constants m > 0 and ϑ > 0 such that

2F(t, x) ≤ ϑ|x|2

for |x| ≤ m and a.e. t ∈ [0, T].

The readers are referred to [6, 8, 29] for more types of conditions under condition (SQ).
In addition, without condition (SQ), Schechter [14] assumed that

(S3) F(t, x) ≥ 0 for x ∈ RN and a.e. t ∈ [0, T],

(S4) there are constants m > 0, α ≤ 6m2/T2 such that

F(t, x) ≤ α

for |x| ≤ m and a.e. t ∈ [0, T],

(S5) there are µ > 2, r3 > 0 and W ∈ L1([0, T]) such that(i) Hµ(t,x)
|x|2 ≤ W(t) for |x| ≥ r3 and a.e. t ∈ [0, T],

(ii) lim sup|x|→+∞
Hµ(t,x)
|x|2 ≤ 0,

where Hµ(t, x) := µF(t, x)− (∇xF(t, x), x),

(S6) there is a subset Σ ⊂ [0, T] of positive measure such that

lim inf
|x|→+∞

F(t, x)
|x|2 > 0 uniformly in a.e. t ∈ Σ.

In [15], the potentials F satisfy (S3)–(S5) and

(S7) there are constants β > 2π2

T2 and r3 > 0 such that

F(t, x) ≥ β|x|2

for |x| > r3 and a.e. t ∈ [0, T].

Wang–Zhang [25] assumed F satisfies (S3), (S4), (S6) and
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(WZ) (i) there exist M1 > 0, σ > 1 and f ∈ C (R+, R+) with lim|x|→∞ f (|x|) = +∞ and f (|x|)
|x|σ

is non-increasing on R+ such that

(∇xF(t, x), x)− 2F(t, x) ≥ f (|x|) |∇F(t, x)|σ
|x|σ

for |x| ≥ M1 and a.e. t ∈ [0, T], or
(ii) there exist M2 > 0 and g ∈ C (R+, R+) with lim|x|→∞g(|x|) = +∞ and g(|x|)

|x|2 is
non-increasing on R+ such that

(∇xF(t, x), x)− 2F(t, x) ≥ g(|x|)F(t, x)
|x|2

for |x| ≥ M2 and a.e. t ∈ [0, T].

In [31], Zhang–Tang assumed

(ZT) there exist constants µ > 2, 0 < β < 2, L > 0 and a function a ∈ L1(0, T; R+) such
that

µF(t, x) ≤ (∇xF(t, x)x) + a(t)|x|β

for |x| ≤ L and a.e. t ∈ [0, T].

In this paper, we will give a new solvable condition. Our main result is the following
theorem.

Theorem 1.1. Assume that F satisfies assumptions (A) and

(F1) lim|x|→0
F(t,x)
|x|2 = 0 uniformly in a.e. t ∈ [0, T],

(F2) there exist a constant r∗ > 0 and a function θ such that

0 < (2 + θ(x))F(t, x) ≤ (∇xF(t, x), x)

for |x| ≥ r∗ and a.e. t ∈ [0, T], where θ : {x ∈ RN : |x| ≥ r∗} → R is continuous and
satisfies the following assumption

(⋆)



(i) θ(x) > 0, ∀|x| ≥ r∗,

(ii) lim
|x|→+∞

θ(x)|x|2 = +∞,

(iii) there is x0 ∈ RN with |x0| = 1 satisfying lim
r→+∞

∫ r

r∗

θ(sx0)

s
ds = +∞,

then system (1.1) has a nontrivial periodic solution.

Remark 1.2. (1) Condition (F2) is strictly weaker than the (AR) condition. In fact, we can de-
rive from condition (F2) that inf|x|≥r∗θ(x) ≥ 0, and the (AR) condition is exactly equivalent to
condition (F2) when inf|x|≥r∗θ(x) > 0. On the one hand, the (AR) condition implies condition
(F2) with θ(x) ≡ θ − 2 > 0 and r∗ = r0. On the other hand, when inf|x|≥r∗θ(x) > 0, condition
(F2) implies the (AR) condition with θ := 2 + inf|x|≥r∗θ(x) > 2 and r0 = r∗. In addition, there
are functions F satisfying condition (F2) with inf|x|≥r∗θ(x) = 0, for example,
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(Superlinear case) let

F(t, x) =


|x|2 ln |x| − 1

2 e2 − 1
16 , |x| ≥ e;

1
2 |x|2 −

1
16 , 1

2 ≤ |x| ≤ e;

|x|4, |x| ≤ 1
2 .

Then we have

∇xF(t, x) =


2x ln |x|+ x, |x| ≥ e;

x, 1
2 ≤ |x| ≤ e;

4|x|2x, |x| ≤ 1
2

and

(∇xF(t, x), x)− 2F(t, x) =


|x|2 + e2 + 1

8 , |x| ≥ e;
1
16 , 1

2 ≤ |x| ≤ e;

2|x|4, |x| ≤ 1
2 .

It is easy to verify that F satisfies assumptions (A), (F1), (F2) with θ(x) = 1
ln |x| and r∗ = e.

However, inf|x|≥e
1

ln |x| = 0, so condition (AR) is not satisfied.
(2) It is particularly noteworthy that our Theorem 1.1 can deal with the potentials F without

condition (SQ). In fact, there are functions with anisotropic growth satisfying condition (F2),
for example,

(Anisotropic case) let N = 2, x := (x1, x2) ∈ R2, and

F(t, x) =

x4
1 +

5
6 x4

2, x2 ≤ 1;

x4
1 + x2

2 · e−x
− 4

3
2 +1 − 1

6 , x2 ≥ 1.

Through simple calculation, we have

∇xF(t, x) :=
(

∂F
∂x1

,
∂F
∂x2

)
=

4x3
1 +

10
3 x3

2, x2 ≤ 1;

4x3
1 +

(
2x2 +

4
3 x−

1
3

2

)
· e−x

− 4
3

2 +1, x2 ≥ 1

and

(∇xF(t, x), x)− 2F(t, x) =

2x4
1 +

5
3 x4

2, x2 ≤ 1;

2x4
1 +

4
3 x

2
3
2 e−x

− 4
3

2 +1 + 1
3 , x2 ≥ 1.

Let

θ(x) =


2, x2 ≤ 1;

2x4
1+

4
3 x

2
3
2 e−x

− 4
3

2 +1+ 1
3

x4
1+x2

2·e
−x

− 4
3

2 +1− 1
6

, x2 ≥ 1,

then for |x| =
√

x2
1 + x2

2, r∗ =
√

2 and e1 = (1, 0) ∈ R2, we can deduce that θ(x) > 0 for

|x| ≥
√

2, lim|x|→∞θ(x)|x|2 = +∞, and

lim
r→+∞

∫ r
√

2

θ(se1)

s
ds = lim

r→+∞

∫ r
√

2

2
s

ds = +∞,
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which implies that F is superquadratic growth in direction e1. In addition, it is easy to verify
that F satisfies assumptions (A), (F1), (F2). However, for e2 = (0, 1) ∈ R2, we have

lim
x=se2, |x|→+∞

F(t, x)
|x|2 = lim

|s|→+∞

F(t, se2)

|s|2 = e,

which shows that F is asymptotically quadratic growth in direction e2. In conclusion, F satisfy
condition (F2) but not condition (SQ).

(3) Our Theorem 1.1 is different from all the results mentioned above. Firstly, condition
(F2) is strictly weaker than the (AR) condition. Secondly, we do not need the condition (SQ).
More precisely, Theorem 1.1 can deal with not only the superquadratic case but also the the
anisotropic case. Thirdly, we do not need more stringent and complex growth assumptions
on F at 0.

2 Proof of the theorem

Let
H1

T =
{

u ∈ L2(0, T; RN) | u is weakly differentiable and u̇ ∈ L2(0, T; RN)
}

be a Hilbert space with the inner product and the induced norm respectively given by

⟨u, v⟩H1
T
=
∫ T

0
(u̇, v̇) + (u(t), v(t))dt, ∥u∥H1

T
=

(∫ T

0
|u̇(t)|2 + |u(t)|2dt

) 1
2

.

Denoting by λmin(t) and λmax(t) respectively the smallest and the biggest eigenvalue of L(t),
then λmin(t), λmax(t) ∈ C(0, T; R+). Setting

λ := min
t∈[0,T]

λmin(t), λ := max
t∈[0,T]

λmax(t),

we have 0 < λ ≤ λ and
λ|ξ|2 ≤

(
L(t)ξ, ξ

)
≤ λ|ξ|2

for ξ ∈ RN and t ∈ [0, T]. Thus, the following inner product and the corresponding induced
norm on H1

T defined by

⟨u, v⟩ =
∫ T

0
(u̇, v̇) +

(
L(t)u(t), v(t)

)
dt, ∥u∥ =

(∫ T

0
|u̇(t)|2 +

(
L(t)u(t), u(t)

)
dt
) 1

2

are respectively equivalent to ⟨u, v⟩H1
T

and ∥u∥H1
T
. In fact, it is easy to verify that√

min
{

1, λ
}
∥u∥H1

T
≤ ∥u∥ ≤

√
max

{
1, λ
}
∥u∥H1

T

for u ∈ H1
T. By Sobolev’s inequality, there is M > 0 such that

∥u∥∞ ≤ M∥u∥, ∀u ∈ H1
T,

where ∥u∥∞ := maxt∈[0,T]|u(t)|. In addition, from the assumption (A) it follows that the
functional Φ given by

Φ(u) =
1
2

∫ T

0
|u̇(t)|2dt +

1
2

∫ T

0

(
L(t)u(t), u(t)

)
dt −

∫ T

0
F(t, u(t))dt
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is continuously differentiable on H1
T, and

⟨Φ′(u), v⟩ =
∫ T

0

[(
u̇(t), v̇(t)

)
+
(

L(t)u(t), v(t)
)
−
(
∇xF(t, u(t)), v(t)

)]
dt.

Furthermore, the weak solutions to system (1.1) are exactly the critical points of Φ in H1
T.

Lemma 2.1. Assume that θ : {x ∈ RN : |x| ≥ r∗} → R is continuous and satisfies condition (⋆)(i),
and suppose that there is a sequence {yn} ⊂ {x ∈ RN : |x| ≥ r∗} such that

θ(yn) → 0 as n → ∞,

then |yn| → +∞ as n → ∞.

Proof. By negation, there exists a subsequence, still denoted by {yn}, is bounded. After pass-
ing to a subsequence, we may assume that there is y0 ∈ {x ∈ RN : |x| ≥ r∗} such that

yn → y0 as n → ∞,

from this, (⋆)(i) and the continuity of θ it follows that

0 = lim
n→∞

θ(yn) = θ(y0) > 0,

a contradiction. The proof of Lemma 2.1 is completed.

Lemma 2.2. Assume that F satisfies (F1), then there are ρ > 0 and α > 0 such that Φ(u) ≥ α for
u ∈ H1

T with ∥u∥ = ρ.

Proof. From (F1), for ε ∈
(
0, 1

4TM2

)
, there exists a constant δ > 0 such that

|F(t, x)| ≤ ε|x|2

for |x| < δ and a.e. t ∈ [0, T]. Arbitrarily taking ρ ∈
(
0, δ

M

)
, we have

∥u∥∞ ≤ M∥u∥ ≤ Mρ < δ

for u ∈ H1
T with ∥u∥ = ρ, this leads to

Φ(u) ≥ 1
2
∥u∥2 − ε

∫ T

0
|u(t)|2dt ≥

(
1
2
− εM2T

)
∥u∥2 ≥ ρ2

4

for u ∈ H1
T with ∥u∥ = ρ. Setting α := ρ2

4 > 0, then the proof Lemma 2.2 is completed.

Lemma 2.3. Assume that F satisfies assumptions (A) and (F2), then there is u0 ∈ H1
T with ∥u0∥ > ρ

such that Φ(u0) < 0.

Proof. From assumptions (A) and (F2) it follows that

F(t, sx0) ≥ F(t, r∗x0)

r2
∗

· e
∫ s

r∗
θ(τx0)

τ dτ · s2

for s ≥ r∗ and a.e. t ∈ [0, T], then we have

Φ(sx0) =
1
2
∥sx0∥2 −

∫ T

0
F(t, sx0)dt ≤

(
λ

2

2
−
∫ T

0

F(t, r∗x0)

r2
∗

dt · e
∫ s

r∗
θ(τx0)

τ dτ

)
s2

for s ≥ r∗ and a.e. t ∈ [0, T], which implies Φ(u0) < 0 with u0 = sx0 for large s. This
completes the proof of Lemma 2.3
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Lemma 2.4. Assume that F satisfies assumptions (A), (F1) and (F2), then Φ satisfies the (C) condi-
tion, that is, for any c ∈ R and every sequence {un} such that

∥Φ′(un)∥(1 + ∥un∥) → 0 and Φ(un) → c as n → ∞ (2.1)

has a convergent subsequence.

Proof. It suffices to prove that {un} is bounded. Moreover, the proof is trivial when
inf|x|≥r∗θ(x) > 0, so we just need to prove this lemma when inf|x|≥r∗θ(x) = 0.

We argue by contradiction. If {un} is unbounded, then after passing to a subsequence, we
may assume that

λn := ∥un∥ → +∞ as n → ∞. (2.2)

Setting wn = un
∥un∥ , then ∥wn∥ = 1 and un = λnwn. Thus, we deduce

∥wn∥∞ ≤ M∥wn∥ ≤ M.

Fixing xλn ∈
{

x ∈ RN : r∗ ≤ |x| ≤ λn M
}

to be such that

θ(xλn) = min
r∗≤|x|≤λn M

θ(x), (2.3)

then we have λn ≥ |xλn |
M , 0 < θ(xλn) ≤ θ∗ := min|x|=r∗θ(x),

0 < (2 + θ(xλn))F(t, x) ≤ (2 + θ(x))F(t, x) ≤ (∇xF(t, x), x) (2.4)

for r∗ ≤ |x| ≤ λn M and a.e. t ∈ [0, T]. Moreover, from (2.2), (2.3) and inf|x|≥r∗θ(x) = 0 it
follows that

θ(xλn) → 0 as n → ∞.

Thus, from Lemma 2.1, we obtain

|xλn | → +∞ as n → ∞. (2.5)

Setting

E−
n = {t ∈ [0, T] : |un(t)| < r∗}, E+

n = {t ∈ [0, T] : |un(t)| ≥ r∗},

then from (2.1) it follows that

o(1) =
∣∣⟨Φ′(un), un⟩

∣∣
=

∣∣∣∣λ2
n −

∫
E−

n

(un(t),∇xF(t, un(t))dt −
∫

E+
n

(un(t),∇xF(t, un(t))dt
∣∣∣∣ ,

where o(1) → 0 as n → ∞, this implies that∫
E+

n

(un(t),∇xF(t, un(t))dt ≤ λ2
n +

∣∣∣∣∫E−
n

(un(t),∇xF(t, un(t))dt
∣∣∣∣+ o(1). (2.6)

In addition, it follows from assumption (A) that there is β > 0 such that∣∣∣∣∫E−
n

(un(t),∇xF(t, un(t))dt
∣∣∣∣ ,
∣∣∣∣∫E−

n

F(t, un(t))dt
∣∣∣∣ ≤ β,



Periodic solutions to the second order Hamiltonian systems 9

which together with (2.1), (2.4) and (2.6) gives

c + o(1) = Φ(un)

=
λ2

n
2

−
∫

E−
n

F(t, un(t))dt −
∫

E+
n

F(t, un(t))dt

≥ λ2
n

2
− β − 1

2 + θ(xλn)

∫
E+

n

(un(t),∇xF(t, un(t))dt

≥ λ2
n

2
− β − 1

2 + θ(xλn)

(
λ2

n +

∣∣∣∣∫E−
n

(un(t),∇xF(t, un(t))dt
∣∣∣∣+ o(1)

)
≥ θ(xλn)λ

2
n

2(2 + θ(xλn))
− β − β + o(1)

2 + θ(xλn)

≥ θ(xλn)|xλn |2
2(2 + θ∗)M2 − 3β + o(1)

2
,

which is in contradiction with (2.5) and the assumption θ(x)|x|2 → +∞ as |x| → ∞. Hence,
{un} is bounded, the proof of Lemma 2.4 is completed.

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 2.2–2.4, we obtain a nontrivial solution to system (1.1) via the
Mountain Pass Theorem under the (C) condition which the readers can refer to [2].
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