Strong maximum principle for a sublinear elliptic problem at resonance

Giovanni Anello, Filippo Cammaroto and Luca Vilasi ${ }^{\boxtimes}$

Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno dâĂŹAlcontres, 31-98166 Messina, Italy

Received 17 March 2022, appeared 12 July 2022
Communicated by Patrizia Pucci

Abstract

We examine the semilinear resonant problem $$
-\Delta u=\lambda_{1} u+\lambda g(u) \text { in } \Omega, \quad u \geq 0 \text { in } \Omega, \quad u_{\mid \partial \Omega}=0,
$$ where $\Omega \subset \mathbb{R}^{N}$ is a smooth, bounded domain, λ_{1} is the first eigenvalue of $-\Delta$ in Ω, $\lambda>0$. Inspired by a previous result in literature involving power-type nonlinearities, we consider here a generic sublinear term g and single out conditions to ensure: the existence of solutions for all $\lambda>0$; the validity of the strong maximum principle for sufficiently small λ. The proof rests upon variational arguments.

Keywords: resonant problem, existence, maximum principle.
2020 Mathematics Subject Classification: 35J20, 35J25, 35J61.

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 1$, be a bounded domain of class C^{2}, and let λ_{1} be the first eigenvalue of $-\Delta$ in Ω with Dirichlet boundary conditions. The issue of the existence of solutions of the problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+u^{s-1}-\mu u^{r-1} & \text { in } \Omega \tag{1.1}\\ u \geq 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

$s \in(1,2), r \in(1, s)$, and $\mu>0$, has been the subject of study of the recent [3]. As a distinctive feature, the right-hand side term $f(t):=\lambda_{1} t+t^{s-1}-\mu t^{r-1}$ in (1.1) is not locally Lipschitz near 0 , and moreover satisfies the sign property

$$
f^{-1}((-\infty, 0]) \supseteq(0, a], \quad \text { for some } a>0
$$

As a result, from the celebrated paper [13] (see also [8]), it is known that the strong maximum principle may fail to be valid in this context. By adopting minimax and perturbation

[^0]techniques, the author of [3] showed instead that such a principle does hold as long as the perturbation parameter is chosen sufficiently large. More precisely, the main results in [3] state that problem (1.1) has non-zero solutions for the entire positive range of μ; positive solutions for μ large enough.

The fact that, after a rescaling, (1.1) can be turned into the problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+\lambda\left(u^{s-1}-u^{r-1}\right) & \text { in } \Omega \tag{1.2}\\ u \geq 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

for a suitable $\lambda>0$, raises the natural question whether, as explicitly expressed in [3, Remark 2.4], the same results mentioned above continue to hold when the powers in (1.2) are replaced by a generic nonlinear term g. And, if it is so, it would be interesting of course to identify some "minimal" structure conditions on g for the validity of such results. In the present paper we address these questions and consider the problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+\lambda g(u) & \text { in } \Omega \\ u \geq 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $g:[0,+\infty) \rightarrow \mathbb{R}$ is continuous, $g(0)=0$, and obeys the following conditions:
$\left(g_{1}\right)$ there exists $q \in(1,2)$ such that $k_{1}:=\sup _{t>0} \frac{|g(t)|}{1+t^{q-1}}<+\infty$;
$\left(g_{2}\right) \lim _{t \rightarrow 0^{+}} \frac{g(t)}{t}=-\infty ;$
(g3) $\liminf _{t \rightarrow+\infty} G(t)>0$;
$\left(g_{4}\right) \lim _{t \rightarrow+\infty}(g(t) t-2 G(t))=-\infty$,
where, as usual,

$$
G(t):=\int_{0}^{t} g(s) d s, \quad \text { for all } t \geq 0
$$

Problems like $\left(P_{\lambda}\right)$ are being investigated since Landesman and Lazer's pioneering work [9], in which sufficient conditions, based on the interaction between the nonlinearity and the spectrum of the linear operator, were given for them to have a solution. Noteworthy contributions following that work can be found in $[2,5,12]$ and also in $[6,7,10,11,14]$ (see the related references as well) in which several classes of elliptic problems at resonance are investigated via variational and topological methods.

Coming back to $\left(P_{\lambda}\right)$, our approach develops along the same line of reasoning as [3]. We prove initially that $\left(P_{\lambda}\right)$ has at least a non-zero solution for all $\lambda>0$. This is accomplished by considering a sequence of problems near resonance whose solutions are shown to converge to a solution of the original problem. In this regard, assumption $\left(g_{4}\right)$ comes into play to prove the boundedness of the sequence of approximating solutions. Then, by exploiting the classical decomposition of $H_{0}^{1}(\Omega)$ into the first eigenspace and its orthogonal complement, we show
that, for sufficiently small λ, the set of solutions to $\left(P_{\lambda}\right)$ is contained in the interior of the positive cone of $C_{0}^{1}(\bar{\Omega})$. It still remains an open question to investigate the uniqueness of positive solutions to $\left(P_{\lambda}\right)$ (in the one-dimensional case and for power-nonlinearities it has instead been established in [4]), as well as the existence of non-zero solutions compactly supported in Ω, in the spirit of [8].

Our main results, Theorems 2.3 and 2.4, are stated and proved in the coming section. Before going on, we arrange some notation and the variational framework for $\left(P_{\lambda}\right)$. We set

$$
\|u\|:=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}}, \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

and denote by $\|\cdot\|_{p}, p \in[1,+\infty]$, the classical L^{p}-norm on Ω. We also set

$$
c_{p}:=\sup _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\|u\|_{p}}{\|u\|}
$$

for each $p \geq 1$, with $p \leq \frac{2 N}{N-2}$ if $N \geq 3$, and denote by ϕ_{1} the positive eigenfunction associated with λ_{1} and normalized with respect to $\|\cdot\|_{\infty}$. We recall that the first two eigenvalues λ_{1}, λ_{2} of $-\Delta$ in Ω admit the variational characterization

$$
\lambda_{1}=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\|u\|^{2}}{\|u\|_{2}^{2}}, \quad \lambda_{2}=\inf _{u \in \operatorname{span}\left\{\phi_{1}\right\}^{\perp} \backslash\{0\}} \frac{\|u\|^{2}}{\|u\|_{2}^{2}}
$$

Given a set $E \subset \mathbb{R}^{N}$, its Lebesgue measure will be denoted by the symbol $|E|$. Throughout this paper, the symbols C, C_{1}, C_{2}, \ldots represent generic positive constants whose exact value may change from occurence to occurrence.

For all $\lambda>0$, we denote by $I_{\lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ the energy functional associated with $\left(P_{\lambda}\right)$,

$$
I_{\lambda}(u):=\frac{1}{2}\|u\|^{2}-\frac{\lambda_{1}}{2}\left\|u_{+}\right\|_{2}^{2}-\lambda \int_{\Omega} G\left(u_{+}\right) d x, \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

where $u_{+}=\max \{u, 0\}$. By a weak solution to $\left(P_{\lambda}\right)$ we mean any $u \in C^{0}(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$ verifying

$$
\int_{\Omega}\left(\nabla u \nabla v-\lambda_{1} u v-\lambda g(u) v\right) d x=0, \quad \text { for all } v \in H_{0}^{1}(\Omega)
$$

2 Results

As already mentioned, we start by considering a sequence of approximating problems.
Lemma 2.1. For each $\lambda>0$, there exists $\bar{n} \in \mathbb{N}$ such that the problem

$$
\begin{cases}-\Delta u=\left(\lambda_{1}-\frac{1}{n}\right) u+\lambda g(u) & \text { in } \Omega \tag{n}\\ u \geq 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits a non-zero weak solution u_{n}, with positive energy, for all $n \geq \bar{n}$.

Proof. Fix $\lambda>0$ and let $n \in \mathbb{N}$ with $n>\frac{1}{\lambda_{1}}$. Let us first show that the energy functional $I_{n}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ corresponding to $\left(P_{n}\right)$,

$$
\begin{equation*}
I_{n}(u):=I_{\lambda}(u)+\frac{1}{2 n}\left\|u_{+}\right\|_{2}^{2}=\frac{1}{2}\|u\|^{2}-\frac{1}{2}\left(\lambda_{1}-\frac{1}{n}\right)\left\|u_{+}\right\|_{2}^{2}-\lambda \int_{\Omega} G\left(u_{+}\right) d x \tag{2.1}
\end{equation*}
$$

for all $u \in H_{0}^{1}(\Omega)$, has the mountain pass geometry for sufficiently large $n \in \mathbb{N}$.
Fix $k \in\left(2,2^{*}\right)$ and set

$$
M:=\frac{k}{2} \sup _{t>0} \frac{\lambda_{1} t^{2}+2 \lambda G(t)}{t^{k}}
$$

By (g_{1}) and $\left(g_{2}\right)$ one has $0<M<+\infty$ and $\frac{\lambda_{1}}{2} t^{2}+\lambda G(t) \leq \frac{M}{k} t^{k}$, for all $t \geq 0$. Then, defining

$$
R:=\left(M c_{k}^{k}\right)^{\frac{1}{2-k}}
$$

we easily obtain

$$
\begin{align*}
\inf _{u \in S_{R}} I_{n}(u) & \geq \inf _{\|u\|=R}\left(\frac{1}{2}\|u\|^{2}-\frac{M}{k}\|u\|_{k}^{k}\right) \\
& \geq \inf _{u \in S_{R}}\left(\frac{1}{2}\|u\|^{2}-\frac{M c_{k}^{k}}{k}\|u\|^{k}\right) \tag{2.2}\\
& =\left(\frac{1}{2}-\frac{1}{k}\right) R^{2}>0,
\end{align*}
$$

for any $n \in \mathbb{N}$, where $S_{R}:=\left\{u \in H_{0}^{1}(\Omega):\|u\|=R\right\}$.
Now, let us show that there exist $u_{1} \in H_{0}^{1}(\Omega)$, with $\left\|u_{1}\right\|>R$, and $\bar{n} \in \mathbb{N}$, such that $I_{n}\left(u_{1}\right)<0$ for all $n \geq \bar{n}$. Owing to $\left(g_{3}\right)$, there exist $L, b>0$ such that

$$
G(t)>L, \quad \text { for all } t \geq b .
$$

If we denote by

$$
E_{\gamma}:=\left\{x \in \Omega: \phi_{1}(x)<\gamma\right\},
$$

with $\gamma>0$, then there exists $\gamma_{1}>0$ such that

$$
\begin{equation*}
L>\frac{k_{1}\left(b q+b^{q}\right)\left|E_{\gamma}\right|}{q\left(|\Omega|-\left|E_{\gamma}\right|\right)}, \quad \text { for all } \gamma \in\left(0, \gamma_{1}\right) . \tag{2.3}
\end{equation*}
$$

Fix $\bar{\gamma} \in \mathbb{R}$ satisfying

$$
0<\bar{\gamma}<\min \left\{\gamma_{1}, \frac{b}{R}\right\} .
$$

Since the function $\psi(t):=q \bar{\gamma} t+\bar{\gamma}^{q} t^{q}$ is continuous in $(0,+\infty)$ and $\psi\left(\frac{b}{\bar{\gamma}}\right)=b q+b^{q}$, thanks to (2.3), there exists $\bar{t}>\frac{b}{\bar{\gamma}}$ such that

$$
\begin{equation*}
L>\frac{k_{1}\left(q \bar{\gamma} \bar{\tau}+\bar{\gamma}^{q} \bar{t}^{q}\right)\left|E_{\bar{\gamma}}\right|}{q\left(|\Omega|-\left|E_{\bar{\gamma}}\right|\right)} . \tag{2.4}
\end{equation*}
$$

With the aid of $\left(g_{1}\right)$ and (2.4) we then obtain

$$
\begin{aligned}
\int_{\Omega} G\left(\bar{t} \phi_{1}\right) d x & =\int_{E_{\bar{\gamma}}} G\left(\bar{t} \phi_{1}\right) d x+\int_{\left\{\phi_{1} \geq \bar{\gamma}\right\}} G\left(\bar{t} \phi_{1}\right) d x \\
& \geq-k_{1} \int_{E_{\bar{\gamma}}}\left(\bar{t} \phi_{1}+\frac{\left(\bar{t} \phi_{1}\right)^{q}}{q}\right) d x+\int_{\left\{\phi_{1} \geq \bar{\gamma}\right\}} G\left(\bar{t} \phi_{1}\right) d x \\
& \geq-k_{1}\left(\bar{t} \bar{\gamma}+\frac{\bar{t} q}{q} \bar{\gamma}^{q}\right. \\
&)\left|E_{\bar{\gamma}}\right|+L\left(|\Omega|-\left|E_{\bar{\gamma}}\right|\right) \\
& >0
\end{aligned}
$$

As a result, there exists $\bar{n} \in \mathbb{N}$, with $\bar{n}>\frac{1}{\lambda_{1}}$, such that

$$
I_{n}\left(\bar{t} \phi_{1}\right)=\frac{\bar{t}^{2}}{2 n}\left\|\phi_{1}\right\|_{2}^{2}-\lambda \int_{\Omega} G\left(\bar{t} \phi_{1}\right) d x<0
$$

for all $n \geq \bar{n}$. Therefore, the functional I_{n} satisfies the geometric conditions required by the mountain pass theorem for all $n \geq \bar{n}$.

Moreover, by $\left(g_{1}\right)$ and Sobolev embeddings, one has

$$
\begin{aligned}
I_{n}(u) & \geq \frac{1}{2 n \lambda_{1}}\|u\|^{2}-\lambda k_{1}\left(\int_{\Omega}|u| d x+\frac{1}{q} \int_{\Omega}|u|^{q} d x\right) \\
& \geq \frac{1}{2 n \lambda_{1}}\|u\|^{2}-\lambda c_{1} k_{1}\|u\|-\frac{\lambda c_{q} k_{1}}{q}\|u\|^{q}
\end{aligned}
$$

and thus $I_{n}(u) \rightarrow+\infty$ as $\|u\| \rightarrow+\infty$. This fact, in addition to standard arguments (see for instance Example 38.25 of [15]), ensures that I_{n} satisfies the Palais-Smale condition. Then, by invoking the classical mountain pass theorem, I_{n} admits a critical point $u_{n} \in H_{0}^{1}(\Omega) \backslash\{0\}$ for all $n \geq \bar{n}$, and, by (2.2), one also has

$$
\begin{equation*}
I_{n}\left(u_{n}\right)=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{n}(\gamma(t)) \geq\left(\frac{1}{2}-\frac{1}{k}\right) R^{2} \tag{2.5}
\end{equation*}
$$

where $\Gamma:=\left\{\gamma \in C^{0}\left([0,1], H_{0}^{1}(\Omega)\right): \gamma(0)=0, \gamma(1)=u_{1}\right\}$. This concludes the proof.
Lemma 2.2. Let $\lambda>0, \bar{n} \in \mathbb{N}$ and let u_{n}, with $n \geq \bar{n}$, be as in Lemma 2.1. Then, the sequence $\left\{u_{n}\right\}_{n \geq \bar{n}}$ is bounded in $H_{0}^{1}(\Omega)$.

Proof. Let $n \in \mathbb{N}, n \geq \bar{n}$. By standard regularity theory, $u_{n} \in C^{1, \alpha}(\bar{\Omega})$, for some $\alpha \in(0,1)$. For any $n \in \mathbb{N}, n \geq \bar{n}$ there exist, uniquely determined, $t_{n} \in \mathbb{R}$ and $w_{n} \in \operatorname{span}\left\{\phi_{1}\right\}^{\perp}$ such that

$$
u_{n}=t_{n} \phi_{1}+w_{n}
$$

It is straightforward to verify that $w_{n} \in C^{1, \alpha}(\bar{\Omega})$ is a weak solution to

$$
\begin{cases}-\Delta u=\left(\lambda_{1}-\frac{1}{n}\right) u+\lambda g\left(t_{n} \phi_{1}+u\right)-\frac{t_{n}}{n} \phi_{1} & \text { in } \Omega \tag{2.6}\\ u \geq 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and therefore, also by $\left(g_{1}\right)$, one has

$$
\begin{align*}
\left\|w_{n}\right\|^{2} & \leq\left(\frac{\lambda_{1}-\frac{1}{n}}{\lambda_{2}}\right)\left\|w_{n}\right\|^{2}+\lambda \int_{\Omega} g\left(t_{n} \phi_{1}+w_{n}\right) w_{n} d x \tag{2.7}\\
& \leq\left(\frac{\lambda_{1}-\frac{1}{n}}{\lambda_{2}}\right)\left\|w_{n}\right\|^{2}+\lambda k_{1}\left\|w_{n}\right\|_{1}+\lambda k_{1} q_{n}^{q-1}\left\|\phi_{1}\right\|_{\infty}^{q-1}\left\|w_{n}\right\|_{1}+\lambda k_{1}\left\|w_{n}\right\|_{q}^{q} .
\end{align*}
$$

From (2.7), it follows that

$$
\begin{equation*}
\left\|w_{n}\right\| \leq C\left(\left(1+t_{n}^{q-1}\right)+\left\|w_{n}\right\|^{q-1}\right) \tag{2.8}
\end{equation*}
$$

for some $C>0$. We claim that the sequence $\left\{t_{n}\right\}_{n \geq \bar{n}}$ is bounded in \mathbb{R}. Arguing by contradiction, assume that, up to a subsequence, $t_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. Without loss of generality, we can assume that $t_{n} \geq 1$ for all $n \geq \bar{n}$ and, since

$$
y^{q-1} \leq C_{1}+\frac{1}{2 C} y \leq C_{1} t_{n}^{q-1}+\frac{1}{2 C} y, \quad \text { for all } y>0,
$$

from (2.8) we deduce

$$
\left\|w_{n}\right\| \leq 2 C t_{n}^{q-1}+C\left\|w_{n}\right\|^{q-1} \leq 2 C t_{n}^{q-1}+C C_{1} t_{n}^{q-1}+\frac{1}{2}\left\|w_{n}\right\|,
$$

and then

$$
\left\|w_{n}\right\| \leq C_{2} t_{n}^{q-1}
$$

Therefore, fixing $p>\max \left\{\frac{N}{2}, \frac{q}{q-1}\right\}$, we obtain

$$
\begin{aligned}
\left\|w_{n}\right\|_{\infty} & \leq C_{3}\left(\left\|w_{n}\right\|_{p}+\left\|g\left(t_{n} \phi_{1}+w_{n}\right)\right\|_{p}+\frac{t_{n}}{n}\left\|\phi_{1}\right\|_{p}\right) \\
& \leq C_{4}\left(\left\|w_{n}\right\|_{\infty}^{\frac{p-1}{p}}\left\|w_{n}\right\|_{1}^{\frac{1}{p}}+1+t_{n}^{q-1}+\left\|w_{n}\right\|_{\infty}^{q-1-\frac{q}{p}}\left\|w_{n}\right\|_{q}^{\frac{q}{p}}+\frac{t_{n}}{n}\right) \\
& \leq C_{5}\left(\left\|w_{n}\right\|_{\infty}^{\frac{p-1}{p}} t_{n}^{\frac{q-1}{p}}+t_{n}^{q-1}+\left\|w_{n}\right\|_{\infty}^{q-1-\frac{q}{p}} t_{n}^{\frac{q(q-1)}{p}}+\frac{t_{n}}{n}\right) .
\end{aligned}
$$

Dividing the first and the last side of the previous inequality by t_{n} and bearing in mind that $y^{m} \leq 1+y$, for all $m \in[0,1]$ and $y>0$, we get

$$
\begin{aligned}
\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty} & \leq C_{5}\left(\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty}^{\frac{p-1}{p}} t_{n}^{\frac{q-2}{p}}+t_{n}^{q-2}+\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty}^{q-1-\frac{q}{p}} t_{n}^{(q-2)\left(1+\frac{q}{p}\right)}+\frac{1}{n}\right) \\
& \leq C_{5}\left(t_{n}^{q-2}+\left(t_{n}^{\frac{q-2}{p}}+t_{n}^{(q-2)\left(1+\frac{q}{p}\right)}\right)\left(1+\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty}\right)+\frac{1}{n}\right) \\
& \leq C_{5}\left(t_{n}^{\frac{q-2}{p}}+2 t_{n}^{\frac{q-2}{p}}\left(1+\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty}\right)+\frac{1}{n}\right) .
\end{aligned}
$$

It follows that

$$
\left(1-2 C_{5} t_{n}^{\frac{q-2}{p}}\right)\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty} \leq 3 C_{5} t_{n}^{\frac{q-2}{p}}+\frac{C_{5}}{n},
$$

and, as a consequence,

$$
\lim _{n \rightarrow+\infty}\left\|\frac{w_{n}}{t_{n}}\right\|_{\infty}=0
$$

i.e.,

$$
\frac{u_{n}}{t_{n}} \rightarrow \phi_{1} \quad \text { uniformly in } \bar{\Omega}
$$

So, fixing $\gamma \in\left(0,\left\|\phi_{1}\right\|_{\infty}\right)$, we can find $E \subset \Omega$, with $|E|>0$, and $\tilde{n} \in \mathbb{N}, \tilde{n} \geq \bar{n}$, such that

$$
u_{n}(x) \geq \gamma t_{n}, \quad \text { for all } n \geq \tilde{n} \text { and } x \in E
$$

At this point, set

$$
\delta:=\sup _{t>0}(g(t) t-2 G(t)) \in[0,+\infty)
$$

and let $\bar{t}>0$ such that

$$
g(t) t-2 G(t) \leq-\frac{(\delta+1)|\Omega|}{|E|}, \quad \text { for all } t \geq \bar{t}
$$

and $n^{*} \geq \tilde{n}$ such that $t_{n} \geq \frac{\bar{t}}{\gamma}$ for all $n \geq n^{*}$. Then, for all $n \geq n^{*}$, taking also (2.5) into account, we obtain

$$
\begin{aligned}
0 & <\int_{\Omega}\left(g\left(u_{n}\right) u_{n}-2 G\left(u_{n}\right)\right) d x \\
& =\int_{\Omega \backslash E}\left(g\left(u_{n}\right) u_{n}-2 G\left(u_{n}\right)\right) d x+\int_{E}\left(g\left(u_{n}\right) u_{n}-2 G\left(u_{n}\right)\right) d x \\
& \leq \delta|\Omega|-(\delta+1)|\Omega|<0
\end{aligned}
$$

a contradiction. Therefore, the sequence $\left\{t_{n}\right\}_{n \geq \bar{n}}$ is bounded in \mathbb{R} and (2.8) yields the boundedness of $\left\{w_{n}\right\}_{n \geq \bar{n}}$ in $H_{0}^{1}(\Omega)$, as well. As a consequence, we get the boundedness of $\left\{u_{n}\right\}_{n \geq \bar{n}}$ in $H_{0}^{1}(\Omega)$, as desired.

Collecting the results of the previous lemmas, it is now easy to derive our first existence result.

Theorem 2.3. For all $\lambda>0$, problem $\left(P_{\lambda}\right)$ has at least one non-zero solution.
Proof. Let $\left\{u_{n}\right\}$ be the sequence of solutions to $\left(P_{n}\right)$ in Lemma 2.1. By Lemma 2.2 there exists $u^{*} \in H_{0}^{1}(\Omega)$ such that, up to a subsequence,

$$
u_{n} \rightharpoonup u^{*} \text { in } H_{0}^{1}(\Omega), \quad u_{n} \rightarrow u^{*} \text { in } L^{p}(\Omega), \text { for all } p \in\left[1,2^{*}\right)
$$

Fixing $v \in H_{0}^{1}(\Omega)$ and taking the limit as $n \rightarrow+\infty$ in the identity $I_{n}^{\prime}\left(u_{n}\right)(v)=0$, we get $I_{\lambda}^{\prime}\left(u^{*}\right)(v)=0$, i.e. u^{*} is a weak solution to $\left(P_{\lambda}\right)$. To justify that $u^{*} \neq 0$, observe that, by (2.5) one has

$$
\begin{aligned}
0 & <\left(\frac{1}{2}-\frac{1}{k}\right) R^{2} \\
& \leq \lambda \int_{\Omega}\left(g\left(u_{n}\right) u_{n} d x-2 G\left(u_{n}\right)\right) d x \\
& \leq \lambda k_{1}\left(\left\|u_{n}\right\|_{1}+\left\|u_{n}\right\|_{q}^{q}\right)+2 \lambda k_{1}\left(\left\|u_{n}\right\|_{1}+\frac{1}{q}\left\|u_{n}\right\|_{q}^{q}\right)
\end{aligned}
$$

and so, letting $n \rightarrow+\infty$, the conclusion is achieved.

We now show that, when λ approaches zero, every non-zero solution to $\left(P_{\lambda}\right)$ is actually positive. To this aim, for all $\lambda>0$, set

$$
S_{\lambda}:=\left\{u \in H_{0}^{1}(\Omega) \backslash\{0\}: u \text { is a solution to }\left(P_{\lambda}\right)\right\},
$$

and denote by \mathcal{P} the interior of the positive cone of $C_{0}^{1}(\bar{\Omega})$, i.e.

$$
\mathcal{P}:=\left\{u \in C_{0}^{1}(\bar{\Omega}): u>0 \text { in } \Omega, \frac{\partial u}{\partial v}<0 \text { on } \partial \Omega\right\},
$$

v being the unit outer normal to $\partial \Omega$. Our second result reads as follows:
Theorem 2.4. There exists $\Lambda^{*}>0$ such that for each $\lambda \in\left(0, \Lambda^{*}\right), S_{\lambda} \subset \mathcal{P}$.
Proof. We first observe that, by the regularity theory of elliptic equations, for all $\lambda>0$ and $u_{\lambda} \in S_{\lambda}$, one has $u_{\lambda} \in C^{1, \alpha}(\bar{\Omega})$, for some $\alpha \in(0,1)$.

If $u_{\lambda} \in S_{\lambda}$, it is straightforward to check that $v_{\lambda}:=\lambda^{-1} u_{\lambda}$ is a solution to the problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+g(\lambda u) & \text { in } \Omega \tag{P}\\ u \geq 0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

clearly equivalent to $\left(P_{\lambda}\right)$. Note that $\left(g_{2}\right)$ ensures the existence of some $a>0$ such that $g(t)<0$ for all $t \in(0, a)$, and moreover it must hold

$$
\begin{equation*}
\left\|v_{\lambda}\right\|_{\infty} \geq \frac{a}{\lambda^{\prime}} \tag{2.9}
\end{equation*}
$$

otherwise we would get $g\left(u_{\lambda}\right)<0$ in $\Omega \backslash u_{\lambda}^{-1}(0)$, and so

$$
\left\|u_{\lambda}\right\|^{2}-\lambda_{1}\left\|u_{\lambda}\right\|_{2}^{2}=\lambda \int_{\Omega} g\left(u_{\lambda}\right) u_{\lambda} d x<0
$$

against the definition of λ_{1}. From now on, we will then focus on (\tilde{P}_{λ}). We split the proof in several steps.

Step 1. We show that there exist two constants $C^{*}, \Lambda_{0}>0$ such that, for any $\lambda \in\left(0, \Lambda_{0}\right]$ and for any $v_{\lambda} \in S_{\lambda}$,

$$
\begin{equation*}
\left\|v_{\lambda}\right\| \geq \frac{C^{*}}{\lambda} \tag{2.10}
\end{equation*}
$$

Fix $\beta>\max \left\{\frac{N}{2}, \frac{1}{q-1}\right\}$. By [1, Theorem 8.2] and the embedding $W^{2, \beta}(\Omega) \hookrightarrow C^{1}(\bar{\Omega})$, one has $v_{\lambda} \in W^{2, \beta}(\Omega)$ and there exists a constant $C_{0}>0$, independent of λ, such that

$$
\begin{equation*}
\left\|v_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq C_{0}\left(\left(\lambda_{1}+1\right)\left\|v_{\lambda}\right\|_{\beta}+\left\|g\left(\lambda v_{\lambda}\right)\right\|_{\beta}\right) . \tag{2.11}
\end{equation*}
$$

So, by (g_{1}) and Hölder's inequality, we get

$$
\begin{aligned}
\int_{\Omega}\left|g\left(\lambda v_{\lambda}\right)\right|^{\beta} d x & \leq k_{1}^{\beta} \int_{\Omega}\left(1+\left(\lambda v_{\lambda}\right)^{q-1}\right)^{\beta} d x \\
& \leq 2^{\beta-1} k_{1}^{\beta}\left(|\Omega|+\lambda^{\beta(q-1)}\left\|v_{\lambda}\right\|_{\infty}^{\beta(q-1)-1}\left\|v_{\lambda}\right\|_{1}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\left\|v_{\lambda}\right\|_{\infty} \leq & C_{0}\left(\left(\lambda_{1}+1\right)\left\|v_{\lambda}\right\|_{\infty}^{\frac{\beta-1}{\beta}}\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}\right. \\
& \left.+2^{\frac{\beta-1}{\beta}} k_{1}\left(|\Omega|^{\frac{1}{\beta}}+\lambda^{q-1}\left\|v_{\lambda}\right\|_{\infty}^{q-1-\frac{1}{\beta}}\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}\right)\right) .
\end{aligned}
$$

Now, dividing by $\left\|v_{\lambda}\right\|_{\infty}^{\frac{\beta-1}{\beta}}$ both sides of the previous inequality and taking (2.9) into account, we obtain,

$$
\begin{align*}
\left(\frac{a}{\lambda}\right)^{\frac{1}{\beta}} \leq\left\|v_{\lambda}\right\|_{\infty}^{\frac{1}{\beta}} & \leq C_{1}\left(\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}+\left\|v_{\lambda}\right\|_{\infty}^{\frac{1-\beta}{\beta}}+\lambda^{q-1}\left\|v_{\lambda}\right\|_{\infty}^{q-2}\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}\right) \\
& \leq C_{1}\left(\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}+a^{\frac{1-\beta}{\beta}} \lambda^{\frac{\beta-1}{\beta}}+a^{q-2} \lambda\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}\right) \tag{2.12}\\
& \leq C_{2}\left((1+\lambda)\left\|v_{\lambda}\right\|^{\frac{1}{\beta}}+\lambda^{\frac{\beta-1}{\beta}}\right) .
\end{align*}
$$

Now, if $0<\lambda \leq \min \left\{1, a\left(2 C_{2}\right)^{-\beta}\right\}:=\Lambda_{0}$, one has

$$
\left\|v_{\lambda}\right\|^{\frac{1}{\beta}} \geq \frac{1}{2 C_{2}}\left(\frac{a}{\lambda}\right)^{\frac{1}{\beta}}-\frac{1}{2} \geq \frac{1}{4 C_{2}}\left(\frac{a}{\lambda}\right)^{\frac{1}{\beta}}
$$

and hence (2.10) is fulfilled with $C^{*}=a\left(4 C_{2}\right)^{-\beta}$. Since of course $\left\|v_{\lambda}\right\| \rightarrow+\infty$ as $\lambda \rightarrow 0^{+}$, by (2.12) we can determine $C_{3}>0$ and $\Lambda_{1} \in\left(0, \Lambda_{0}\right]$ such that $\left\|v_{\lambda}\right\| \geq 1$ and

$$
\begin{equation*}
\left\|v_{\lambda}\right\|_{\infty} \leq C_{3}\left\|v_{\lambda}\right\| \tag{2.13}
\end{equation*}
$$

for any $\lambda \in\left(0, \Lambda_{1}\right]$. For the rest of the proof, we assume $\lambda \in\left(0, \Lambda_{1}\right]$.
Step 2. We now show that, writing v_{λ} as

$$
v_{\lambda}=t_{\lambda} \phi_{1}+w_{\lambda},
$$

with $t_{\lambda} \in \mathbb{R}$ and $w_{\lambda} \in \operatorname{span}\left\{\phi_{1}\right\}^{\perp}$, then it holds

$$
\begin{equation*}
\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq \tilde{C}\left\|v_{\lambda}\right\|^{\frac{q}{2}}, \tag{2.14}
\end{equation*}
$$

for some $\tilde{C}>0$. By the same arguments as [3], it is easily seen that $t_{\lambda}>0$ and that w_{λ} is a weak solution to

$$
\begin{cases}-\Delta u=\lambda_{1} u+g\left(\lambda v_{\lambda}\right) & \text { in } \Omega \tag{2.15}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

The relation $I_{\lambda}^{\prime}\left(v_{\lambda}\right)\left(\phi_{1}\right)=0$ and the definition of ϕ_{1} imply that

$$
\int_{\Omega} \nabla v_{\lambda} \nabla \phi_{1} d x-\lambda_{1} \int_{\Omega} v_{\lambda} \phi_{1} d x-\int_{\Omega} g\left(\lambda v_{\lambda}\right) \phi_{1} d x=-\int_{\Omega} g\left(\lambda v_{\lambda}\right) \phi_{1} d x=0,
$$

and therefore

$$
\int_{\Omega} g\left(\lambda v_{\lambda}\right) w_{\lambda} d x=\int_{\Omega} g\left(\lambda v_{\lambda}\right)\left(v_{\lambda}-t_{\lambda} \phi_{1}\right) d x=\int_{\Omega} g\left(\lambda v_{\lambda}\right) v_{\lambda} d x
$$

So, we get

$$
\begin{aligned}
\left\|w_{\lambda}\right\|^{2} & =\lambda_{1}\left\|w_{\lambda}\right\|_{2}^{2}+\int_{\Omega} g\left(\lambda v_{\lambda}\right) w_{\lambda} d x \\
& \leq \frac{\lambda_{1}}{\lambda_{2}}\left\|w_{\lambda}\right\|^{2}+\int_{\Omega} g\left(\lambda v_{\lambda}\right) v_{\lambda} d x \\
& \leq \frac{\lambda_{1}}{\lambda_{2}}\left\|w_{\lambda}\right\|^{2}+k_{1}\left(\left\|v_{\lambda}\right\|_{1}+\lambda^{q-1}\left\|v_{\lambda}\right\|_{q}^{q}\right) \\
& \leq \frac{\lambda_{1}}{\lambda_{2}}\left\|w_{\lambda}\right\|^{2}+C_{4}\left\|v_{\lambda}\right\|^{q},
\end{aligned}
$$

from which we deduce the estimate

$$
\begin{equation*}
\left\|w_{\lambda}\right\|^{2} \leq C_{5}\left\|v_{\lambda}\right\|^{q} \tag{2.16}
\end{equation*}
$$

being $C_{5}=\frac{\lambda_{2} C_{4}}{\lambda_{2}-\lambda_{1}}$. By applying the same arguments as before to the function w_{λ} and bearing in mind also (2.13) and (2.16), we obtain

$$
\begin{aligned}
\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})} & \leq C_{6}\left(\left(\lambda_{1}+1\right)\left\|w_{\lambda}\right\|_{\beta}+\left\|g\left(\lambda v_{\lambda}\right)\right\|_{\beta}\right) \\
& \leq C_{6}\left(\left(\lambda_{1}+1\right)\left\|w_{\lambda}\right\|_{\infty}^{\frac{\beta-1}{\beta}}\left\|w_{\lambda}\right\|_{1}^{\frac{1}{\beta}}+2^{\frac{\beta-1}{\beta}} k_{1}\left(|\Omega|^{\frac{1}{\beta}}+\lambda^{q-1}\left\|v_{\lambda}\right\|_{\infty}^{q-1-\frac{1}{\beta}}\left\|v_{\lambda}\right\|_{1}^{\frac{1}{\beta}}\right)\right) \\
& \leq C_{7}\left(\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})}^{\frac{\beta-1}{\beta}}\left\|v_{\lambda}\right\|^{\frac{q}{2 \beta}}+1+\lambda^{q-1}\left\|v_{\lambda}\right\|^{q-1}\right) \\
& \leq C_{7}\left(\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})}^{\frac{\beta-1}{\beta}}\left\|v_{\lambda}\right\|^{\frac{q}{2 \beta}}+2\left\|v_{\lambda}\right\|^{q-1}\right) .
\end{aligned}
$$

So, either

$$
\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq 2 C_{7}\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})}^{\frac{\beta-1}{\beta}}\left\|v_{\lambda}\right\|^{\frac{q}{2 \beta}}
$$

or

$$
\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq 4 C_{7}\left\|v_{\lambda}\right\|^{q-1}
$$

In any case, we get

$$
\begin{equation*}
\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq \tilde{C}\left\|v_{\lambda}\right\|^{\frac{q}{2}}, \tag{2.17}
\end{equation*}
$$

where $\tilde{C}=4 C_{7}$, as desired.
Step 3 (conclusion). Taking (2.10) and (2.16) into account, for $0<\lambda \leq \min \left\{1, \Lambda_{0}, \Lambda_{1}, \Lambda_{2}\right\}$, where $\Lambda_{2}:=\left(\frac{1}{2 C_{5}}\right)^{\frac{1}{2-q}} C^{*}$, we obtain

$$
\begin{equation*}
t_{\lambda}^{2} \geq \frac{\left\|v_{\lambda}\right\|^{2}-C_{5}\left\|v_{\lambda}\right\|^{q}}{\left\|\phi_{1}\right\|^{2}} \geq \frac{\left\|v_{\lambda}\right\|^{2}}{\left\|\phi_{1}\right\|^{2}}\left(1-\frac{C_{5} C^{* q-2}}{\lambda^{q-2}}\right) \geq \frac{\left\|v_{\lambda}\right\|^{2}}{2\left\|\phi_{1}\right\|^{2}}=C_{8}\left\|v_{\lambda}\right\|^{2} \tag{2.18}
\end{equation*}
$$

where $C_{8}=\frac{1}{2\left\|\phi_{1}\right\|^{2}}$. For this range of λ, in view of (2.17), we then obtain

$$
\left\|t_{\lambda}^{-1} v_{\lambda}-\phi_{1}\right\|_{C^{1}(\bar{\Omega})}=t_{\lambda}^{-1}\left\|w_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq \tilde{C} C_{8}^{-\frac{1}{2}}\left\|v_{\lambda}\right\|^{\frac{q}{2}-1} \leq C_{9} \lambda^{1-\frac{q}{2}}
$$

with $C_{9}=\tilde{C} C_{8}^{-\frac{1}{2}} C^{* \frac{q}{2}-1}$. Since $\phi_{1} \in \mathcal{P}$ and \mathcal{P} is an open subset of $C^{1}(\bar{\Omega})$, there exists $\delta>0$ such that

$$
\left\{u \in C^{1}(\bar{\Omega}):\left\|u-\phi_{1}\right\|_{C^{1}(\bar{\Omega})}<\delta\right\} \subset \mathcal{P} .
$$

So, setting $\Lambda_{3}:=\left(\frac{\delta}{C_{9}}\right)^{\frac{2}{2-q}}$, for all $0<\lambda \leq \min \left\{1, \Lambda_{0}, \Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}:=\Lambda^{*}$, one has $t_{\lambda}^{-1} v_{\lambda} \in \mathcal{P}$ and hence $v_{\lambda} \in \mathcal{P}$. This concludes the proof.

Acknowledgements

The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la ProbabilitÃă e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] S. Agmon, The L^{p} approach to the Dirichlet problem I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa 13(1959), 405-448. MR125306
[2] S. Ahmad, A. C. Lazer, J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25(1976), 933-944. https://doi.org/10.1512/iumj.1976.25.25074
[3] G. Anello, Existence results and strong maximum principle for a resonant sublinear elliptic problem, Minimax Theory Appl. 4(2019), No. 2, 217-229. MR3973626
[4] G. Anello, L. Vilasi, Uniqueness of positive and compacton-type solutions for a resonant quasilinear problem, Topol. Methods Nonlinear Anal. 49(2016), No. 2, 565-575. https://doi.org/10.12775/tmna.2016.090
[5] P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7(1983), 981-1012. https://doi.org/10.1016/0362-546X (83) 90115-3
[6] D. G. Costa, E. A. B. Silva, Existence of solution for a class of resonant elliptic problems, J. Math. Anal. Appl. 175(1993), 411-424. https://doi.org/10.1006/jmaa.1993.1180
[7] J. V. A. Gonçalves, O. H. Miyagaki, Three solutions for a strongly resonant elliptic problem, Nonlinear Anal. 24(1995), No. 2, 265-272. https://doi.org/10.1016/0362546X (94)E0016-A
[8] Y. Ilyasov, Y. Egorov, Hopf boundary maximum principle violation for semilinear elliptic equations, Nonlinear Anal. 72(2010), 3346-3355. https://doi.org/10.1016/j.na. 2009. 12.015
[9] E. M. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19(1970), 609-623. MR0267269
[10] S. Liv, Multiple solutions for elliptic resonant problems, Proc. Roy. Soc. Edinburgh Sect. A 138(2008), No. 6, 1281-1289. https://doi.org/10.1017/S0308210507000443
[11] M. Schechter, Strong resonance problems for elliptic semilinear boundary value problems, J. Operator Theory 30(1993), No. 2, 301-314. MR1305509
[12] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A 85(1980), 119-129. https://doi.org/10.1017/S0308210500011732
[13] J. L. VÁzquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12(1984), 191-202. https://doi.org/10.1007/BF01449041
[14] X. P. Wu, C. L. Tang, Some existence theorems for elliptic resonant problems, J. Math. Anal. Appl. 264(2001), 133-146. https://doi.org/10.1006/jmaa. 2001.7660
[15] E. Zeidler, Nonlinear functional analysis and its applications III, Springer, Berlin, 1985. https://doi.org/10.1007/978-1-4612-5020-3

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: lvilasi@unime.it

