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Abstract. We consider the Dirichlet problem

−∆
Kp
p(x)u(x)− ∆

Kq
q(x)u(x) = f (x, u(x),∇u(x)) in Ω, u

∣∣
∂Ω = 0,

driven by the sum of a p(x)-Laplacian operator and of a q(x)-Laplacian operator, both
of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish
the existence of weak solution and strong generalized solution, using topological tools
(properties of Galerkin basis and of Nemitsky map). In the particular case of a pos-
itive Kirchhoff term, we obtain the existence of weak solution (= strong generalized
solution), using the properties of pseudomonotone operators.

Keywords: Brouwer fixed point theorem, Galerkin basis, Kirchhoff term, Nemitsky
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1 Introduction

In this manuscript we consider equations driven by Kirchhoff type operators of the form u→
−K(r, u)∆r(x)u for functions u, defined on a bounded domain Ω ⊆ RN with smooth boundary

∂Ω. The analysis is carried out in a suitable anisotropic Dirichlet Sobolev space W1,r(x)
0 (Ω),

with variable exponent r ∈ C(Ω) satisfying certain regularity and bound conditions. The
operator ∆r(x) is the r(x)-Laplacian operator, which for every u ∈ W1,r(x)

0 (Ω) is defined by
∆r(x)u = div(|∇u|r(x)−2∇u). Additionally, the nonlocal Kirchhoff type term K(r, u) is assumed
indefinite (sign changing) and given as

K(r, u) = ar − br

∫
Ω

1
r(x)
|∇u|r(x)dx, with ar, br > 0. (K)
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Precisely, the Dirichlet problem we study is

− ∆Kp

p(x)u(x)− ∆Kq

q(x)u(x) = f (x, u(x),∇u(x)) in Ω, u
∣∣
∂Ω = 0. (P)

Here, we have the sum of two such Kirchhoff type operators −∆Kp

p(x)u := −K(p, u)∆p(x)u and

−∆Kq

q(x)u := −K(q, u)∆q(x)u, with variable exponents p, q ∈ C(Ω) such that

1 < q− = inf
x∈Ω

q(x) ≤ q(x) ≤ q+ = sup
x∈Ω

q(x)

< p− = inf
x∈Ω

p(x) ≤ p(x) ≤ p+ = sup
x∈Ω

p(x) < +∞.

The reaction (right hand side of (P)) is a Carathéodory function f (x, z, y) (that is, for all
(z, y) ∈ R×RN , x → f (x, z, y) is measurable and for almost all x ∈ Ω, (z, y) → f (x, z, y)
is continuous). The presence of the gradient ∇u is crucial to be considered when the con-
vection in fluid dynamical processes cannot be neglected (that is, when an energy transfer is
accomplished by moving particles). Turning to the Kirchhoff type term (K), it is related to
physical modeling of the changes in length of a string subject to transverse vibrations. In [13],
Kirchhoff generalized the classical D’Alembert wave equation

ρ
∂2

∂t2 −
(

P0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2

∂x2 = 0,

with ρ, P0, h, E, L denoting physical parameters (respectively, mass density, initial tension, area
of the cross-section, Young modulus of the material, length of the string) and describing the
change of string’s length during free vibration.

The existence results we establish use topological techniques (fixed-point arguments to-
gether with the theory of pseudomonotone operators) in order to overcome the loss of varia-
tional structure, due to the presence of gradient term in the reaction. The classical strategies
are also adapted to deal with the nonlocal nature of the Kirchhoff term. Following the similar
approach as in Vetro [26], we prove the existence of strong generalized solutions as well as
weak solutions to (P). To have a more complete picture of the relevant literature, we mention
that standard −∆p − ∆q operator was considered by Faria et al. [5] and Zeng & Papageorgiou
[28], in the case of positive solutions. For single −∆p operator we mention Papageorgiou et
al. [19], dealing also with positive solutions. Precisely, in [5] the authors adopt an approx-
imating process involving a Schauder basis of W1,p(x)

0 (Ω), then apply a generalized strong
maximum principle. In [28], the authors use the Leray–Schauder alternative principle in com-
bination with the frozen variable method (to freeze the effects of the gradient term). In [19],
the authors use also Leray–Schauder alternative principle, together with truncation and com-
parison techniques. Additionally, the case of double phase problems (that is, −∆p − µ(x)∆q

operator, with suitable weight function µ(·)) was studied by Gasiński & Winkert [10], using
surjectivity result of pseudomonotone operators. Finally, we mention the work of Motreanu
[18] dealing with −∆p + ∆q operator. In that paper, the author uses a consequence of the
Brouwer fixed point theorem, in respect of a Galerkin basis of W1,p

0 (Ω). A main feature of
the present manuscript and of the works [18, 26] is the consideration of two different types of
solutions of (P), that is, the authors employ both classical weak solutions and new concepts of
strong generalized solutions. Additionally, [26] deals with the variable exponents Lebesgue
and Sobolev spaces, in the case of a single p(x)-Kirchhoff type operator. The similar problem
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was previously studied by Wang et al. [27], in absence of Kirchhoff type term. Moreover,
the Kirchhoff type term herein was considered by Hamdani et al. [11], whose reaction is not
gradient dependent. Therefore, [11] employs a (classical) variational approach. It is worth
mentioning that the Lions’ work [16] originated a revival interest for equations involving a
Kirchhoff term, but a large amount of manuscripts imposes a positive restriction to the values
of the Kirchhoff term (that is, they consider a sign “+” instead of “−” in (K), deriving from
the classical theory). The interested reader can also refer to Molica Bisci & Pizzimenti [17]
(looking infinitely many solutions), Figueiredo & Nascimento [6] (looking for nodal (sign-
changing) solutions), Santos Júnior & Siciliano [24] and Gasiński & Santos Júnior [8, 9] (both
of them introducing non positivity conditions on the Kirchhoff term). In the last three papers,
the authors assume that Kirchhoff terms can vanish in many different points. Additionally,
their strategy of proofs also involve fixed point results, and aims to establish both existence
and nonexistence theorems. Before concluding this introduction, it is very important to say
that recently in the literature, we find many papers where the authors study the existence and
multiplicity of solutions to problems involving the Kirchhoff operator, Choquard-Pekar equa-
tions and functionals of double phase with variable exponents. As a partial list we mention
the works by Albalawi [1], He et al. [12], Liang et al. [15], Qin et al. [21], Ragusa & Tachikawa
[22], Hi et al. [25], and references therein.

2 Preliminaries

Referring to the books of Diening et al. [2] and of Rădulescu & Repovš [23], we provide the
mathematical background of the present study. The natural setting where finding solutions
to (P) is the anisotropic Dirichlet Sobolev space W1,p(x)

0 (Ω), which means the completion of
C∞

0 (Ω) with respect to the W1,p(x)-norm defined below. Starting with

Lp(x)(Ω) =

{
u ∈ M(Ω) :

∫
Ω
|u(x)|p(x)dx < +∞

}
,

which is the variable exponent Lebesgue space, we consider the norm

‖u‖Lp(x)(Ω) := inf
{

λ > 0 : ρp

(u
λ

)
≤ 1

}
.

Here M(Ω) means the space of all measurable functions u : Ω→ R, and

ρp(u) :=
∫

Ω
|u(x)|p(x)dx for all u ∈ Lp(x)(Ω)

denotes the modular. As it is well known, (Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)) is a separable, reflexive and
uniformly convex Banach space. The norm ‖ · ‖Lp(x)(Ω) and the modular ρp(·) are related each
other by the following statements.

Theorem 2.1 ([4, Theorem 1.3]). Let u ∈ Lp(x)(Ω), then we have:

(i) ‖u‖Lp(x)(Ω) < 1 (= 1, > 1)⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ‖u‖Lp(x)(Ω) > 1, then ‖u‖p−

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p+

Lp(x)(Ω)
;

(iii) if ‖u‖Lp(x)(Ω) < 1, then ‖u‖p+

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p−

Lp(x)(Ω)
.
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In view of Theorem 2.1, we obtain the relation:

‖u‖p+

Lp(x)(Ω)
+ 1 ≥ ρp(u) ≥ ‖u‖p−

Lp(x)(Ω)
− 1. (2.1)

We are able to introduce the conjugate variable exponent to p, namely p′ ∈ C(Ω) satisfying

1
p(x)

+
1

p′(x)
= 1 for all x ∈ Ω.

As it is well known Lp(x)(Ω)∗ = Lp′(x)(Ω) and if p− > 1 we have∫
Ω

uwdx ≤
(

1
p−

+
1

(p′)−

)
‖u‖Lp(x)(Ω)‖w‖Lp′(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖w‖Lp′(x)(Ω),

for u ∈ Lp(x)(Ω), w ∈ Lp′(x)(Ω). This Hölder’s inequality plays a crucial role in establishing
suitable embedding results. We refer to [4, Theorem 1.11] for the continuity of the embedding
Lp1(x)(Ω) ↪→ Lp2(x)(Ω), provided that p1, p2 ∈ C(Ω) with p1(x) ≥ p2(x) > 1 for all x ∈ Ω.
Using the variable exponent Lebesgue space, we can define the variable exponent Sobolev
space

W1,p(x)(Ω) := {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}, p ∈ C(Ω).

Starting with the norm

‖u‖W1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) (where ‖∇u‖Lp(x)(Ω) = ‖|∇u|‖Lp(x)(Ω)),

we recall that

‖u‖Lp(x)(Ω) ≤ c1‖∇u‖Lp(x)(Ω) for all u ∈W1,p(x)
0 (Ω), some c1 > 0, (2.2)

see [2, Theorem 8.2.18]. Thus, as it is well known, ‖u‖W1,p(x)(Ω) and ‖∇u‖Lp(x)(Ω) are equivalent

norms on W1,p(x)
0 (Ω). This implies that we can use ‖∇u‖Lp(x)(Ω) instead of ‖u‖W1,p(x)(Ω), and

set
‖u‖ = ‖∇u‖Lp(x)(Ω) in W1,p(x)

0 (Ω) (by (2.2)).

We mention that judicious choices of norms and norm inequalities are needed for estab-
lishing bounds and a priori estimates. Additionally, Fan & Zhao [4] established that with
these norms the spaces W1,p(x)(Ω) and W1,p(x)

0 (Ω), become Banach spaces which are sepa-
rable and uniformly convex (hence reflexive). Now, for p ∈ C(Ω) we are able to define the
critical Sobolev exponent p∗ by

p∗(x) =

{ Np(x)
N−p(x) if p(x) < N,

+∞ if N ≤ p(x),
for all x ∈ Ω.

About the continuity and compactness of Sobolev embeddings, we recall the following
well-known result.

Proposition 2.2. Suppose p ∈ C(Ω) with p(x) > 1 for all x ∈ Ω. If α ∈ C(Ω) and 1 < α(x) <

p∗(x) for all x ∈ Ω, then W1,p(x)(Ω) ↪→ Lα(x)(Ω) is continuous and compact.

As already mentioned in the Introduction, our approach here makes use of properties of
pseudomonotone operators. So, we collect some definitions and results, as follows.
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Definition 2.3. For a reflexive Banach space X, let X∗ the dual space of X and 〈· , ·〉 the duality
pairing. Let A : X → X∗, then A is called

(i) to satisfy the (S+)-property if un
w−→ u in X and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply

un → u in X;

(ii) pseudomonotone if un
w−→ u in X and lim supn→+∞〈A(un), un − u〉 ≤ 0 imply

lim inf
n→+∞

〈A(un), un − v〉 ≥ 〈A(u), u− v〉 for all v ∈ X;

(iii) coercive if

lim
‖u‖X→+∞

〈A(u), u〉
‖u‖X

= +∞.

Remark 2.4. We point out that if the operator A : X → X∗ is bounded, then pseudomono-
tonicity in Definition 2.3 (ii) is equivalent to un

w−→ u in X and lim supn→+∞〈A(un), un− u〉 ≤ 0
imply A(un)

w−→ A(u) and 〈A(un), un〉 → 〈A(u), u〉. In the following we are going to use this
fact since our involved operators are bounded.

Pseudomonotone operators exhibit remarkable surjectivity properties. In particular, we
have the following result, see, for example, Papageorgiou & Winkert [20, Theorem 6.1.57].

Theorem 2.5. Let X be a real and reflexive Banach space. Let A : X → X∗ be a pseudomonotone,
bounded, and coercive operator, and let b ∈ X∗. Then, the equation A(u) = b admits a solution.

From Gasiński & Papageorgiou [7, Lemma 2.2.27], we get the following result of continu-
ous embedding and density.

Theorem 2.6. Let X, Y be Banach spaces such that X ⊆ Y. If X is dense in Y and the embedding
is continuous, then the embedding Y∗ ⊆ X∗ is continuous too. Moreover, if X is reflexive then Y∗ is
dense in X∗.

Our arguments of proofs are also based on Brouwer’s fixed point theorem, which leads to
the existence of solutions to certain operator equations as stated in the following proposition.

Proposition 2.7. For a normed finite-dimensional space (X, ‖ · ‖X) and a continuous map A : X →
X∗, we have that:

If there exists some R > 0 such that

〈A(w), w〉 ≥ 0 for all w ∈ X with ‖w‖X = R,

then A(w) = 0 has a solution ŵ ∈ X such that R ≥ ‖ŵ‖X.

3 Hypotheses and results

In this section, we introduce the hypotheses on the data and collect the statements of our
results. First, we put some restrictions on the exponent p, useful to give us the Rayleigh
quotient

λ̂ := inf
u∈W1,p(x)

0 (Ω),u 6=0

∫
Ω |∇u|p(x)dx∫

Ω |u|p(x)dx
> 0. (3.1)
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H(p): There exists ξ0 ∈ RN \ {0} such that for all x ∈ Ω the function px : Ωx → R defined by
px(z) = p(x + zξ0) is monotone, where Ωx := {z ∈ R : x + zξ0 ∈ Ω}.

We get (3.1) by [3, Theorem 3.3]. Alternatively, one can adopt a different condition, see for
example [3, Theorem 3.4]. Here, we will also impose the condition:

H′(p): p ∈ C(Ω) is finite with p+ < 2p−.

A similar condition was used in [11, 26]. Additionally, we impose growth conditions on
the right hand side of (P). Precisely, our hypotheses will be the following:

H( f ): f : Ω×R×RN → R is a Carathéodory function such that

(i) there exist σ ∈ Lα′(x)(Ω), α ∈ C(Ω) with 1 < α(x) < p∗(x) for all x ∈ Ω and c > 0 such
that

| f (x, z, y)| ≤ c(σ(x) + |z|α(x)−1 + |y|
p(x)
α′(x) ) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN ;

(ii) there exist σ0 ∈ L1(Ω) and b1, b2 ≥ 0 such that

| f (x, z, y)z| ≤ σ0(x) + b1|z|p(x) + b2|y|p(x) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN .

Remark 3.1. Let λ∗ = b1λ̂−1 + b2. By H( f )(ii) and H(p), we get the following estimate:∫
Ω
| f (x, u,∇u)u|dx ≤ λ∗ρp(∇u) + ‖σ0‖L1(Ω) for all u ∈W1,p(x)

0 (Ω). (3.2)

Here we establish the existence of solutions both in the usual weak form and in a spe-
cific (for Dirichlet problem (P)) form. As it is well known, u ∈ W1,p(x)

0 (Ω) is weak solution
whenever 〈

− ∆Kp

p(x)u, w
〉
+
〈
− ∆Kq

q(x)u, w
〉
=
∫

Ω
f (x, u(x),∇u(x))w(x)dx (3.3)

for all w ∈W1,p(x)
0 (Ω).

On the other hand, we introduce a new definition of strong generalized solution to (P), as
follows (see, the corresponding notion of [26]).

Definition 3.2. u ∈W1,p(x)
0 (Ω) is a strong generalized solution to (P), if we can find a sequence

{un}n∈N ⊆W1,p(x)
0 (Ω) verifying the convergences:

(i) un
w−→ u in W1,p(x)

0 (Ω), as n→ +∞;

(ii) −∆Kp

p(x)un − ∆Kq

q(x)un − f (·, un(·),∇un(·))
w−→ 0 in W−1,p′(x)(Ω), as n→ +∞;

(iii) limn→+∞

〈
− ∆Kp

p(x)un − ∆Kq

q(x)un, un − u
〉
= 0.

Remark 3.3. We point out that every weak solution to (P) satisfies the conditions in Defini-
tion 3.2. It is sufficient to use as test sequence, {un}n∈N ⊆ W1,p(x)

0 (Ω) defined by un = u for
all n ∈N.

In view of the above remark, we provide an answer to the question:

When does a strong generalized solution to (P) lead to a weak solution?
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Note that the source of difficulty in answering this question, is related to the indefinite
behavior of (K). Thus we assume the following non-negative bound conditions:

lim inf
n→+∞

|K(p, un)| > 0 and K(p, un)K(q, un) ≥ 0 for all n ∈N. (K+)

Proposition 3.4. Consider a strong generalized solution of (P), namely u ∈W1,p(x)
0 (Ω), in respect to

the sequence {un}n∈N ⊆ W1,p(x)
0 (Ω). Then u ∈ W1,p(x)

0 (Ω) is a weak solution of (P), provided that
hypotheses H( f ) and (K+) hold.

We shall prove two auxiliary propositions needed for the proof of the main result. These
propositions require both the hypotheses H(p) and H( f ), as given in the statements. Since
W1,p(x)

0 (Ω) is a separable Banach space, then we consider a Galerkin basis of W1,p(x)
0 (Ω), which

means that there exists a sequence {Xn}n∈N of vector subspaces of W1,p(x)
0 (Ω) satisfying

(j) dim (Xn) < +∞ for all n ∈N;

(jj) Xn ⊆ Xn+1 for all n ∈N;

(jjj) ∪∞
n=1Xn = W1,p(x)

0 (Ω).

Proposition 3.5. Consider a Galerkin basis of W1,p(x)
0 (Ω), namely {Xn}n∈N. Then for all n ∈N we

can find un ∈ Xn with〈
− ∆Kp

p(x)un, w
〉
+
〈
− ∆Kq

q(x)un, w
〉
=
∫

Ω
f (x, un(x),∇un(x))w(x)dx (3.4)

for all w ∈ Xn, provided that hypotheses H(p) and H( f ) hold.

Remark 3.6. From Theorem 2.1 we deduce that S ⊆ W1,p(x)
0 (Ω) is bounded in its norm if the

set {ρp(∇u) : u ∈ S} is bounded.

Focusing on the sequence {un}n∈N ⊆ ∪∞
n=1Xn mentioned in Proposition 3.5 (see also the

corresponding proof, in next section), we will show that {un}n∈N is bounded in W1,p(x)
0 (Ω).

Proposition 3.7. Consider the sequence {un}n∈N ⊆ ∪∞
n=1Xn generated in Proposition 3.5. Then

{un}n∈N is bounded in W1,p(x)
0 (Ω), provided that hypotheses H(p) and H( f ) hold.

Consequently, we prove our first existence result.

Theorem 3.8. Problem (P) admits a strong generalized solution u ∈ W1,p(x)
0 (Ω), provided that hy-

potheses H(p) and H( f ) hold.

The analogous of Propositions 3.5 and 3.7, and Theorem 3.8 can be obtained imposing
H′(p) instead of H(p) (see also Remark 4.1 at the end of Section 4).

4 Proofs of results

In this section we collect the technical proofs of the results stated previously.
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Proof of Proposition 3.4. We only prove the case lim infn→+∞ K(p, un) > 0, the other cases can
be proved by a similar argument. The previous assumption ensures that we can suppose that

K(p, un) ≥ β > 0 and K(q, un) ≥ 0 for all n ∈N, (4.1)

are true at least for a relabeled subsequence of {un}n∈N. Next, we recall that the −∆q(x)
operator is monotone and hence

〈−∆q(x)un, un − u〉 ≥ 〈−∆q(x)u, un − u〉 for all n ∈N.

Multiplying both sides of last inequality by K(q, un), then we get

K(q, un)〈−∆q(x)un, un − u〉 ≥ K(q, un)〈−∆q(x)u, un − u〉 for all n ∈N (by (4.1)),

that is, adopting the notation introduced at the beginning of this manuscript,〈
− ∆Kq

q(x)un, un − u
〉
≥ K(q, un)〈−∆q(x)u, un − u〉 for all n ∈N.

It is clear that using condition (iii) of Definition 3.2, we get

lim sup
n→+∞

〈
− ∆Kp

p(x)un, un − u
〉
= lim sup

n→+∞

[〈
− ∆Kp

p(x)un, un − u
〉
− K(q, un)〈∆q(x)u, un − u〉

]
≤ lim

n→+∞

〈
− ∆Kp

p(x)un − ∆Kq

q(x)un, un − u
〉
= 0.

From the previous inequality and (4.1), we deduce

lim sup
n→+∞

〈−∆p(x)un, un − u〉 ≤ 0,

and hence we retrieve the (S)+-property of the p(x)-Laplacian operator, provided that un → u
in W1,p(x)

0 (Ω), as n→ +∞. Using condition (ii) of Definition 3.2, we deduce that

−∆Kp

p(x)un − ∆Kq

q(x)un − f (·, un(·),∇un(·))
w−→ 0 in W−1,p′(x)(Ω),

which implies

−∆Kp

p(x)u− ∆Kq

q(x)u− f (·, u(·),∇u(·)) = 0,

and hence we conclude that u ∈ W1,p(x)
0 (Ω) is a weak solution to problem (P) (recall the

definition of weak solution in (3.3)).

Proof of Proposition 3.5. Fixed n ∈N, let An : Xn → X∗n be the operator defined by

〈An(u), w〉 =
〈
− ∆Kp

p(x)u, w
〉
+
〈
− ∆Kq

q(x)u, w
〉
−
∫

Ω
f (x, u(x),∇u(x))w(x)dx

for all u, w ∈ Xn.
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Now, by the estimate (3.2), we get

〈−An(w), w〉 =
(

bp

∫
Ω

1
p(x)
|∇w|p(x)dx− ap

) ∫
Ω
|∇w|p(x)dx

+

(
bq

∫
Ω

1
q(x)
|∇w|q(x)dx− aq

) ∫
Ω
|∇w|q(x)dx−

∫
Ω

f (x, w,∇w)wdx

≥
(

bp

∫
Ω

1
p(x)
|∇w|p(x)dx− ap

) ∫
Ω
|∇w|p(x)dx

− aq

∫
Ω
|∇w|q(x)dx−

∫
Ω
| f (x, w,∇w)w|dx

≥
bp

p+
ρ2

p(∇w)− apρp(∇w)− aq

∫
Ω
(1 + |∇w|p(x))dx

− λ∗ρp(∇w)− ‖σ0‖L1(Ω) (by (3.2))

≥
bp

p+
ρ2

p(∇w)− (ap + aq + λ∗)ρp(∇w)− aq|Ω| − ‖σ0‖L1(Ω),

where |Ω| is the Lebesgue measure of the set Ω. So, we have

〈−An(w), w〉 ≥
bp

p+
ρ2

p(∇w)− (ap + aq + λ∗)ρp(∇w)− C for all w ∈ Xn,

where C = aq|Ω|+ ‖σ0‖L1(Ω). Now, if ρp(∇w) > 1 we get

〈−An(w), w〉 ≥
bp

p+
ρ2

p(∇w)− (ap + aq + λ∗ + C)ρp(∇w)

=

[
bp

p+
ρp(∇w)−

(
ap + aq + λ∗ + C

)]
ρp(∇w),

which gives us the condition

〈−An(w), w〉 ≥ 0 if ρp(∇w) ≥ p+

bp
(ap + aq + λ∗ + C).

Let

R > max

{[
p+

bp
(ap + aq + λ∗ + C)

]1/p−

, 1

}
be fixed. For each w ∈ Xn with ‖w‖ = R we obtain

〈−An(w), w〉 ≥ 0 (recall we have ‖w‖ = ‖∇w‖Lp(x)(Ω) ≤ ρ
1

p−
p (∇w)).

A simple application of Proposition 2.7 ensures that −An(w) = 0 (and hence, An(w) =

0) possesses a solution un ∈ Xn. This is sufficient to conclude that the equation (3.4) is
proved.

Proof of Proposition 3.7. The crucial point of the proof consists in showing that

ρp(∇un) ≤ max
{

p+

bp

(
ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
, 1
}

for all n ∈N. (4.2)
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Hence, we start obtaining the inequality

ρp(∇un) ≤
p+

bp

(
ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
,

provided that ρp(∇un) > 1. By (3.4), putting w = un we get

bp

p+
ρ2

p(∇un) ≤ apρp(∇un) + aqρq(∇un)−
bq

q+
ρ2

q(∇un)−
∫

Ω
f (x, un,∇un)undx

≤ (ap + aq)ρp(∇un) + aq|Ω|+
∫

Ω
| f (x, un,∇un)un|dx

≤ (ap + aq)ρp(∇un) + aq|Ω|+ λ∗ρp(∇un) + ‖σ0‖L1(Ω) (by (3.2)).

Keeping in mind that ρp(∇un) > 1, it follows that

bp

p+
ρ2

p(∇un) ≤
(

ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
ρp(∇un),

⇒
bp

p+
ρp(∇un) ≤ ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω),

and multiplying both sides by p+
bp

, we get

ρp(∇un) ≤
p+

bp

(
ap + aq + λ∗ + aq|Ω|+ ‖σ0‖L1(Ω)

)
.

This concludes the proof of inequality (4.2). Consequently, we get that {un}n∈N ⊆ ∪∞
n=1Xn is

a bounded sequence in W1,p(x)
0 (Ω).

Proof of Theorem 3.8. First, we introduce the Nemitsky map corresponding to the Carathéodory
function f . Namely, N∗f : W1,p(x)

0 (Ω) ⊂ Lα(x)(Ω)→ Lα′(x)(Ω) defined by

N∗f (u)(·) = f (·, u(·),∇u(·)) for all u ∈W1,p(x)
0 (Ω).

Hypothesis H( f )(i) implies that N∗f (·) is well-defined, bounded and continuous, see Fan &

Zhao [4] and Kováčik & Rákosník [14]. By Theorem 2.6, the embedding i∗ : Lα′(x)(Ω) →
W−1,p′(x)(Ω) is continuous and hence the operator N f : W1,p(x)

0 (Ω)→W−1,p′(x)(Ω) defined by
N f = i∗ ◦ N∗f is bounded and continuous.

Now, we have established in Proposition 3.7, that the sequence {un}n∈N ⊆ ∪∞
n=1Xn (gen-

erated in Proposition 3.5) is bounded in the anisotropic Dirichlet Sobolev space W1,p(x)
0 (Ω).

Additionally, this Sobolev space is reflexive, and hence for some u ∈ W1,p(x)
0 (Ω), we suppose

that
un

w−→ u in W1,p(x)
0 (Ω) and un → u in Lα(x)(Ω). (4.3)

Since the Nemitsky map is bounded, then we deduce that

{N f (un)}n∈N is bounded in W−1,p′(x)(Ω).

We already know that −∆Kp

p(x),−∆Kq

q(x) : W1,p(x)
0 (Ω)→W−1,p′(x)(Ω) are bounded, and hence{

− ∆Kp

p(x)un − ∆Kq

q(x)un − N f (un)
}

n∈N
is bounded in W−1,p′(x)(Ω). (4.4)
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Consequently, for a relabeled subsequence of (4.4) we get

− ∆Kp

p(x)un − ∆Kq

q(x)un − N f (un)
w−→ g in W−1,p′(x)(Ω), for some g ∈W−1,p′(x)(Ω), (4.5)

as the dual space W−1,p′(x)(Ω) is reflexive too.
Choosing w in ∪∞

n=1Xn, there will be n(w) ∈ N such that w belongs to Xn(w). By Proposi-
tion 3.5, we deduce that (3.4) holds true for every n ≥ n(w). Letting n to infinity in (3.4), we
obtain

〈g, w〉 = 0 for all w ∈ ∪∞
n=1Xn.

The density of ∪∞
n=1Xn in W1,p(x)

0 (Ω) (as {Xn}n∈N is a Galerkin basis), leads to the conclu-
sion g = 0, and using (4.5) we get

− ∆Kp

p(x)un − ∆Kq

q(x)un − N f (un)
w−→ 0 in W−1,p′(x)(Ω). (4.6)

Turning to equation (3.4), we consider w = un and obtain〈
− ∆Kp

p(x)un − ∆Kq

q(x)un − N f (un), un

〉
= 0 for all n ∈N. (4.7)

By (4.6) we have〈
− ∆Kp

p(x)un − ∆Kq

q(x)un − N f (un), u
〉
→ 0, as n→ +∞,

and using (4.7) we get

lim
n→+∞

〈
− ∆Kp

p(x)un − ∆Kq

q(x)un − N f (un), un − u
〉
= 0. (4.8)

Since {un}n∈N converges weakly in W1,p(x)
0 (Ω), it is bounded and so {N∗f (un)}n∈N is

bounded. Using this fact along with Hölder’s inequality and the compact embedding
W1,p(x)

0 ↪→ Lα(x)(Ω) (see Proposition 2.2), we get∣∣∣∣∫Ω
f (x, un,∇un)(un − u) dx

∣∣∣∣ ≤ 2‖N∗f (un)‖Lα′(x)(Ω)‖u− un‖Lα(x)(Ω)

≤ 2

(
sup
n∈N

‖N∗f (un)‖Lα′(x)(Ω)

)
‖u− un‖Lα(x)(Ω) → 0,

as n→ +∞. It follows that

lim
n→+∞

〈
− ∆Kp

p(x)un − ∆Kq

q(x)un, un − u
〉
= 0 (recall (4.8)). (4.9)

Combining (4.3), (4.6) and (4.9) we conclude that u ∈ W1,p(x)
0 (Ω) is a strong generalized

solution to (P). This completes the proof.

Remark 4.1. Changing H(p) by H′(p), the proofs of Propositions 3.5 and 3.7 above need
minor adaptations. Thus, to avoid repetitions, we omit the details. We leave to the reader the
easy computations, see also the similar lines in Section 4, pp. 12–13, of [26].
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5 Case of positive Kirchhoff term

In this section, we briefly discuss the existence of weak solutions to (P), in the case the Kirch-
hoff type term (K) is substituted by the classical positive Kirchhoff term in the literature,
that is

K̃(r, u) = ar + br

∫
Ω

1
r(x)
|∇u|r(x)dx, with ar, br > 0. (5.1)

This means that our hypothesis (K+) this time is trivially satisfied as from (5.1) we have

K̃(r, u) ≥ ar > 0 for all u ∈W1,r(x)
0 (Ω),

and consequently we focus only on the notion of weak solution. Indeed, every weak solution
obtained in this case, is a strong generalized solution too (recall (K+)).

The main problem (P) becomes as follows

− ∆K̃p

p(x)u(x)− ∆K̃q

q(x)u(x) = f (x, u(x),∇u(x)) in Ω, u
∣∣
∂Ω = 0. (P+)

This time, −∆K̃p

p(x),−∆K̃p

q(x) : W1,p(x)
0 (Ω)→W−1,p′(x)(Ω) are the operators defined by

〈
− ∆K̃p

p(x)u, w
〉
= K̃(p, u)〈−∆p(x)u, w〉

= K̃(p, u)
∫

Ω
|∇u|p(x)−2(∇u,∇w)RN dx for all u, w ∈W1,p(x)

0 (Ω),

〈
− ∆K̃q

q(x)u, w
〉
= K̃(q, u)〈−∆q(x)u, w〉

= K̃(q, u)
∫

Ω
|∇u|q(x)−2(∇u,∇w)RN dx for all u, w ∈W1,p(x)

0 (Ω).

Simplifying, −∆K̃r
r(x) : W1,r(x)

0 (Ω) → W−1,r′(x)(Ω) can be seen as positive-weight version of

the operator −∆r(x) : W1,r(x)
0 (Ω) → W−1,r′(x)(Ω), in respect to the theory of pseudomonotone

operators. Since −∆r(x) is continuous, bounded, strictly monotone convex and of type (S)+,

we deduce trivially that −∆K̃r
r(x) is continuous, bounded and of type (S)+.

Our approach remains purely topological (because of the presence of convection), so we
involve the Nemitsky map N f : W1,p(x)

0 (Ω) → W−1,p′(x)(Ω), and introduce the operator A :

W1,p(x)
0 (Ω)→W−1,p′(x)(Ω) defined by

A(u) = −∆K̃p

p(x)u− ∆K̃q

q(x)u− N f (u) for all u ∈W1,p(x)
0 (Ω). (5.2)

Clearly, this operator is bounded and continuous. We establish the following existence theo-
rem.

Theorem 5.1. If hypotheses H(p) and H( f ) hold, then problem (P+) admits at least a weak solution.

A similar theorem can be established using hypothesis H′(p) instead of H(p). In both the
cases, the new strategy develops through two steps: the proof of pseudo-monotonicity of A(·)
and the proof of coercivity of A(·).
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Proof of Theorem 5.1. In the first step of the proof, we establish the pseudo-monotonicity of
A(·) defined by (5.2), in the sense of Remark 2.4. To this end, let {un}n∈N ⊆ W1,p(x)

0 be a
sequence such that

un
w−→ u in W1,p(x)

0 and lim sup
n→+∞

〈A(un), un − u〉 ≤ 0. (5.3)

Using (5.3) we deduce that

lim sup
n→+∞

[〈
− ∆K̃p

p(x)un − ∆K̃q

q(x)un, un − u
〉
−
∫

Ω
f (x, un,∇un)(un − u)dx

]
≤ 0. (5.4)

Since {un}n∈N converges weakly in W1,p(x)
0 (Ω), it is bounded and so {N∗f (un)}n∈N is

bounded. Using this fact along with Hölder’s inequality and the compact embedding
W1,p(x)

0 ↪→ Lα(x)(Ω) (see Proposition 2.2), we get∫
Ω

f (x, un,∇un)(un − u)dx → 0, as n→ +∞. (5.5)

Therefore (5.4) leads to the following chain of implications

lim sup
n→+∞

〈
− ∆K̃p

p(x)un − ∆K̃q

q(x)un, un − u
〉
≤ 0,

⇒ lim sup
n→+∞

[〈
− ∆K̃p

p(x)un, un − u
〉
+ K̃(q, un)〈−∆q(x)u, un − u〉

]
≤ 0,

⇒ lim sup
n→+∞

〈
− ∆K̃p

p(x)un, un − u
〉
≤ 0

⇒ un → u in W1,p(x)
0 (Ω) (since −∆K̃p

p(x) has the (S)+-property). (5.6)

Since A(·) is continuous, using (5.6) we get the convergences A(un)→A(u) and 〈A(un), un〉→
〈A(u), u〉. So, we conclude that A(·) is a pseudomonotone operator.

It remains to prove the coercivity of A(·). Using hypothesis H( f )(ii), we deduce that

〈A(u), u〉 =
(

ap + bp

∫
Ω

1
p(x)
|∇u|p(x)dx

) ∫
Ω
|∇u|p(x)dx

+

(
aq + bq

∫
Ω

1
q(x)
|∇u|q(x)dx

) ∫
Ω
|∇u|q(x)dx−

∫
Ω

f (x, u,∇u)udx

≥
bp

p+
ρ2

p(∇u) + apρp(∇u) +
bq

q+
ρ2

q(∇u) + aqρq(∇u)−
∫

Ω
| f (x, u,∇u)u|dx

≥
[

bp

p+
ρp(∇u) + ap − λ∗

]
ρp(∇u)− ‖σ0‖L1(Ω) (by (3.2)),

and hence we get

〈A(u), u〉 ≥
[

bp

p+
(‖u‖p− − 1) + ap − λ∗

]
(‖u‖p− − 1)− ‖σ0‖L1(Ω) (by (2.1)).

Therefore the coercivity of A(·) follows immediately since 1 < p−. Now, we can apply
Theorem 2.5 to the operator A(·), and hence we deduce that there exists û ∈ W1,p(x)

0 (Ω) such

that A(û) = 0. Obviously, such û ∈W1,p(x)
0 (Ω) is a weak solution to (P+).
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Remark 5.2. When we use hypothesis H( f )(ii) and H′(p) to prove the coercivity of A(·), the
precise calculations are as follows

〈A(u), u〉 =
(

ap + bp

∫
Ω

1
p(x)
|∇u|p(x)dx

) ∫
Ω
|∇u|p(x)dx

+

(
aq + bq

∫
Ω

1
q(x)
|∇u|q(x)dx

) ∫
Ω
|∇u|q(x)dx−

∫
Ω

f (x, u,∇u)udx

≥
bp

p+
ρ2

p(∇u)− |ap − b2|ρp(∇u)− b1

∫
Ω
|u|p(x)dx− ‖σ0‖L1(Ω)

≥
bp

p+
‖u‖2p− − C‖u‖p+ for some C > 0 if ‖u‖ > 1,

and hence the coercivity of A(·) is proved.
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