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1 Introduction

The purpose of this note is to investigate the C1,γ regularity up to the boundary for viscosity
solutions of the following fully nonlinear elliptic equation{

F(D2u, x) = f in Ω;

u = g on ∂Ω,
(1.1)

where Ω ⊂ Rn is a convex polyhedron, F is assumed to be uniformly elliptic (see (1.4)).
With respect to the boundary regularity of solutions of linear elliptic equations, Li and

Wang [7, 8] proved the boundary differentiability on convex domains and demonstrated that
only under the assumption that Ω is convex, no continuity of the gradient of solutions along
the boundary can be expected (see the counterexamples in [7]). On the other hand, Lian and
Zhang [11, Theorem 1.6] proved the boundary C1,α regularity of solutions of fully nonlinear
elliptic equations under the assumption that the boundary ∂Ω is C1,α. In this note, we show
the C1,γ regularity for fully nonlinear elliptic equations (linear elliptic equations as a special
case) by strengthening convex domain into convex polyhedron. And we do not need such
high smoothness condition on the boundary as in [11].

Before stating our main results, we give several definitions.
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Definition 1.1. Let Ω ⊂ Rn be a bounded set and f be a function defined on Ω. We say that f
is C1,α at x0 ∈ Ω denoted by f ∈ C1,α(x0) if there exist a linear polynomial L, constants C and
r0 > 0 such that

| f (x)− L(x)| ≤ C|x− x0|1+α, ∀ x ∈ Ω ∩ Br0(x0). (1.2)

Note that there may exist many L and C (e.g. Ω = B1 ∩ Rn−1). We take L0 with

‖L0‖ = min {‖L‖ | ∃C such that (1.2) holds with L and C} ,

where ‖L‖ = |L(x0)|+ |DL(x0)|. Define

D f (x0) = DL0(x0),

‖ f ‖C1(x0) = ‖L0‖,

[ f ]C1,α(x0) = min {C | (1.2) holds with L0 and C}

and
‖ f ‖C1,α(x0) = ‖ f ‖C1(x0) + [ f ]C1,α(x0).

If f ∈ C1,α(x) for any x ∈ Ω with the same r0 and

‖ f ‖C1,α(Ω̄) := sup
x∈Ω
‖ f ‖C1(x) + sup

x∈Ω
[ f ]C1,α(x) < +∞,

we say f ∈ C1,α(Ω̄).

Definition 1.2. Let Ω and f be as in Definition 1.1. We call that f is C−1,α at x0 ∈ Ω denoted
by f ∈ C−1,α(x0) if there exist constants C and r0 > 0 such that

‖ f ‖Ln(Ω̄∩Br(x0))
≤ Crα, ∀ 0 < r < r0, (1.3)

and denote
‖ f ‖C−1,α(x0) = min {C | (1.3) holds with C} .

If f ∈ C−1,α(x) for any x ∈ Ω with the same r0 and

‖ f ‖C−1,α(Ω̄) := sup
x∈Ω
‖ f ‖C−1,α(x) < +∞,

we say f ∈ C−1,α(Ω̄).

Remark 1.3. Without loss of generality, we can assume r0 = 1 throughout this paper.

Remark 1.4. If Ω is a Lipschitz domain, the definition of C1,α(Ω̄) in Definition 1.1 is equivalent
to the usual classical definition of C1,α(Ω̄) (see [9]).

Definition 1.5 ([13]). A bounded set Ω is called a convex polyhedron if it is the intersection
of a finite number of closed half-spaces.

For an n-dimensional convex polyhedron Ω, let Fk (k = 0, 1, . . . , n− 1) be its k-dimensional
faces. Specially, 0-dimensional faces are vertices and 1-dimensional faces are edges. Then we
classify the boundary points of Ω into two categories. For any x0 ∈ ∂Ω, if x0 ∈ Fn−1, we call
it the first class boundary point and denote x0 ∈ S1. If x0 /∈ Fn−1, we call it the second class
boundary point and denote x0 ∈ S2.



C1,γ regularity for fully nonlinear elliptic equations 3

We call that F : Sn ×Ω→ R is a fully nonlinear uniformly elliptic operator with ellipticity
constants 0 < λ ≤ Λ if

λ‖N‖ ≤ F(M + N, x)− F(M, x) ≤ Λ‖N‖, ∀ M, N ∈ Sn, N ≥ 0, (1.4)

where Sn denotes the set of n× n symmetric matrices; ‖N‖ is the spectral radius of N and N ≥
0 means the nonnegativeness. The standard notions and notations such as Pucci operators
M+(M, λ, Λ), M−(M, λ, Λ) and Pucci class S̄(λ, Λ, f ), S(λ, Λ, f ), S∗(λ, Λ, f ) will be used. For
the details, one can refer to [1–3].

Now we state our main results.

Theorem 1.6 (boundary C1,γ regularity). Let 0 < α < α1 where α1 is a universal constant (see
Lemma 2.1). Suppose that Ω is a convex polyhedron, x0 ∈ ∂Ω and u is a viscosity solution of{

u ∈ S∗(λ, Λ, f ) in Ω;

u = g on ∂Ω,
(1.5)

where f ∈ C−1,α(x0) and g ∈ C1,α(x0). Then u is C1,γ at x0, i.e., for any x0 ∈ ∂Ω, there exists a
linear polynomial Lx0 such that

|u(x)− Lx0(x)| ≤ C|x− x0|1+γ
(
‖u‖L∞(Ω) + ‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0)

)
, | ∀ x ∈ Ω̄ (1.6)

and
|Du(x0)| ≤ C

(
‖u‖L∞(Ω) + ‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0)

)
, (1.7)

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.

Remark 1.7. The viscosity solutions of (1.1) are in the classes S∗(λ, Λ, f ) (see [1, Proposi-
tion 2.13]). So all results for functions in the classes S∗(λ, Λ, f ) are valid for solutions of (1.1).

Combining the interior C1,γ estimate [1, Theorem 8.3], we have

Theorem 1.8 (global C1,γ regularity). Let α and Ω be as in Theorem 1.6. Suppose that u is a
viscosity solution of (1.1) with f ∈ C−1,α(Ω̄) and g ∈ C1,α(∂Ω). Then there exists θ > 0 depending
only on n, λ, Λ and α such that if

βF(x) = sup
M∈S\{0}

|F(M, x)− F(M, 0)|
‖M‖ ≤ θ, ∀ x ∈ Ω,

then u ∈ C1,γ(Ω̄) and

‖u‖C1,γ(Ω̄) ≤ C
(
‖u‖L∞(Ω) + ‖ f ‖C−1,α(Ω̄) + ‖g‖C1,α(∂Ω)

)
,

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.

The following corollary of Theorem 1.8 is a new result for linear elliptic equations.

Corollary 1.9. Let u be a viscosity solution of− aij(x)
∂2u(x)
∂xixj

= f in Ω;

u = g on ∂Ω,
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where α, Ω, f and g are as in Theorem 1.8. Then there exists θ > 0 depending only on n, λ, Λ and α

such that if
‖aij − δij‖L∞(Ω) ≤ θ,

then u ∈ C1,γ(Ω̄) and

‖u‖C1,γ(Ω̄) ≤ C
(
‖u‖L∞(Ω) + ‖ f ‖C−1,α(Ω̄) + ‖g‖C1,α(∂Ω)

)
, (1.8)

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.

Remark 1.10. The C1,γ estimate (1.8) is also called Cordes–Nirenberg estimate.

Remark 1.11. In this paper, C depending on n, λ, Λ, α and Ω will denote constants which may
differ at different occurrences.

The main route of proving Theorem 1.6 is the following. For x0 ∈ S1, the C1,γ regularity
can be obtained as a simple corollary of [11]. For x0 ∈ S2, there exist a half ball Br(x0) and
a cone K such that Ω ⊂ Br(x0) and K ⊂ Br(x0) ∩Ωc. This will lead to a higher regularity
of u. In addition, if f , g ≡ 0, the solutions of (1.5) on the half ball have sufficient regularity
(see Lemma 2.1). Noting that cone has the scaling invariance, the boundary C1,γ regularity for
x0 ∈ S2 can be derived by perturbation and iteration techniques which are inspired by [10].
Then the boundary C1,γ regularity can be obtained by the technique of patching. Finally, the
global C1,γ regularity will be deduced by combining the interior C1,γ estimate.

In Section 2, we will prove an important estimate (about the C1,γ regularity for x0 ∈ S2).
Theorem 1.6 and Theorem 1.8 will be proved in Section 3. In this note, we use the following
notations.

Notation

1. Rn
+ = {x ∈ Rn | xn > 0}.

2. Br(x0) = {x ∈ Rn | ||x− x0| < r}, Br = Br(0), B+
r (x0) = Br(x0) ∩ Rn

+ and B+
r = B+

r (0).

3. Tr(x0) = {(x′, 0) ∈ Rn | |x′ − x′0| < r} and Tr = Tr(0).

4. Ωc: the complement of Ω and Ω̄: the closure of Ω, ∀Ω ⊂ Rn.

5. Ωr = Ω ∩ Br and (∂Ω)r = ∂Ω ∩ Br.

2 An important estimate

In this section, we introduce some known lemmas. The first concerns the boundary C1,α

regularity for solutions with flat boundaries. It was first proved by Krylov [6] for classical
solutions and further simplified by Caffarelli (see [4, Theorem 9.31] and [5, Theorem 4.28]),
which is applicable to viscosity solutions (see [12]).

Lemma 2.1. Let u be a viscosity solution of{
u ∈ S(λ, Λ, 0) in B+

1 ;

u = 0 on T1.
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Then u is C1,α1 at 0, i.e., there exists a constant a such that

|u(x)− axn| ≤ C1|x|1+α1‖u‖L∞(B+
1 ), ∀ x ∈ B+

1/2

and
|a| ≤ C1‖u‖L∞(B+

1 ),

where α1 and C1 depend only on n, λ and Λ.

The next Lemma presents the boundary C1,α estimate for solutions of fully nonlinear ellip-
tic equations with the suitable right hand function f and the boundary value g on the curved
boundary (see [11, Theorem 1.6]).

Lemma 2.2. Let 0 < α2 < α1 where α1 is a universal constant (see Lemma 2.1). Suppose that ∂Ω is
C1,α2 at 0 and u is a viscosity solution of{

u ∈ S(λ, Λ, f ) in Ω ∩ B1;

u = g on ∂Ω ∩ B1,

where f ∈ C−1,α2(0) and g ∈ C1,α2(0). Then u is C1,α2 at 0, i.e., there exists a linear polynomial L̃0

such that

|u(x)− L̃0(x)| ≤ C̃|x|1+α2
(
‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α2 (0) + ‖g‖C1,α2 (0)

)
, ∀ x ∈ Ω ∩ B1/2

and
|Du(0)| ≤ C̃

(
‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α2 (0) + ‖g‖C1,α2 (0)

)
,

where C̃ depends only on n, λ, Λ, α2 and Ω.

Remark 2.3. The C1,γ regularity for the viscosity solutions of (1.5) at x0 ∈ S1 is true as a special
case of Lemma 2.2.

The next is a Hopf type lemma (see [14, Lemma 2.15]).

Lemma 2.4. Let Γ ⊂ ∂B+
1 \T1, and u be a viscosity solution of

M−(D2u, λ, Λ) = 0 in B+
1 ;

u = xn on Γ;

u = 0 on ∂B+
1 \Γ.

Then
u(x) ≥ c1xn in B+

1/2,

where c1 > 0 depends only on n, λ, Λ and Γ.

It has been known that if Ω occupies a smaller portion in a ball centered at 0 (e.g.
|Ω ∩ Br|/|Br| is smaller), the regularity of u is higher (roughly speaking). Inspired by this,
we have the following result.

Theorem 2.5. Let α and Ω be as in Theorem 1.6. Suppose that x0 ∈ S2 and u is a viscosity solution
of (1.5) with f ∈ C−1,α(x0) and g ∈ C1,α(x0). Then u is C1,γ at x0, i.e., for any x0 ∈ S2, there exists
a linear polynomial L̄x0 such that

|u(x)− L̄x0(x)| ≤ C|x− x0|1+γ
(
‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0)

)
, ∀ x ∈ Ω̄ (2.1)

with
Du(x0) = Dg(x0), (2.2)

where 0 < γ < α and C depend only on n, λ, Λ, α and Ω.
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Proof. For x0 ∈ S2, we can assume that x0 = 0, Ω ⊂ Rn
+ and there exists a cone K ⊂ Ωc ∩

Rn
+ with 0 being the vertex (by translating and rotating the coordinate system). Further, we

assume that g(0) = 0 and Dg(0) = 0. Otherwise, we can consider v(x) = u(x) − g(0) −
Dg(0) · x, then the regularity of u follows easily from v. Let Cg = [g]C1,α(0), then

|g(x)| ≤ Cg|x|1+α, ∀ x ∈ (∂Ω)1. (2.3)

Let M = ‖u‖L∞(Ω∩B1) + ‖ f ‖C−1,α(0) + ‖g‖C1,α(0). To prove Theorem 2.5, we only need to
show that there exists a nonnegative sequence {ak} (k ≥ −1) with a0 = 0 such that for all
k ≥ 0,

sup
Ω

ηk

(u− akxn) ≤ ĈMηk(1+α), (2.4)

inf
Ω

ηk
(u + akxn) ≥ −ĈMηk(1+α) (2.5)

and
ak ≤ (1− c1)ak−1 + C̄ĈMη(k−1)α, (2.6)

where C̄ depends only on n, λ and Λ; 0 < c1 < 1 depends only on n, λ, Λ and Ω; Ĉ and
0 < η < 1/4 depend only on n, λ, Λ and α.

Now we show that (2.4)-(2.6) imply that u is C1,γ at 0. Indeed, from (2.6), we have

ak ≤ C̄ĈM
k−1

∑
i=0

(1− c1)
k−1−iηiα ≤ C̄ĈMη(k−1)γ

k−1

∑
i=0

ηi(α−γ) ≤ CMηkγ,

provided
1− c1 ≤ ηγ, 0 < γ < α.

For any x ∈ Ω1, there exists k ≥ 0 such that ηk+1 ≤ |x| < ηk. From (2.4), we have

u(x) ≤ sup
Ω

ηk

(u− akxn) + akxn ≤ CMηk(1+γ) ≤ CM|x|1+γ.

Similarly, (2.5) and (2.6) imply
u(x) ≥ −CM|x|1+γ.

Therefore, u is C1,γ at 0 with Du(0) = Dg(0).
We only give the proofs of (2.4) and (2.6); the proof of (2.5) is similar with (2.4) and we

omit it. We prove (2.4) and (2.6) by induction. For k = 0, by setting a−1 = 0, they hold clearly.
Supposing that they hold for k, we need to prove that they hold for k + 1.

Let r = ηk/2 and v1 solve
M+(D2v1, λ, Λ) = 0 in B+

r ;

v1 = 0 on Tr;

v1 = ĈMηk(1+α) on ∂B+
r \Tr.

By the boundary C1,α estimate for v1 (see Lemma 2.1) and the maximum principle, there exists
ā ≥ 0 such that

‖v1 − āxn‖L∞(Ω
ηk+1 ) = ‖v1 − āxn‖L∞(Ω2ηr)

≤ C1
|x|1+α1

r1+α1
‖v1‖L∞(B+

r )

≤ C1ηα1−α · ĈMη(k+1)(1+α)

(2.7)
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and

ā ≤ C1ĈMηkα,

where α1 and C1 depend only on n, λ and Λ.
Let v2 solve 

M−(D2v2, λ, Λ) = 0 in B+
r ;

v2 = akxn on ∂B+
r ∩ K;

v2 = 0 on ∂B+
r \K.

By Lemma 2.4, there exists 0 < c1 < 1 depending only on n, λ, Λ and K such that

v2 ≥ c1akxn in B+
2ηr. (2.8)

In addition, by the comparison principle,

v2 ≤ akxn in B+
r .

Letting w = u− akxn − v1 + v2, it follows that (note that v1, v2 ≥ 0)
w ∈ S(λ, Λ,−| f |) in Ω ∩ B+

r ;

w ≤ g on ∂Ω ∩ B+
r ;

w ≤ 0 on ∂B+
r ∩ Ω̄.

By the Alexandrov–Bakel’man–Pucci maximum principle, we have

sup
Ω

ηk+1

w ≤ sup
Ωr

w ≤ Cgηk(1+α) + C2r‖ f ‖Ln(Ωr) ≤
1 + C2

Ĉη1+α
· ĈMη(k+1)(1+α), (2.9)

where C2 depend only on n, λ and Λ.
Let C̄ := C1. Take η small enough such that

C1ηα1−α ≤ 1
2

.

Next, take Ĉ large enough such that
1 + C2

Ĉη1+α
≤ 1

2
.

Let ak+1 = (1− c1)ak + ā. Then (2.6) holds for k + 1. Recalling (2.7), (2.8) and (2.9), we have

u− ak+1xn = u− akxn − v1 + v2 + v1 − axn + c1akxn − v2

= w + v1 − axn + c1akxn − v2

≤ w + v1 − axn

≤ ĈMη(k+1)(1+α) in Ωηk+1 .

By induction, the proofs of (2.4) and (2.6) are completed.
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3 Proofs of the main results

Combining Theorem 2.5 and Lemma 2.2, we give the

Proof of Theorem 1.6. We only need to prove that for any x0 ∈ S1, there exists a linear poly-
nomial Lx0 such that

|u(x)− Lx0(x)| ≤ C|x− x0|1+γ, ∀ x ∈ Ω̄. (3.1)

In fact, for any x0 ∈ S1, there exists y ∈ S2 such that |y− x0| = dx0 = d(x0, S2). We know from
Theorem 2.5 that there exist a linear polynomial L̄y and a constant C such that

|u(x)− L̄y(x)| ≤ C|x− y|1+γ, ∀ x ∈ Ω̄. (3.2)

Let v(x) = u(x)− L̄y(x). There exists a constant 0 < τ ≤ 1 (depending only on Ω) such that
Ω ∩ Bτdx0

(x0) is a half ball. That is, Ω ∩ Bτdx0
(x0) = {x ∈ Rn

∣∣~n · (x − x0) > 0} ∩ Bτdx0
(x0),

where ~n is the unit inward normal of Ω at x0. Applying Lemma 2.2 in Ω ∩ Bτdx0
(x0) and

recalling (3.2), there exists a linear polynomial

Rx0(x) = R(x0) + DR(x0) · (x− x0)

such that
|R(x0)| = |v(x0)| ≤ C|dx0 |1+γ,

|DR(x0)| ≤ C|τdx0 |γ ≤ C|dx0 |γ

and

|v(x)− Rx0(x)| ≤ C
|x− x0|1+γ

|τdx0 |1+γ

(
‖v‖L∞(Ω∩Bτdx0

(x0)) + |τdx0 |1+γ(‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0))
)

≤ C|x− x0|1+γ, ∀ x ∈ Ω ∩ Bτdx0 /2(x0).
(3.3)

Define
Lx0(x) = L̄y(x) + Rx0(x).

If |x− x0| < τdx0 /2, by (3.3), we have

|u(x)− Lx0(x)| = |v(x)− Rx0(x)| ≤ C|x− x0|1+γ.

If |x− x0| ≥ τdx0 /2, by (3.2), we have

|u(x)− Lx0(x)| ≤ |u(x)− L̄y(x)|+ |Rx0(x)|
≤ C|x− y|1+γ + |R(x0)|+ |DR(x0)||x− x0|
≤ C|x− x0|1+γ.

Combining the two cases, we get (3.1).

The proof of the global C1,γ regularity is ended by Theorem 1.6 and the interior C1,γ

estimate. Now we give the details.
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Proof of Theorem 1.8. For any x0 ∈ Ω, there exists y ∈ ∂Ω such that |y − x0| = dx0 =

d(x0, ∂Ω). Then from Theorem 1.6 and Remark 1.7, there exist a linear polynomial Ly and
a constant C such that

|u(x)− Ly(x)| ≤ C|x− y|1+γ, ∀ x ∈ Ω̄. (3.4)

Let v(x) = u(x)− Ly(x). By the interior C1,α estimate in Bdx0
(x0) and (3.4), there exists a linear

polynomial
Qx0(x) = Q(x0) + DQ(x0) · (x− x0)

such that
|Q(x0)| = |v(x0)| ≤ C|dx0 |1+γ,

|DQ(x0)| ≤ C|dx0 |γ

and

|v(x)−Qx0(x)| ≤ C
|x− x0|1+γ

|dx0 |1+γ

(
‖v‖L∞(Bdx0

(x0)) + |dx0 |1+γ(‖ f ‖C−1,α(x0) + ‖g‖C1,α(x0))
)

≤ C|x− x0|1+γ, ∀ x ∈ Bdx0 /2(x0).
(3.5)

Define
Px0(x) = Ly(x) + Qx0(x).

If |x− x0| < dx0 /2, by (3.5), we have

|u(x)− Px0(x)| = |v(x)−Qx0(x)| ≤ C|x− x0|1+γ.

If |x− x0| ≥ dx0 /2, by (3.4), we have

|u(x)− Px0(x)| ≤ |u(x)− Ly(x)|+ |Qx0(x)|
≤ C|x− y|1+γ + |Q(x0)|+ |DQ(x0)||x0 − x|
≤ C|x− x0|1+γ.

Combining the two cases, it follows that for any x0 ∈ Ω, there exists a linear polynomial Px0

such that
|u(x)− Px0(x)| ≤ C|x− x0|1+γ, ∀ x ∈ Ω̄.

The proof of Theorem 1.8 is finished.
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