Estimation of the hyper-order of entire solutions of complex linear ordinary differential equations whose coefficients are entire functions

Benharrat BELAÏDI Department of Mathematics University of Mostaganem
B. P 227 Mostaganem-(Algeria) belaidi.benharrat@caramail.com

Abstract

We investigate the growth of solutions of the differential equation $f^{(n)}+A_{n-1}(z) f^{(n-1)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=0$, where $A_{0}(z), \ldots, A_{n-1}(z)$ are entire functions with $A_{0}(z) \not \equiv 0$. We estimate the hyper-order with respect to the conditions of $A_{0}(z), \ldots, A_{n-1}(z)$ if $f \not \equiv 0$ has infinite order.

2000 Mathematics Subject Classification. 30D35, 34M10, 34C10, 34C11.
Key words. Linear differential equations, growth of entire functions, hyper-order.

1 Introduction and statement of results

We assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory of meromorphic functions (see ([5])). Let $\sigma(f)$ denote the order of the growth of an entire function f as defined in ([5]) :

$$
\sigma(f)=\varlimsup_{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}=\varlimsup_{r \rightarrow+\infty} \frac{\log \log M(r, f)}{\log r}
$$

where $T(r, f)$ is the Nevanlinna characteristic of f (see [5]), and $M(r, f)=$ $\max _{|z|=r}|f(z)|$.

Definition 1. ([1], [2], [8]) Let f be a meromorphic function. Then the hyper-order $\sigma_{2}(f)$ of $f(z)$ is defined by

$$
\begin{equation*}
\sigma_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r} \tag{1.1}
\end{equation*}
$$

Note. Clearly, if $f(z)$ is entire, then

$$
\begin{equation*}
\sigma_{2}(f)=\varlimsup_{r \rightarrow \infty} \frac{\log \log \log M(r, f)}{\log r}=\varlimsup_{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r} . \tag{1.2}
\end{equation*}
$$

We define the linear measure of a set $H \subset\left[0,+\infty\left[\right.\right.$ by $m(H)=\int_{H} d t$ and the logarithmic measure of a set $F \subset\left[1,+\infty\left[\right.\right.$ by $m_{l}(F)=\int_{F} \frac{d t}{t}$. The upper and the lower densities of H are defined by

$$
\overline{\operatorname{dens}} H=\varlimsup_{r \rightarrow \infty} \frac{m(H \cap[0, r])}{r}, \quad \underline{\text { dens }} H=\varliminf_{r \rightarrow \infty} \frac{m(H \cap[0, r])}{r} .
$$

Recently in [1], [2], [3] the concept of hyper-order was used to further investigate the growth of infinite order solutions of complex differential equations.

The following results have been obtained for the second order equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0 \tag{1.3}
\end{equation*}
$$

where $A(z), B(z) \not \equiv 0$ are entire functions.
Theorem A.([1]) Let H be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in H\}>$ 0 , and let $A(z)$ and $B(z)$ be entire functions such that for some constants $\alpha, \beta>0$,

$$
\begin{equation*}
|A(z)| \leq \exp \left\{o(1)|z|^{\beta}\right\} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|B(z)| \geq \exp \left\{(1+o(1)) \alpha|z|^{\beta}\right\} \tag{1.5}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of equation (1.3) satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f) \geq \beta$.

Theorem B.([2]) Let H be a set of complex numbers satisfying $\overline{\text { dens }}\{|z|: z \in H\}>$ 0 , and let $A(z)$ and $B(z)$ be entire functions, with $\sigma(A) \leq \sigma(B)=\sigma<+\infty$ such that for some real constant $C(>0)$ and for any given $\varepsilon>0$,

$$
\begin{equation*}
|A(z)| \leq \exp \left\{o(1)|z|^{\sigma-\varepsilon}\right\} \tag{1.6}
\end{equation*}
$$

EJQTDE, 2002 No. 5, p. 2
and

$$
\begin{equation*}
|B(z)| \geq \exp \left\{(1+o(1)) C|z|^{\sigma-\varepsilon}\right\} \tag{1.7}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of equation (1.3) satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=\sigma(B)$.

For $n \geq 2$, we consider a linear differential equation of the form

$$
\begin{equation*}
f^{(n)}+A_{n-1}(z) f^{(n-1)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{1.8}
\end{equation*}
$$

where $A_{0}(z), \ldots, A_{n-1}(z)$ are entire functions with $A_{0}(z) \not \equiv 0$. It is well-known that all solutions of equation (1.8) are entire functions and if some of the coefficients of (1.8) are transcendental, (1.8) has at least one solution with $\sigma(f)=+\infty$.

The main purpose of this paper is to investigate the growth of infinite order solutions of the linear differential equation (1.8).

Theorem 1. Let H be a set of complex numbers satisfying $\overline{\operatorname{dens}}\{|z|: z \in H\}>$ 0 , and let $A_{0}(z), \ldots, A_{n-1}(z)$ be entire functions such that for some constants $0 \leq$ $\beta<\alpha$ and $\mu>0$, we have

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\mu}} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{k}(z)\right| \leq e^{\beta|z|^{\mu}}, k=1, \ldots, n-1 \tag{1.10}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of equation (1.8) satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f) \geq \mu$.

Theorem 2. Let H be a set of complex numbers satisfying $\overline{\text { dens }}\{|z|: z \in H\}>$ 0 , and let $A_{0}(z), \ldots, A_{n-1}(z)$ be entire functions with $\max \left\{\sigma\left(A_{k}\right): k=1, \ldots, n-1\right\} \leq$ $\sigma\left(A_{0}\right)=\sigma<+\infty$ such that for some real constants $0 \leq \beta<\alpha$, we have

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\mid-\varepsilon}} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{k}(z)\right| \leq e^{\beta|z|^{\sigma-\varepsilon}}, \quad k=1, \ldots, n-1 \tag{1.12}
\end{equation*}
$$

as $z \rightarrow \infty$ for $z \in H$. Then every solution $f \not \equiv 0$ of equation (1.8) satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=\sigma\left(A_{0}\right)$.

2 Preliminary Lemmas

Our proofs depend mainly upon the following Lemmas.
Lemma 1. ([4], p. 90) Let f be a transcendental entire function of finite order σ. Let $\Gamma=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{m}, j_{m}\right)\right\}$ denote a finite set of distinct pairs of integers satisfying $k_{i}>j_{i} \geq 0$ for $i=1, \ldots, m$ and let $\varepsilon>0$ be a given constant. Then there exists a set $E \subset[0, \infty)$ with finite linear measure, such that for all z satisfying $|z| \notin E$ and for all $(k, j) \in \Gamma$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{2.1}
\end{equation*}
$$

Lemma 2. ([4]) Let $f(z)$ be a nontrivial entire function, and let $\alpha>1$ and $\varepsilon>0$ be given constants. Then there exist a constant $c>0$ and a set $E \subset[0, \infty)$ having finite linear measure such that for all z satisfying $|z|=r \notin E$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq c\left[T(\alpha r, f) r^{\varepsilon} \log T(\alpha r, f)\right]^{k}, k \in \mathbf{N} \tag{2.2}
\end{equation*}
$$

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be an entire function, $\mu(r)$ be the maximum term, i.e $\mu(r)=\max \left\{\left|a_{n}\right| r^{n} ; n=0,1, \ldots\right\}$, and let $\nu_{f}(r)$ be the central index of f, i.e $\nu_{f}(r)=\max \left\{m, \mu(r)=\left|a_{m}\right| r^{m}\right\}$.

Lemma 3.([2]) Let $f(z)$ be an entire function of infinite order with the hyperorder $\sigma_{2}(f)=\sigma$, and let $\nu_{f}(r)$ be the central index of f. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log \log \nu_{f}(r)}{\log r}=\sigma \tag{2.3}
\end{equation*}
$$

Lemma 4.(Wiman - Valiron, [6], [7]) Let $f(z)$ be a transcendental entire function and let z be a point with $|z|=r$ at which $|f(z)|=M(r, f)$. Then for all $|z|$ outside a set E of r of finite logarithmic measure, we have

$$
\begin{equation*}
\frac{f^{(k)}(z)}{f(z)}=\left(\frac{\nu_{f}(r)}{z}\right)^{k}(1+o(1)),(k \text { is an integer, } r \notin E) \tag{2.4}
\end{equation*}
$$

where $\nu_{f}(r)$ is the central index of f.

3 Proof of Theorem 1

Suppose that $f \not \equiv 0$ is a solution of equation (1.8) with $\sigma(f)<\infty$. By (1.8) we can write

$$
\begin{equation*}
\frac{1}{A_{0}(z)} \frac{f^{(n)}}{f}+\frac{A_{n-1}(z)}{A_{0}(z)} \frac{f^{(n-1)}}{f}+\ldots+\frac{A_{1}(z)}{A_{0}(z)} \frac{f^{\prime}}{f}+1=0 \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{A_{0}(z)} \frac{f^{(n)}}{f}+\sum_{k=1}^{n-1} \frac{A_{k}(z)}{A_{0}(z)} \frac{f^{(k)}}{f}=-1 \tag{3.2}
\end{equation*}
$$

Then, by Lemma 1 , there exists a set $E_{1} \subset[0, \infty)$ with finite linear measure, such that for all z satisfying $|z| \notin E_{1}$ and for all $k=1,2, \ldots n$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq|z|^{k c}, \quad k=1, \ldots, n ; \quad c=\sigma-1+\varepsilon \tag{3.3}
\end{equation*}
$$

Also, by the hypothesis of Theorem1, there exists a set E_{2} with $\overline{d e n s}\left\{|z|: z \in E_{2}\right\}>$ 0 such that for all z satisfying $z \in E_{2}$, we have

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\mu}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{k}(z)\right| \leq e^{\beta|z|^{\mu}}, \quad k=1, \ldots, n-1 \tag{3.5}
\end{equation*}
$$

as $z \rightarrow \infty$. Hence from (3.3), (3.4) and (3.5) it follows that for all z satisfying $z \in E_{2}$ and $|z| \notin E_{1}$, we have

$$
\begin{equation*}
\left|\frac{A_{k}(z)}{A_{0}(z)}\right|\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq \frac{1}{e^{(\alpha-\beta)|z|^{\mu}}}|z|^{k c}, \quad k=1, \ldots, n-1 ; \quad c=\sigma-1+\varepsilon \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{1}{A_{0}(z)}\right|\left|\frac{f^{(n)}(z)}{f(z)}\right| \leq \frac{1}{e^{\alpha|z|^{\alpha}}}|z|^{n c}, c=\sigma-1+\varepsilon \tag{3.7}
\end{equation*}
$$

as $z \rightarrow \infty$. Thus there exists a set $H \subset[0, \infty)$ with a positive upper density such that (3.6), (3.7) hold. Since

$$
\lim _{z \rightarrow \infty}^{z \in \mathcal{H}} \frac{1}{e^{(a-\beta)|z|^{\mu}}}|z|^{k c}=0, \quad k=1, \ldots, n-1
$$

and

$$
\lim _{\substack{z \rightarrow \infty \\ z \in H}} \frac{1}{e^{\alpha|z|^{\mu}}}|z|^{n c}=0
$$

it follows that

$$
\lim _{\substack{z \rightarrow \infty \\ z \in H}}\left|\frac{A_{k}(z)}{A_{0}(z)}\right|\left|\frac{f^{(k)}(z)}{f(z)}\right|=0, \quad k=1, \ldots, n-1
$$

and

$$
\lim _{\substack{z \rightarrow \infty \\ z \in H}}\left|\frac{1}{A_{0}(z)}\right|\left|\frac{f^{(n)}(z)}{f(z)}\right|=0
$$

By making $z \rightarrow \infty$ for $z \in H$ in the relation (3.2), we get a contradiction. Then every solution $f \neq 0$ of equation (1.8) has infinite order.

Now from (1.8), it follows that

$$
\begin{equation*}
\left|A_{0}(z)\right| \leq\left|\frac{f^{(n)}}{f}\right|+\left|A_{n-1}(z)\right|\left|\frac{f^{(n-1)}}{f}\right|+\ldots+\left|A_{1}(z)\right|\left|\frac{f^{\prime}}{f}\right| . \tag{3.8}
\end{equation*}
$$

Then, by Lemma 2, there exists a set $E_{3} \subset[0,+\infty)$ with a finite linear measure such that for all z satysfying $|z|=r \notin E_{3}$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f(z)}\right| \leq r[T(2 r, f)]^{k+1}, k=1, \ldots, n \tag{3.9}
\end{equation*}
$$

Also, by the hypothesis of the Theorem1, there exists a set E_{4} with $\overline{d e n s}\left\{|z|: z \in E_{4}\right\}>$ 0 such that for all z satisfying $z \in E_{4}$, we have

$$
\begin{equation*}
\left|A_{0}(z)\right| \geq e^{\alpha|z|^{\mu}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{k}(z)\right| \leq e^{\beta|z|^{\mu}}, \quad k=1, \ldots, n-1 \tag{3.11}
\end{equation*}
$$

as $z \rightarrow \infty$. Hence from (3.8), (3.9), (3.10) and (3.11) it follows that for all z satisfying $z \in E_{4}$ and $|z| \notin E_{3}$, we have

$$
\begin{equation*}
e^{\alpha|z|^{\mu}} \leq|z|[T(2|z|, f)]^{n+1}\left[1+(n-1) e^{\beta|z|^{\mu}}\right] \tag{3.12}
\end{equation*}
$$

as $z \rightarrow \infty$. Thus there exists a set $H \subset[0,+\infty)$ with positive upper density such that

$$
e^{(\alpha-\beta) r^{\mu}(1-o(1))} \leq[T(2 r, f)]^{n+1}
$$

as $r \rightarrow \infty$ in H. Therefore

$$
\varlimsup_{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r} \geq \mu .
$$

This proves Theorem 1.

4 Proof of Theorem 2

Assume that $f \not \equiv 0$ is a solution of equation (1.8). Using the same arguments as in Theorem 1, we get $\sigma(f)=+\infty$.

Now we prove that $\sigma_{2}(f)=\sigma\left(A_{0}\right)=\sigma$. By Theorem 1, we have $\sigma_{2}(f) \geq \sigma-\varepsilon$, and since ε is arbitrary, we get $\sigma_{2}(f) \geq \sigma\left(A_{0}\right)=\sigma$.

On the other hand, by Wiman-Valiron theory, there is a set $E \subset[1,+\infty)$ with logarithmic measure $m_{l}(E)<\infty$ and we can choose z satisfying $|z|=r \notin$ $[0,1] \cup E$ and $|f(z)|=M(r, f)$, such that (2.4) holds. For any given $\varepsilon>0$, if r is sufficiently large, we have

$$
\begin{equation*}
\left|A_{k}(z)\right| \leq e^{r^{\sigma+\varepsilon}}, k=0,1, \ldots, n-1 \tag{4.1}
\end{equation*}
$$

Substituting (2.4) and (4.1) into(1.8), we obtain

$$
\left(\frac{\nu_{f}(r)}{|z|}\right)^{n}|1+o(1)| \leq e^{r^{\sigma+\varepsilon}}\left(\frac{\nu_{f}(r)}{|z|}\right)^{n-1}|1+o(1)|+
$$

$$
\begin{equation*}
+e^{r^{\sigma+\varepsilon}}\left(\frac{\nu_{f}(r)}{|z|}\right)^{n-2}|1+o(1)|+\ldots+e^{r^{\sigma+\varepsilon}}\left(\frac{\nu_{f}(r)}{|z|}\right)|1+o(1)|+e^{r^{\sigma+\varepsilon}} \tag{4.2}
\end{equation*}
$$

where z satisfies $|z|=r \notin[0,1] \cup E$ and $|f(z)|=M(r, f)$. By (4.2), we get

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{\log \log \nu_{f}(r)}{\log r} \leq \sigma+\varepsilon . \tag{4.3}
\end{equation*}
$$

Since ε is arbitrary, by (4.3) and Lemma 3 we have $\sigma_{2}(f) \leq \sigma$. This and the fact that $\sigma_{2}(f) \geq \sigma$ yield $\sigma_{2}(f)=\sigma$.

Acknowledgement. The author would like to thank the referee for his/her helpful remarks and suggestions.

References

[1] Kwon K. H., On the growth of entire functions satisfying second order linear differential equations, Bull. Korean Math. Soc. 33(1996), N³, pp. 487-496.
[2] Chen Z.-X. and Yang C.-C., Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22(1999), pp. 273-285.
[3] Chen Z.-X. and Yang C.-C., On the zeros and hyper-order of meromorphic solutions of linear differential equations, Ann. Acad. Sci. Fenn. Math. 24(1999), pp. 215-224.
[4] Gundersen G., Estimates for the logarithmic derivative of a meromorphic functions, plus similar estimates, J. London Math. Soc. (2) 37 (1988), pp. 88-104.
[5] Hayman W. K., Meromorphic functions, Clarendon Press, Oxford, 1964.
[6] Hayman W. K., The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17(1974), pp. 317-358.
[7] Valiron G., Lectures on the General Theory of Integral Functions, translated by E. F. Collingwood, Chelsea, New York, 1949.
[8] Yi H.-X. and Yang C.-C., The Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995 (in Chinese).

