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Iterative solution of elliptic equations
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Abstract. We reduce solution of the Dirichlet problem (x ∈ D ⊂ Rm)

∆u(x) + a(x)u(x) = f (x) in D, u = 0 on ∂D

to iterative solution of a simpler problem

∆u = f (x) in D, u = 0 on ∂D ,

for which one can use either Fourier series or Green’s function method. The method is
suitable for numerical computations, particularly when one uses Newton’s method for
semilinear problems

∆u + g(x, u) = 0 in D, u = 0 on ∂D ,

in dimensions m ≥ 3.
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1 Introduction

If Green’s function G(x, y) is available for a domain D ⊂ Rm, it is easy to solve numerically
the Dirichlet problem for Laplace’s equation

− ∆u = f (x) in D, u = 0 on ∂D . (1.1)

The solution is u(x) =
∫

D G(x, y) f (y) dy. Mathematica software can compute such integrals
quickly and accurately even in dimensions m > 2, say for m = 5. When solving semilinear
problems

∆u + g(x, u) = 0 in D, u = 0 on ∂D

one usually uses Newton’s method

∆up+1 + g(x, up) + gu(x, up)
(
up+1 − up

)
= 0 in D, up+1 = 0 on ∂D ,
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which requires repeated solution of the linear problems

∆u + a(x)u = f (x) in D, u = 0 on ∂D , (1.2)

with given functions a(x) and f (x). It is very unlikely to have eigenfunctions (or Green’s
function) available for the problem (1.2). Question: can one reduce solving (1.2) to iterative solution
of (1.1)? It turns out that the answer is affirmative for any bounded a(x). We show that either
the iterations

− ∆un+1 = a(x)un − f (x) in D, un+1 = 0 on ∂D (1.3)

converge to the solution of (1.2), or else there is a modified iterative process that converges
to the solution of (1.2). Eigenfunctions of the Laplacian, or Green’s functions, are available
for some domains. For other domains their computation is a one time effort, while solving
nonlinear problems requires repeated solutions of the problem (1.2), particularly in connection
to curve following.

Turning to the description of the method, let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues
of −∆ with zero boundary conditions on D (λ1 is simple, while some other eigenvalues may
be repeated), and φ1 > 0, φ2, φ3, . . . be the corresponding eigenfunctions of −∆, forming
an orthonormal set in L2(D), so that

∫
D φ2

k dx = 1. Represent f (x) = ∑∞
k=1 fk φk(x), with

fk =
∫

D f (x)φk(x) dx. Recall that ∥ f ∥2
L2(D)

=
∫

D f 2(x) dx = ∑∞
k=1 f 2

k (Parseval’s identity), see
e.g., W. Craig [1] or P. Korman [2]. The solution of (1.1) is

u(x) =
∞

∑
k=1

fk

λk
φk(x) ≡ (−∆)−1 ( f (x)) ,

where (−∆)−1 is the common notation for the solution operator of (1.1). By Parseval’s identity

∥(−∆)−1 f ∥2
L2(D) =

∞

∑
k=1

f 2
k

λ2
k
≤ 1

λ2
1

∞

∑
k=1

f 2
k =

1
λ2

1
∥ f ∥2

L2(D) . (1.4)

In case f1 = 0, or f ⊥ φ1 in L2, the same argument shows that

∥(−∆)−1 f ∥L2 ≤ 1
λ2

∥ f ∥L2 , (1.5)

and if f1 = f2 = · · · = f j = 0, then

∥(−∆)−1 f ∥L2 ≤ 1
λj+1

∥ f ∥L2 . (1.6)

Proposition 1.1. Assume that a(x) ∈ C(D̄) satisfies

max
D̄

|a(x)| < λ1 . (1.7)

Then the iterates given by (1.3) converge in L2(D), to a solution u(x) ∈ H2(D) of (1.2), for any
f (x) ∈ L2(D).

Proof. Write (1.3) in the form

un+1 = (−∆)−1 [a(x)un − f (x)] .
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Subtracting a similar formula for un, and then using (1.4), we obtain

un+1 − un = (−∆)−1 [a(x) (un − un−1)] ,

∥un+1 − un∥L2 ≤ 1
λ1

∥a(x) (un − un−1) ∥L2 ≤ θ∥un − un−1∥L2 ,

where θ ≡ maxD̄ |a(x)|
λ1

< 1, which implies that {un(x)} is a Cauchy sequence in L2(D), and the
proof follows in view of completeness of L2(D).

If the condition (1.7) is violated then the iterations (1.3) diverge in L2(D), in general, as the
following example shows.

Example 1.2. Let a(x) = a, a constant, with λ1 < a < λ2. For the iterations

− ∆un+1 = aun − f (x) in D, un+1 = 0 on ∂D , (1.8)

write f (x) = ∑∞
k=1 fk φk, and un = ∑∞

k=1 uk
n φk, to obtain

λkuk
n+1 = auk

n − fk .

Denoting δ = a
λ1

> 1, obtain for the k = 1 component

u1
n+1 − u1

n = δ
(

u1
n − u1

n−1

)
,

so that the iterations (1.8) diverge (because the first component diverges).

Now suppose that the condition (1.7) does not hold, but we have

max
D̄

|a(x)| < λ2 (1.9)

instead. Decompose
u(x) = ξ1φ1(x) + U(x) , (1.10)

with
∫

D U(x)φ1(x) dx = 0, i.e., u(x) is the sum of the first harmonic of u(x), and the projection
of u(x) on φ⊥

1 , the orthogonal complement of φ1 in L2(D). Now the iterates given by (1.3)
diverge, in general, but we shall show that both ξ1 and the U part can be obtained by using
two converging iteration processes. (Unless a(x) is a constant, the harmonics do not decouple,
making the problem nontrivial.) Then we extend the method for any a(x) bounded on D̄.

2 The case maxD̄ |a(x)| < λ2

Let P denote the projection operator on φ⊥
1 in L2(D) (Pv = v −

(∫
D vφ1 dx

)
φ1). Then one can

write U(x) = Pu(x) in the decomposition (1.10). Similarly, decompose f (x) = µ1φ1 + e(x),
with e(x) = P f (x). Applying the operator P to the equation (1.2) gives

∆U + P [a(x) (ξ1φ1(x) + U(x))] = e(x) in D, U = 0 on ∂D . (2.1)

Projection of (1.2) onto φ1 gives∫
D
(∆u + a(x)u) φ1 dx =

∫
D

f (x)φ1 dx = µ1 . (2.2)
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Clearly, u(x) = ξ1φ1(x) + U(x) is a solution of (1.2) if and only if (2.1) and (2.2) hold. The
decomposition (2.1), (2.2) is similar to the Lyapunov–Schmidt reduction, see e.g., L. Niren-
berg [5].

We now modify the problem (2.1): find V(x) ∈ φ⊥
1 ∩ H2(D) solving

∆V + P [a(x)V(x)] = e(x) in D, V = 0 on ∂D . (2.3)

Proposition 2.1. Assume that the condition (1.9) holds. Then the problem (2.3) can be solved by the
converging iterations Vn(x) ∈ φ⊥

1 ∩ H2(D)

− ∆Vn+1 = P [a(x)Vn(x)]− e(x) in D, Vn+1 = 0 on ∂D , (2.4)

beginning with V0 = 0.

Proof. The iterates belong to φ⊥
1 , since the right hand sides of (2.4) do. Subtracting the equa-

tions for two consecutive iterates, and then using (1.5) and ∥Pv∥L2 ≤ ∥v∥L2 , we obtain from
(2.4):

Vn+1 − Vn = (−∆)−1P [a(x) (Vn − Vn−1)] ,

∥Vn+1 − Vn∥L2 ≤ 1
λ2

∥a(x) (Vn − Vn−1) ∥L2 ≤ θ∥Vn − Vn−1∥L2 ,

where θ ≡ maxD̄ |a(x)|
λ2

< 1 by (1.9), and the proof follows.

The difference W(x) = U(x)− V(x) satisfies

∆W + P [a(x)W(x)] = −ξ1P [a(x)φ1] in D, W = 0 on ∂D .

It follows that W = ξ1W̄, where W̄ is the unique solution of

∆W + P [a(x)W(x)] = −P [a(x)φ1] in D, W = 0 on ∂D , (2.5)

which in view of Proposition 2.1 is the limit of the iterations

− ∆Wn+1 = P [a(x)Wn(x)] + P [a(x)φ1] in D, Wn+1 = 0 on ∂D , (2.6)

starting with W0 = 0.

We conclude that U = V + ξ1W̄, so that u = ξ1φ1 + U = ξ1φ1 + V + ξ1W̄, and it remains
to determine the value of ξ1. Substitute this u(x) into (1.2)

−λ1ξ1φ1 + ∆V + ξ1∆W̄ + a(x) (ξ1φ1 + V + ξ1W̄) = f (x) .

Multiplication by φ1 and integration over D gives a linear equation for ξ1, with the solution
(observe that both ∆V and ∆W̄ are in φ⊥

1 )

ξ̄1 =

∫
D f φ1 dx −

∫
D a(x)Vφ1 dx

−λ1 +
∫

D a(x)φ2
1 dx +

∫
D a(x)W̄φ1 dx

. (2.7)

Then the solution of (1.2) is
u(x) = ξ̄1φ1 + V + ξ̄1W̄ . (2.8)
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Remark 2.2. In case maxD a(x) > λ1, it is possible to have resonance, when the problem

∆u + a(x)u = 0 in D, u = 0 on ∂D ,

has a nontrivial solution. In such a case the denominator in (2.7) is zero, and the problem (1.2)
is not solvable for general f (x).

Example 2.3. As a feasibility check we solved the problem

u′′(x) +
(

2 +
1
3

x
)

u(x) = x2 for 0 < x < π, u(0) = u(π) = 0 . (2.9)

Here λ1 = 1, λ2 = 4, so that a(x) = 2 + 1
3 x satisfies λ1 < a(x) < λ2 on (0, π). Calculate

φ1(x) =
√

2
π sin x, e(x) = f (x)−

(∫ π
0 f (x)φ1(x) dx

)
φ1(x), with f (x) = x2. We achieved good

accuracy performing twelve iterations for both (2.4) and (2.6). The graph of the solution of
(2.9) was identical to the one produced by Mathematica’s NDSolve command.

3 The general a(x)

We now prove directly that the formulas (2.3), (2.5), (2.7), (2.8) give the solution of (1.2), and
then generalize for any bounded a(x).

Theorem 3.1. Assume that the condition (1.9) holds. Then the formulas (2.3), (2.5), (2.7), (2.8) give
the solution of (1.2).

Proof. We will show that u(x) = ξ̄1φ1(x) +U(x), with U(x) = V + ξ̄1W̄ satisfies (2.1) and (2.2)
(where V and W̄ are the unique solutions (2.3) and (2.5) respectively, and ξ̄ is determined by
(2.7)). Indeed,

∆U + P
[
a(x)

(
ξ̄1φ1(x) + U(x)

)]
= ∆V + ξ̄1∆W̄ + P

[
a(x)

(
ξ̄1φ1(x) + V + ξ̄1W̄

)]
= ∆V + P [a(x)V] + ξ̄1

{
∆W̄ + P [a(x)W̄] + P [a(x)φ1]

}
= e(x) ,

verifying (2.1). Using (2.7) we obtain∫
D
(∆u + a(x)u) φ1 dx = −λ1ξ̄1 +

∫
D

a(x)
[
ξ̄1φ1 + V + ξ̄1W̄

]
φ1 dx

= ξ̄1

[
−λ1 +

∫
D

a(x)φ2
1 dx +

∫
D

ā(x)Wφ1 dx
]
+
∫

D
a(x)Vφ1 dx =

∫
D

f φ1 dx ,

justifying (2.2).

Turning to any a(x) ∈ C(D̄), we can find the first index j so that

max
D̄

|a(x)| < λj+1 . (3.1)

Decompose

u(x) =
j

∑
i=1

ξi φi(x) + U(x) , (3.2)
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with
∫

D U(x)φi(x) dx = 0 for all i = 1, . . . , j. Let P denote the projection operator on the or-

thogonal complement of the first j eigenfunctions, i.e., the projection on Span
{

φ1, φ2, . . . , φj
}⊥

in L2(D). Decompose f (x) = ∑
j
i=1 µi φi + e(x), with e(x) = P f (x). Applying P to the equation

(1.2) gives

∆U + P

[
a(x)

(
j

∑
i=1

ξi φi(x) + U(x)

)]
= e(x) in D, U = 0 on ∂D . (3.3)

We now modify the problem (3.3): find V(x) ∈ Span
{

φ1, φ2, . . . , φj
}⊥ solving

∆V + P [a(x)V(x)] = e(x) in D, V = 0 on ∂D . (3.4)

The following proposition is proved the same way as Proposition 2.1.

Proposition 3.2. Under the condition (3.1) the problem (3.4) can be solved by the converging iterations
Vn(x) ∈ Span

{
φ1, φ2, . . . , φj

}⊥
− ∆Vn+1 = P [a(x)Vn(x)]− e(x) in D, Vn+1 = 0 on ∂D , (3.5)

beginning with V0 = 0.

The difference W(x) = U(x)− V(x) ∈ Span
{

φ1, φ2, . . . , φj
}⊥ satisfies

∆W + P [a(x)W(x)] = −
j

∑
i=1

ξiP [a(x)φi] in D, W = 0 on ∂D .

By linearity W = ∑
j
i=1 ξiW̄i, where W̄i is the unique solution of

∆W + P [a(x)W(x)] = −P [a(x)φi] in D, W = 0 on ∂D , (3.6)

which in view of Proposition 3.2 is the limit of the iterations

− ∆Wn+1 = P [a(x)Wn(x)] + P [a(x)φi] in D, Wn+1 = 0 on ∂D , (3.7)

starting with W0 = 0. It follows that

u =
j

∑
i=1

ξi φi + U =
j

∑
i=1

ξi φi + V +
j

∑
i=1

ξiW̄i , (3.8)

and it remains to determine the values of ξi. Substitute this u(x) into (1.2)

−
j

∑
i=1

λiξi φi + ∆V +
j

∑
i=1

ξi∆W̄i + a(x)

(
j

∑
i=1

ξi φi + V +
j

∑
i=1

ξiW̄i

)
= f (x) .

Multiplication by φk and integration over D gives a j × j system of linear equations for ξi’s
(k = 1, 2, . . . , j)

− λkξk +
j

∑
i=1

ξi

[∫
D

a(x) (φi + W̄i) φk dx
]
=
∫

D
( f (x)− a(x)V) φk dx . (3.9)

This system has a unique solution, provided that (1.2) is solvable. Using the solution of (3.9)
in (3.8) provides the solution of (1.2).
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So that in case the condition (3.1) holds, the algorithm for solving (1.2) is as follows.

1. Solve the problem (3.4) by using the iterates (3.5).

2. Solve j problems (3.6) by using the iterates (3.7) for each problem.

3. Solve the j × j linear algebraic system (3.9) to find ξ̄1, ξ̄2, . . . , ξ̄ j.

4. The solution is u(x) = ∑
j
i=1 ξ̄i φi + V + ∑

j
i=1 ξ̄iW̄i.

4 Semilinear Poisson equation in higher dimensions

Elliptic PDE’s, like the problem (1.2), are rarely solved numerically in dimensions m > 2.
Using finite differences in the dimension m = 4 with 20 subdivision points along each axis
(which is not many), requires solving a system of 204 = 160000 linear equations. Richard Bell-
man coined a phrase “the curse of dimensionality” to describe the computational challenges in
higher dimensions. Since then there has been a tremendous advance in computer power and
software (e.g., parallel computations). In particular, a system of 204 = 160000 linear equations
nowadays is not considered to be very large. However the accuracy will be low with only
20 subdivision points along each axis, so that challenges remain. Another problem in higher
dimensions is representation of solutions. Once a solution in dimension m = 4 is computed,
should the result be presented as a graph in 5 dimensions, or as a 4-dimensional table? The
iterative method developed above addresses both issues. Represent f (x) = ∑∞

k=1 fk φk(x), with
the coefficients fk =

∫
D f (y)φk(y) dy. The solution of (1.1) is

u(x) =
∞

∑
k=1

fk

λk
φk(x) , with fk =

∫
D f (y)φk(y) dy . (4.1)

Replacing fk’s in the sum by their expressions as integrals, one can express the solution of
(1.1) as

u(x) =
∫

D
G(x, y) f (y) dy , (4.2)

with Green’s function

G(x, y) =
∞

∑
k=1

φk(x)φk(y)
λk

. (4.3)

However, it is easier to use the form (4.1) rather than (4.2) because Mathematica cannot handle
numerical integration in y variables, when x variables are present (even with the delayed
assignment). This is perfectly understandable, because addition of thousands of functions
(obtained by interpolation) is an enormous task. One can introduce a mesh, and compute
(4.2) in parallel at each point, using as many processors as there are points on the mesh, but
this “industrial strength” computational effort is beyond our scope. However, the usefulness
of our method probably lies in this direction.

We did try the eigenfunction expansion in both two and three dimensions, using the first
50 eigenfunctions. Conclusion: the method is slow. The method requires either the knowledge
or calculation of the eigenvalues and the eigenfuctions of the Laplacian. On a rectangle R =

[0, a]× [0, b]× [0, c] in three dimensions, the eigenfunctions (vanishing on ∂R) are

φ = c0 sin
mπ

a
x sin

nπ

b
y sin

pπ

c
z , c0 =

√
8

abc
,
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with
∫

R φ2 dxdydz = 1. The corresponding eigenvalues are

λ = π2
(

m2

a2 +
n2

b2 +
p2

c2

)
.

The order and multiplicity of eigenvalues depends on a particular choice of a, b, c. Let us take
a = b = 1, c =

√
2. Then λ = π2(m2 + n2 + p2

2

)
. The order of eigenvalues is determined by

(m, n, p) ≡ m2 + n2 + p2

2 .

a. (1, 1, 1) gives λ1 = 5
2 π2, φ1 = c0 sin πx sin πy sin π√

2
z.

b. (1, 1, 2) gives λ2 = 4π2, φ2 = c0 sin πx sin πy sin 2π√
2
z.

c. (2, 1, 1) and (1, 2, 1) give a repeated eigenvalue λ3 = λ4 = 11
2 π2, with the eigenfunctions

φ3 = c0 sin 2πx sin πy sin π√
2
z and φ4 = sin πx sin 2πy sin π√

2
z, and so on.

2 4 6 8 10
ξ1

0.1

0.2

0.3

0.4

μ1

Figure 4.1: The solution curve µ1 = µ1(ξ1) of the problem (4.4), oscillating around the ξ1-axis.

We wrote a code, allowing us to calculate a large number of eigenfunctions automatically.
We solved a number of examples for the problem (1.2), obtaining the expected results, but the
computations were slow.

Example 4.1. We performed curve-following for the following semilinear problem on a paral-
lelepiped Ω = (0, 1)× (0, 1)× (0,

√
2) in three dimensions

∆u + λ1u + sin u = µ1φ1(x, y, z) in Ω, u = 0 on ∂Ω , (4.4)

see Figure 4.1. Here λ1 = 5
2 π2 is the principal eigenvalue of the Laplacian on Ω with zero

boundary condition, so that the problem is at resonance. Decompose the solution as u(x) =
ξ1 φ1(r) + U(x, y, z), with U(x, y, z) ∈ φ⊥

1 in L2(Ω), where φ1 =
√

8√
2

sin πx sin πy sin π√
2
z.

The following facts follow from the results proved in [3] and [4]. The solution set of (4.4) is
exhausted by a single continuous curve (u(x, y, z), µ1)(ξ1). Moreover µ1(ξ1) → 0 as ξ1 → ∞,
while µ1(ξ1) changes sign infinitely many times. In particular, the problem (4.4) has infinitely
many solutions at µ1 = 0. Performing the curve following required solving linear problems of
the type (1.2) repeatedly. We used eigenfunction expansions, and it took long time to compute
the solution curve in Figure 4.1.

Mathematica’s NDSolve command can also handle the problem (1.2) in two and three di-
mensions. It appears that the accuracy is excellent in two dimensions, but not in dimension
three.
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