A New Fixed Point Result and its Application to Existence Theorem for Nonconvex Hammerstein Type Integral Inclusions*

Hemant Kumar Pathak ${ }^{a}$, Naseer Shahzad ${ }^{b, 1}$
${ }^{a}$ School of Studies in Mathematics, Pt. Ravishankar Shukla University Raipur (C.G.) 492010, India
${ }^{b}$ King Abdulaziz University, Department of Mathematics, PO Box 80203, 21589 Jeddah, Saudi Arabia

Abstract

In this paper, a generalization of Nadler's fixed point theorem is presented for H^{+}-type k-multivalued weak contractive mappings. We consider a nonconvex Hammerstein type integral inclusion and prove an existence theorem by using an H^{+}-type multi-valued weak contractive mapping.

Keywords and Phrases: Multi-valued contraction map, multi-valued weak contractive map, H^{+} type multi-valued weak contractive map, Hammerstein type integral inclusion, Fixed point. 2000 Mathematical Subject Classification : 47G20, 47H10, 47H20, 54H15, 54H25, 81Q05.

1. Introduction

In 1969, Nadler [16] proved a fixed point theorem for the set-valued contractions, which is of fundamental importance in nonlinear analysis. Inspired from the fixed point result of Nadler [16], the fixed point theory of set-valued contraction was further developed in different directions by many authors, in particular, by Reich [20, 21], Mizoguchi and Takahashi [15], Ciric [3], Kaneko [9], Lim [13], Lami Dozo [14], Feng and Liu [5], Klim and Wardowski [10], Suzuki [22], Pathak and Shahzad $[17,18]$ and many others. For details, see [19]. An interesting application of a consequence of Nadler's fixed point theorem was given in Cernea [2]. For other applications of the same result see, for example, [4] [6], [7], [8], [12] and [19].

2. Preliminaries and Definitions

Let (X, d) be a metric space. Let $C B(X)$ and $C(X)$ denote the collection of all nonempty closed and bounded subsets of X and the collection of all compact subsets of X, respectively.

For $A, B \in C B(X)$, let

$$
H(A, B)=\max \{\rho(A, B), \rho(B, A)\}
$$

[^0]$$
H^{+}(A, B)=\frac{1}{2}\{\rho(A, B)+\rho(B, A)\}
$$
where $\rho(A, B)=\sup _{x \in A} d(x, B)$ and $d(x, B)=\inf _{y \in B} d(x, y)$. It is well known that H is a metric on $C B(X)$. Such a map H is called Pompeiu-Hausdorff metric induced by d.

A mapping $T: X \rightarrow C B(X)$ is said to be a

- multi-valued contraction mapping if there exists a fixed real number $k, 0<k<1$ such that

$$
\begin{equation*}
H(T x, T y) \leq k d(x, y), \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$.

- multi-valued weak contractive mapping if there exists a fixed real number $k, 0<k<1$ such that

$$
\begin{equation*}
H(T x, T y) \leq k \max \{d(x, y), d(x, T x), d(y, T y),[d(x, T y)+d(y, T x)] / 2\}, \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$.

- multi-valued quasi-contraction mapping if there exists a fixed real number $k, 0<k<1$ such that

$$
\begin{equation*}
H(T x, T y) \leq k \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}, \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$.
Proposition 2.1([18]). H^{+}is a metric on $C B(X)$.
Notice that the two metrics H and H^{+}are equivalent [11] since

$$
\frac{1}{2} H(A, B) \leq H^{+}(A, B) \leq H(A, B)
$$

In the light of this equivalence and referring to Kuratowski [11], we conclude that $\left(C B(X), H^{+}\right)$ is complete whenever (X, d) is complete. Indeed, it is a simple consequence of the completeness of the Hausdorff metric H. Moreover, $C(X)$ is a closed subspace of $\left(C B(X), H^{+}\right)$.

Notice also that $H^{+}: \mathcal{C B}(X) \times \mathcal{C B}(X) \rightarrow \mathbf{R}$ is a continuous function. To see this, we observe that the inequality

$$
H^{+}(A, B) \leq H^{+}(A, C)+H^{+}(C, B)
$$

holds for any $A, B, C \in \mathcal{C B}(X)$. Now pick any $\left(A_{0}, B_{0}\right) \in \mathcal{C B}(X) \times \mathcal{C B}(X)$. Then for a given $\epsilon>0$, we can choose a positive number $\delta=\frac{\epsilon}{2}$ such that

$$
\left|H^{+}(A, B)-H^{+}\left(A_{0}, B_{0}\right)\right| \leq H^{+}\left(A, A_{0}\right)+H^{+}\left(B_{0}, B\right)<\delta+\delta=2 \delta=\epsilon
$$

whenever $H^{+}\left(A, A_{0}\right)<\delta, H^{+}\left(B_{0}, B\right)<\delta$. This shows that H^{+}is continuous at $\left(A_{0}, B_{0}\right)$.
In [16], S. B. Nadler proved the following result, which he announced earlier.
Theorem 2.2. Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ a multi-valued contraction mapping. Then T has a fixed point.

In this paper, we intend to generalize this result by weakening the multi-valued contraction to an H^{+}-type multi-valued weak contractive mapping. Our main result is summarized in Section 3. In Section 4, we consider a nonconvex Hammerstein type integral inclusion and prove an existence theorem by using an H^{+}-type multi-valued weak contractive mapping.

3. Main results

We begin our discussion with the following definition.
Definition 3.1. Let (X, d) be a metric space. A multi-valued mapping $T: X \rightarrow \mathcal{C B}(X)$ is called H^{+}-contraction if
(1) there exists a fixed real number $k, 0<k<1$ such that

$$
H^{+}(T x, T y) \leq k d(x, y) \text { for every } x, y \in X
$$

(2) for every x in X, y in $T(x)$ and $\epsilon>0$, there exists z in $T(y)$ such that

$$
d(y, z) \leq H^{+}(T(y), T(x))+\epsilon
$$

In [18], Pathak and Shahzad proved the following result.
Theorem 3.2. Every H^{+}-type multi-valued contraction mapping $T: X \rightarrow C B(X)$ with Lipschitz constant $0<k<1$ has a fixed point.

We now introduce the following definition.
Definition 3.3. Let (X, d) be a metric space. A mapping $T: X \rightarrow C B(X)$ is called an H^{+}_ type multi-valued weak contractive mapping if the condition (2) holds and there exists a fixed real number $k, 0<k<1$ such that

$$
\begin{equation*}
H^{+}(T x, T y) \leq k \max \{d(x, y), d(x, T x), d(y, T y),[d(x, T y)+d(y, T x)] / 2\} \tag{3.1}
\end{equation*}
$$

for all x, y in X.

Now we state and prove our main result.
Theorem 3.4. Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ an H^{+}-type multivalued weak k-contractive mapping with $0<k<1$. Then T has a fixed point.

Proof. Notice first that for each $A, B \in C B(X), a \in A$ and $\alpha>0$ with $H^{+}(A, B)<\alpha$, there exists $b \in B$ such that $\max \left\{d(a, b), d(a, T a), d(b, T b), \frac{1}{2}[d(a, T b)+d(b, T a)]\right\}<\alpha$. Now, let $L>0$ be such that $k<L<1$. Then

$$
\begin{equation*}
H^{+}(T x, T y)<L \max \{d(x, y), d(x, T x), d(y, T y),[d(x, T y)+d(y, T x)] / 2\} \tag{3.2}
\end{equation*}
$$

for any $x, y \in X, x \neq y$.
Now we choose a sequence $\left\{x_{n}\right\}$ recursively in X in the following way. Let $x_{0} \in X$ be arbitrary. Fix an element x_{1} in $T x_{0}$. From (2) it follows that we can choose $x_{2} \in T x_{1}$ such that

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right) \leq H^{+}\left(T x_{0}, T x_{1}\right)+\epsilon \tag{3.3}
\end{equation*}
$$

In general, if x_{n} be chosen, then we choose $x_{n+1} \in T x_{n}$ such that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq H^{+}\left(T x_{n-1}, T x_{n}\right)+\epsilon \tag{3.4}
\end{equation*}
$$

EJQTDE, 2012 No. 62, p. 3

Set $\epsilon=\left(\frac{1}{\sqrt{L}}-1\right) H^{+}\left(T x_{n-1}, T x_{n}\right)$. Then from (3.4), it follows that

$$
d\left(x_{n}, x_{n+1}\right) \leq H^{+}\left(T x_{n-1}, T x_{n}\right)+\left(\frac{1}{\sqrt{L}}-1\right) H^{+}\left(T x_{n-1}, T x_{n}\right)=\frac{1}{\sqrt{L}} H^{+}\left(T x_{n-1}, T x_{n}\right)
$$

Thus, we have

$$
\begin{equation*}
\sqrt{L} d\left(x_{n}, x_{n+1}\right) \leq H^{+}\left(T x_{n-1}, T x_{n}\right) \tag{3.5}
\end{equation*}
$$

for each $n \in \mathbf{N}$.
Thus, from (3.2) we have

$$
\begin{aligned}
\sqrt{L} d\left(x_{n}, x_{n+1}\right)< & L \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, T x_{n-1}\right), d\left(x_{n}, T x_{n}\right)\right. \\
& {\left.\left[d\left(x_{n-1}, T x_{n}\right)+d\left(x_{n}, T x_{n-1}\right)\right] / 2\right\} } \\
\leq & (\sqrt{L})^{2} \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right) / 2\right\} \\
\leq & (\sqrt{L})^{2} \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right),\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] / 2\right\} \\
= & (\sqrt{L})^{2} \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right)\right\}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<\sqrt{L} \max \left\{d\left(x_{n}, x_{n-1}\right), d\left(x_{n}, x_{n+1}\right)\right\} \tag{3.6}
\end{equation*}
$$

for each $n \in \mathbf{N}$. Note that if $x_{n}=x_{n+1}$ for some $n \in \mathbf{N}$, then $x_{n}=x_{n+1} \in T x_{n}$, that is, x_{n} is a fixed point of T and we are finished. So, we may assume that $d\left(x_{n+1}, x_{n}\right)>0$ for each $n \in \mathbf{N}$. Suppose that $d\left(x_{n-1}, x_{n}\right)<d\left(x_{n}, x_{n+1}\right)$ for some $n \in \mathbf{N}$, then inequality (3.6) gives

$$
d\left(x_{n}, x_{n+1}\right)<\sqrt{L} d\left(x_{n}, x_{n+1}\right)
$$

a contradiction. So we must have $d\left(x_{n-1}, x_{n}\right) \geq d\left(x_{n}, x_{n+1}\right)$ for each $n \in \mathbf{N}$. Hence, for all $n \in \mathbf{N}$, (3.6) yields

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<c d\left(x_{n-1}, x_{n}\right) \tag{3.7}
\end{equation*}
$$

where $c=\sqrt{L}$. Repeating the same argument n -times as in (3.7), we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<c^{n} d\left(x_{0}, x_{1}\right) \tag{3.8}
\end{equation*}
$$

It is obvious that $\left\{x_{n}\right\}$ is bounded. Indeed, for any $n \in \mathbf{N}$, we have

$$
\begin{aligned}
d\left(x_{0}, x_{n}\right) & \leq \sum_{i=0}^{n-1} d\left(x_{i}, x_{i+1}\right)<\left(1+c+c^{2}+\cdots c^{n}\right) d\left(x_{0}, x_{1}\right) \\
& <\left(1+c+c^{2}+\cdots\right) d\left(x_{0}, x_{1}\right)=\frac{1}{1-c} d\left(x_{0}, x_{1}\right)<\infty
\end{aligned}
$$

Further, by virtue of (3.8), one may observe that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. Assume that $u \notin T u$, that is, $d(u, T u)>0$. Now using (3.2) we have

$$
\begin{aligned}
\frac{1}{2}\left\{\rho\left(T x_{n}, T u\right)+\rho\left(T u, T x_{n}\right)\right\} & =H^{+}\left(T x_{n}, T u\right) \\
& <L \max \left\{d\left(x_{n}, u\right), d\left(x_{n}, T x_{n}\right), d(u, T u),\left[d\left(x_{n}, T u\right)+d\left(u, T x_{n}\right)\right] / 2\right\} \\
& \leq L \max \left\{d\left(x_{n}, u\right), d\left(x_{n}, x_{n+1}\right), d(u, T u),\left[d\left(x_{n}, T u\right)+d\left(u, x_{n+1}\right)\right] / 2\right\}
\end{aligned}
$$

it follows that

$$
\frac{1}{2} \liminf _{n \rightarrow \infty}\left\{\rho\left(T x_{n}, T u\right)+\rho\left(T u, T x_{n}\right)\right\} \leq L d(u, T u)
$$

Since $\lim _{n \rightarrow \infty} d\left(x_{n+1}, u\right)=0$ exists, and

$$
d(u, T u)=\frac{1}{2}[d(u, T u)+d(T u, u)] \leq \frac{1}{2}\left[\rho\left(T x_{n}, T u\right)+\rho\left(T u, T x_{n}\right)\right]+d\left(x_{n+1}, u\right)
$$

it follows that

$$
\begin{aligned}
d(u, T u) & \leq \frac{1}{2} \liminf _{n \rightarrow \infty}\left[\rho\left(T x_{n}, T u\right)+\rho\left(T u, T x_{n}\right)\right]+\liminf _{n \rightarrow \infty} d\left(x_{n+1}, u\right) \\
& \leq L d(u, T u)+\lim _{n \rightarrow \infty} d\left(x_{n+1}, u\right)=L d(u, T u)<d(u, T u)
\end{aligned}
$$

a contradiction. This implies that $d(u, T u)=0$, and, since $T u$ is closed, it must be the case that $u \in T u$.

Notice that every multi-valued contraction mapping with respect to Pompeiu-Hausdorff metric H is an H^{+}-type multi-valued weak contractive mapping but the converse implication need not be true. To see this, we have the following example:

Example 3.5. Let $X=[-2,2]$ and $d: X \times X \rightarrow \mathbf{R}$ be a standard metric. Let $T: X \rightarrow C B(X)$ be defined by $T x=\left\{\frac{x}{4}\right\}$, if $x \in[-1,2]$ and $T x=\{2\}$, otherwise. It is clear that if $x, y \in[-1,2]$ or $x, y \in[-2,-1)$, then

$$
H^{+}(T x, T y) \leq \frac{1}{4} d(x, y)
$$

If $x \in[-1,2]$ and $y \in[-2,-1)$, then we have

$$
H^{+}(T x, T y)=\frac{1}{2}\left[\left|2-\frac{x}{4}\right|+\left|2-\frac{x}{4}\right|\right]=\left|2-\frac{x}{4}\right| \leq 2+\frac{1}{4}=\frac{3}{4} \cdot 3 \leq \frac{3}{4} \cdot \max \{d(y, T y), d(x, T x)\}
$$

It follows that

$$
H^{+}(T x, T y) \leq k \max \{d(x, y), d(x, T x), d(y, T y),[d(x, T y)+d(y, T x)] / 2\}
$$

for all $x, y \in X$ and $k \in\left[\frac{3}{4}, 1\right)$. To check the condition (2), we consider the following cases:
Case 1. If $x \in[-2,-1)$, then for any $y \in T x=\{2\}$, there exists $z \in T y=\left\{\frac{1}{2}\right\}$ such that for any $\epsilon>0$

$$
d(y, z)=\frac{3}{2} \leq \frac{3}{2}+\epsilon=H^{+}(T y, T x)+\epsilon
$$

Case 2. If $x \in[-1,2]$, then for any $y \in T x=\left\{\frac{x}{4}\right\}$, there exists $z \in T y=\left\{\frac{x}{16}\right\}$ such that for any $\epsilon>0$

$$
d(y, z)=\frac{3|x|}{16} \leq \frac{3|x|}{16}+\epsilon=H^{+}(T y, T x)+\epsilon
$$

Thus all the conditions of Theorem 3.4 are satisfied. Moreover, $0 \in T 0=\{0\}$ is a fixed point of T.

Notice that the map T does not satisfy the assumptions of Theorem 2.2 and Theorem 3.2. Indeed, for $x=-1$ and $y \rightarrow-1$ from the left we have

$$
H(T(-1), T(y))=H^{+}(T(-1), T(y))=2+\frac{1}{4}>k d(-1, y),
$$

for all $k \in(0,1)$.
We also notice that since

$$
[d(x, T y)+d(y, T x)] / 2 \leq \max \{d(x, T y), d(y, T x\}
$$

for all $x, y \in X$, it follows that every weak contractive mapping is quasi-contraction.
Using the technique of the proof of Theorem 3.4, one can easily prove the following result.
Theorem 3.6. Let (X, d) be a complete metric space. Let $T: X \rightarrow C B(X)$ be a H^{+}-type k-multi-valued quasi-contraction mapping with $0<k<\frac{1}{2}$. Then, T has a fixed point.

Pathak and Shahzad [18] introduced the class of H^{+}-type nonexpansive mappings
Definition 3.7. Let $(X,\|\cdot\|)$ be a Banach space. A multi-valued map $T: X \rightarrow \mathcal{C B}(X)$ is called H^{+}-nonexpansive if

$$
H^{+}(T x, T y) \leq\|x-y\| \text { for every } x, y \in X,
$$

(2') for every x in X, y in $T(x)$ and $\epsilon>0$, there exists z in $T(y)$ such that

$$
\|y-z\| \leq H^{+}(T(y), T(x))+\epsilon
$$

Applying the main result of this section, we obtain the following result which plays a role in the next section.

Proposition 3.8.([18]). Let (X, d) be a complete metric space. Suppose that $T_{i}: X \rightarrow C B(X), i=$ 1,2 , are two H^{+}-type multi-valued contraction mappings with Lipschitz constant $L<1$. Then if Fix $\left(T_{1}\right)$ and $\operatorname{Fix}\left(T_{2}\right)$ denote the respective fixed point sets of T_{1} and T_{2},

$$
H^{+}\left(F i x\left(T_{1}\right), F i x\left(T_{2}\right)\right) \leq \frac{1}{1-\sqrt{L}} \sup _{x \in X} H^{+}\left(T_{1} x, T_{2} y\right) .
$$

4. Existence Theorem for Nonconvex Hammerstein Type Integral Inclusions

Let $0<T<\infty, I:=[0, T]$ and $\mathcal{L}(I)$ denote the σ-algebra of all Lebesgue measurable subsets of I. Let E be a real separable Banach space with the norm $\|\cdot\|$. Let $\mathcal{P}(E)$ denote the family of all nonempty subsets of E and $\mathcal{B}(E)$ the family of all Borel subsets of E.

In what follows, as usual, we denote by $C(I, E)$ the Banach space of all continuous functions $x(\cdot): I \rightarrow E$ endowed with the norm $\|x(\cdot)\|_{C}=\sup _{t \in I}\|x(t)\|$. Consider the following integral equation

$$
\begin{equation*}
x(t)=\lambda(t)+\int_{0}^{T} k(t, s) g(t, s, u(s)) d s \text { on }[0, T] . \tag{4.1}
\end{equation*}
$$

Here λ, k and g are given functions, where $\lambda(\cdot): I \rightarrow E$ is a function with Banach space value, $k: I \times I \rightarrow \mathbf{R}_{+}=[0, \infty)$ is a positive real single-valued function, while $g: I \times I \times E \rightarrow E$ is a map. Let $p \in[1, \infty), q \in[1, \infty)$, and let $r \in[1, \infty)$ be the conjugate exponent of q, that is $1 / q+1 / r=1$. Let $\|\cdot\|_{p}$ denote the p-norm of the space $L^{p}(I, E)$ and is defined by $\|u\|_{p}=\left(\int_{0}^{T}\|u(s)\|^{p} d s\right)^{1 / p}$ for all $u \in L^{p}(I, E)$. Consider the Nemitsky operator associated to g, p, q and $G: L^{p}(I, E) \rightarrow L^{q}(I, E)$ given by

$$
G(u)=g(t, s, u(s)) a . e . \text { on } I
$$

Consider the linear integral operator of kernel $k, S: L^{q}(I, E) \rightarrow L^{p}(I, E)$ given by

$$
S(u)=\lambda(t)+\int_{0}^{T} k(t, s) u(s) d s \text { a.e. on } I .
$$

Thus the Hammerstein type integral equation (4.1) is transformed into the form

$$
\begin{gather*}
x=S G(u), \quad u \in L^{p}(I, E) \text { a.e.on } I \\
u(t) \in F(t, V(x)(t)) \quad \text { a.e. }(I:=[0, T]), \tag{4.2}
\end{gather*}
$$

where $V: C(I, E) \rightarrow C(I, E)$ is a given mapping. In the sequel, we also use the following: For any $x \in E, \lambda \in C(I, E), \sigma \in L^{p}(I, E)$, we define the set-valued maps $M_{\lambda, \sigma}(t):=F\left(t, V\left(x_{\sigma, \lambda}\right)(t)\right)$, $t \in I, T_{\lambda}(\sigma):=\left\{\psi(\cdot) \in L^{p}(I, E): \psi(t) \in M_{\lambda, \sigma}(t)\right.$ a.e. $\left.(I)\right\}$.

In order to study problem (4.1)-(4.2) we introduce the following assumption.
Hypothesis 4.1. Let $F(\cdot, \cdot): I \times E \rightarrow \mathcal{P}(E)$ be a set-valued map with nonempty closed values satisfying:
$\left(H_{1}\right)$ The function $k: I \times I \rightarrow \mathbf{R}_{+}$satisfies that $k(t, \cdot) \in L^{r}(I)$, and $t \rightarrow\|k(t, \cdot)\|_{r} \in L^{p}(I)$.
$\left(H_{2}\right)$ The set-valued map $F(\cdot, \cdot)$ is $\mathcal{L}(I) \otimes \mathcal{B}(E)$ measurable.
$\left(H_{3}\right)$ There exists $L(\cdot) \in L^{1}\left(I, \mathbf{R}_{+}\right)$such that, for almost all $t \in I, F(t, \cdot)$ is $L(t)$-Lipschitz in the sense that

$$
\begin{equation*}
H^{+}(F(t, x), F(t, y)) \leq L(t)\|x-y\| \tag{C1}
\end{equation*}
$$

for all x, y in E, and for any $x, y \in X, w \in F(t, x)$ and any $\epsilon>0$, there exists $z \in F(t, y)$ such that

$$
\begin{equation*}
\|w-z\|^{p} \leq H^{+}(F(t, x), F(t, y))+\epsilon \tag{C2}
\end{equation*}
$$

and $T_{\lambda}(\cdot)$ satisfies the condition: For any $\sigma \in L^{p}(I, E), \sigma_{1} \in T_{\lambda}(\sigma)$ and any given $\epsilon>0$, there exists $\sigma_{2} \in T_{\lambda}\left(\sigma_{1}\right)$ such that

$$
\begin{equation*}
\left\|\sigma_{1}-\sigma_{2}\right\|_{p} \leq H^{+}\left(T_{\lambda}(\sigma), T_{\lambda}\left(\sigma_{1}\right)\right)+\epsilon \tag{C3}
\end{equation*}
$$

$\left(H_{4}\right)$ The mappings $k: I \times I \rightarrow \mathbf{R}_{+}, g: I \times I \times E \rightarrow E$ are continuous, $V: C(I, E) \rightarrow C(I, E)$ and there exist constants $M_{1}, M_{2}, M_{3}>0$ such that

$$
\begin{gathered}
\left\|g\left(t, s, u_{1}\right)-g\left(t, s, u_{2}\right)\right\| \leq M_{1}\left\|u_{1}-u_{2}\right\|^{p}, \forall u_{1}, u_{2} \in E \\
\left\|V\left(x_{1}\right)(t)-V\left(x_{2}\right)(t)\right\| \leq M_{2}\left\|x_{1}(t)-x_{2}(t)\right\|, \forall t \in I, \forall x_{1}, x_{2} \in C(I, E)
\end{gathered}
$$

and

$$
|k(t, s)| \leq M_{3} \forall t, s \in I
$$

It is worth mentioning that the system (4.1)-(4.2) includes a large variety of differential inclusions and control systems.

Assume that U is an open bounded subset of \mathbf{R}^{n} (or Y, a subset of E homeomorphic to \mathbf{R}^{n}) and $U_{T}=(0, T] \times U$ for some fixed $T>0$. We say that the partial differential operator $\frac{\partial}{\partial t}+L$ is parabolic if there exists a constant $\theta>0$ such that $\sum_{i, j=1}^{n} a^{i j}(t, x) \xi_{i} \xi_{j} \geq \theta|\xi|^{2}$ for all $(t, x) \in U_{T}, \xi \in \mathbf{R}^{n}$. The letter L denotes for each time t a second order partial differential operator, having either the divergence form $L u=-\sum_{i, j=1}^{n}\left(a^{i j}(t, x) u_{x_{i}}\right)_{x_{j}}+\sum_{i=1}^{n} b^{i}(t, x) u_{x_{i}}+c(t, x) u$ or else the nondivergence form $L u=-\sum_{i, j=1}^{n} a^{i j}(t, x) u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i}(t, x) u_{x_{i}}+c(t, x) u$, for given coefficients $a^{i j}, b^{i}, c(i, j=1,2, \ldots, n)$.

A family $\left\{G(t): t \in \mathbf{R}_{+}\right\}$of bounded linear operators from X into E is a C_{0}-semigroup (also called linear semigroup of class $\left(C_{0}\right)$) on X if
(i) $G(0)=$ the identity operator, and $G(t+s)=G(t) G(s) \forall t, s \geq 0$;
(ii) $G(\cdot)$ is strongly continuous in $t \in \mathbf{R}_{+}$;
(iii) $\|G(t)\| \leq M e^{\omega t}$ for some $M>0$, real ω and $t \in \mathbf{R}_{+}$.

Example 4.2. Set $k(t, \tau) g(t, \tau, u)=G(t-\tau) u, \Phi(x)=x, \lambda(t)=G(t) x_{0}$, where $\{G(t)\}_{t \geq 0}$ is a C_{0}-semigroup with an infinitesimal generator A. Then a solution of system (4.1)-(4.2) represents a mild solution of

$$
\begin{equation*}
x^{\prime}(t) \in A x(t)+F(t, x(t)), \quad x(0)=x_{0} . \tag{4.3}
\end{equation*}
$$

In particular, this problem includes control systems governed by parabolic partial differential equations as a special case. When $A=0$, the relation (4.3) reduces to

$$
\begin{equation*}
x^{\prime}(t) \in F(t, x(t)), \quad x(0)=x_{0} \tag{5.4}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\Phi(u)(t)=\int_{0}^{T} k(t, \tau) g(t, \tau, u(\tau)) d \tau, t \in I \tag{4.5}
\end{equation*}
$$

Then the integral inclusion system (4.1)-(4.2) reduces to the form

$$
\begin{equation*}
x(t)=\lambda(t)+\Phi(u)(t) \quad \text { a.e. }(I), \tag{S}
\end{equation*}
$$

which may be written in more "compact" form as

$$
u(t) \in F(t, V(\lambda+\Phi(u))(t)) \quad \text { a.e. }(I) .
$$

Now we recall the following:
Definition 4.3. A pair of functions (x, u) is called a solution pair of integral inclusion system (S), if $x(\cdot) \in C(I, E), u(\cdot) \in L^{p}(I, E)$ and satisfy relation (S).

For our further discussion, we denote by $S(\lambda)$ the solution set of (4.1) - (4.2).
For given $\alpha \in \mathbf{R}$ we denote by $L^{p}(I, E)$ the Banach space of all Bochner integrable functions $u(\cdot): I \rightarrow E$ endowed with the norm

$$
\|u(\cdot)\|_{p}=\left(\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)}\|u(t)\|^{p} d t\right)^{\frac{1}{p}}
$$

where $m(t)=\int_{0}^{t} L(s) d s, t \in I$. For our further discussion, we denote $L=m(T)$.
Theorem 4.4. Let Hypothesis 4.1 be satisfied, let $\lambda(\cdot), \mu(\cdot) \in C(I, E)$ and let $v(\cdot) \in L^{p}(I, E)$ be such that

$$
d(v(t), F(t, V(y)(t))) \leq p(t) \quad \text { a.e. } \quad(I),
$$

where $p(\cdot) \in L^{p}\left(I, \mathbf{R}_{+}\right)$and $y(t)=\mu(t)+\Phi(v)(t), \forall t \in I$.
Then for every $\alpha>1$, there exists $x(\cdot) \in S(\lambda)$ such that for every $t \in I$

$$
\begin{aligned}
\|x(t)-y(t)\| & \leq\|\lambda-\mu\|_{C}+M_{1} M_{3} e^{\alpha M_{1} M_{2} M_{3} L}\left[\frac{1}{\alpha^{\frac{1}{2 p}}\left(\alpha^{\frac{1}{2 p}}-1\right) M_{1}^{\frac{1}{p}} M_{3}^{\frac{1}{p}}}\|\lambda-\mu\|_{C}\right. \\
& \left.+\frac{\alpha^{\frac{1}{2 p}}}{\alpha^{\frac{1}{2 p}}-1}\left(\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t\right)^{\frac{1}{p}}\right]^{p} .
\end{aligned}
$$

Proof. For $\lambda \in C(I, E)$ and $u \in L^{p}(I, E)$, define

$$
x_{u, \lambda}(t)=\lambda(t)+\int_{0}^{T} k(t, s) g(t, s, u(s)) d s, t \in I .
$$

Let us consider that $\lambda \in C(I, E), \sigma \in L^{p}(I, E)$ and define the set-valued maps

$$
\begin{gather*}
M_{\lambda, \sigma}(t):=F\left(t, V\left(x_{\sigma, \lambda}\right)(t)\right), t \in I \tag{4.6}\\
T_{\lambda}(\sigma):=\left\{\psi(\cdot) \in L^{p}(I, E): \psi(t) \in M_{\lambda, \sigma}(t) \text { a.e. }(I)\right\} . \tag{4.7}
\end{gather*}
$$

Further, in view of condition (C3) of Hypothesis $4.1\left(H_{3}\right), T_{\lambda}(\cdot)$ satisfies the condition: For any $\sigma \in L^{p}(I, E), \sigma_{1} \in T_{\lambda}(\sigma)$ and any given $\epsilon>0$ there exists $\sigma_{2} \in T_{\lambda}\left(\sigma_{1}\right)$ such that

$$
\begin{equation*}
\left\|\sigma_{1}-\sigma_{2}\right\|_{p} \leq H^{+}\left(T_{\lambda}(\sigma), T_{\lambda}\left(\sigma_{1}\right)\right)+\epsilon \tag{4.8}
\end{equation*}
$$

Now we claim that $T_{\lambda}(\sigma)$ is nonempty, bounded and closed for every $\sigma \in L^{p}(I, E)$.
It is well known that the set-valued map $M_{\lambda, \sigma}(\cdot)$ is measurable. For example the map $t \rightarrow M_{\lambda, \sigma}(t)$ can be approximated by step functions and so we can apply Theorem III. 40 in [1]. As the values of F are closed, with the measurable selection theorem we infer that $M_{\lambda, \sigma}(\cdot)$ is nonempty.

Further, we note that the set $T_{\lambda}(\sigma)$ is bounded and closed. Indeed, if $\psi_{n} \in T_{\lambda}(\cdot)$ and $\left\|\psi_{n}-\psi\right\|_{p} \rightarrow 0$, then there exists a subsequence $\psi_{n_{k}}$ such that $\psi_{n_{k}}(t) \rightarrow \psi(t)$ for a.e. $t \in I$ and we find that $\psi \in T_{\lambda}(\sigma)$.

Let $\sigma_{1}, \sigma_{2} \in L^{p}(I, E)$ be given. Let $\psi_{1} \in T_{\lambda}\left(\sigma_{1}\right)$ and let $\delta>0$. Consider the following set-valued map:

$$
\mathcal{G}(t):=M_{\lambda, \sigma_{2}}(t) \cap\left\{z \in E:\left\|\psi_{1}(t)-z\right\|^{p} \leq M_{1} M_{2} M_{3} L(t) \int_{0}^{T}\left\|\sigma_{1}(s)-\sigma_{2}(s)\right\|^{p} d s+\delta\right\} .
$$

By (C2), it follows that

$$
\begin{aligned}
d^{p}\left(\psi_{1}(t), M_{\lambda, \sigma_{2}}(t)\right) & \leq H^{+}\left(F\left(t, V\left(x_{\sigma_{1}, \lambda}\right)(t)\right), F\left(t, V\left(x_{\sigma_{2}, \lambda}\right)(t)\right)\right)+\epsilon \\
& \left.\left.\leq L(t) \| V\left(x_{\sigma_{1}, \lambda}\right)(t)\right)-V\left(x_{\sigma_{2}, \lambda}\right)(t)\right) \|+\epsilon \\
& \leq M_{2} L(t)\left\|x_{\sigma_{1}, \lambda}(t)-x_{\sigma_{2}, \lambda}(t)\right\|+\epsilon \\
& \leq M_{2} M_{3} L(t) \int_{0}^{T}\left\|g\left(t, s, \sigma_{1}(s)\right)-g\left(t, s, \sigma_{2}(s)\right)\right\| d s+\epsilon \\
& \leq M_{1} M_{2} M_{3} L(t) \int_{0}^{T}\left\|\sigma_{1}(s)-\sigma_{2}(s)\right\|^{p} d s+\epsilon
\end{aligned}
$$

Since ϵ is arbitrary, letting $\epsilon \rightarrow 0$, we deduce that $\mathcal{G}(\cdot)$ is nonempty bounded and has closed values. Further, according to Proposition III. 4 in [1], $\mathcal{G}(\cdot)$ is measurable.
Let $\psi_{2}(\cdot)$ be a measurable selector of $\mathcal{G}(\cdot)$. It follows that $\psi_{2} \in T_{\lambda}\left(\sigma_{2}\right)$ and

$$
\begin{aligned}
\left\|\psi_{1}-\psi_{2}\right\|_{p}^{p}= & \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)}\left\|\psi_{1}(t)-\psi_{2}(t)\right\|^{p} d t \\
\leq & \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)}\left(M_{1} M_{2} M_{3} L(t) \int_{0}^{T}\left\|\sigma_{1}(s)-\sigma_{2}(s)\right\|^{p} d s\right) d t \\
& +\delta \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} d t \\
\leq & \frac{1}{\alpha}\left\|\sigma_{1}-\sigma_{2}\right\|_{p}^{p}+\delta \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} d t
\end{aligned}
$$

Since δ is arbitrary, so letting $\delta \rightarrow 0$ we deduce from the above inequality that

$$
\left\|\psi_{1}-\psi_{2}\right\|_{p}^{p} \leq \frac{1}{\alpha}\left\|\sigma_{1}-\sigma_{2}\right\|_{p}^{p}
$$

i.e.,

$$
\left\|\psi_{1}-\psi_{2}\right\|_{p} \leq \frac{1}{\alpha^{\frac{1}{p}}}\left\|\sigma_{1}-\sigma_{2}\right\|_{p}
$$

This yields

$$
d\left(\psi_{1}, T_{\lambda}\left(\sigma_{2}\right)\right) \leq \frac{1}{\alpha^{\frac{1}{p}}}\left\|\sigma_{1}-\sigma_{2}\right\|_{p}
$$

Thus, we have

$$
\begin{equation*}
\rho\left(T_{\lambda}\left(\sigma_{1}\right), T_{\lambda}\left(\sigma_{2}\right)\right)=\sup _{\psi_{1} \in T_{\lambda}\left(\sigma_{1}\right)} d\left(\psi_{1}, T_{\lambda}\left(\sigma_{2}\right)\right) \leq \frac{1}{\alpha^{\frac{1}{p}}}\left\|\sigma_{1}-\sigma_{2}\right\|_{p} \tag{4.9}
\end{equation*}
$$

Now replacing $\sigma_{1}(\cdot)$ with $\sigma_{2}(\cdot)$ and arguing as above, we obtain

$$
\begin{equation*}
\rho\left(T_{\lambda}\left(\sigma_{2}\right), T_{\lambda}\left(\sigma_{1}\right)\right) \leq \frac{1}{\alpha^{\frac{1}{p}}}\left\|\sigma_{1}-\sigma_{2}\right\|_{p} \tag{4.10}
\end{equation*}
$$

Now adding (4.9) and (4.10) and dividing by 2, we obtain

$$
\begin{aligned}
H^{+}\left(T_{\lambda}\left(\sigma_{1}\right), T_{\lambda}\left(\sigma_{2}\right)\right) \leq & \frac{1}{\alpha^{\frac{1}{p}}}\left\|\sigma_{1}-\sigma_{2}\right\|_{p} \\
\leq \frac{1}{\alpha^{\frac{1}{p}}} \max \left\{\| \sigma_{1}-\right. & \sigma_{2} \|_{p}, d\left(\sigma_{1}, T_{\lambda}\left(\sigma_{1}\right)\right), d\left(\sigma_{2}, T_{\lambda}\left(\sigma_{2}\right)\right) \\
& {\left.\left[d\left(\sigma_{1}, T_{\lambda}\left(\sigma_{2}\right)\right)+d\left(\sigma_{2}, T_{\lambda}\left(\sigma_{1}\right)\right)\right] / 2\right\} . }
\end{aligned}
$$

Hence we conclude that $T_{\lambda}(\cdot)$ is an H^{+}-type multi-valued weak contractive mapping on $L^{p}(I, E)$. Next, we consider the following set-valued maps

$$
\begin{aligned}
\tilde{F}(t, x) & :=F(t, x)+p(t), \\
\tilde{M}_{\lambda, \sigma}(t) & :=\tilde{F}\left(t, V\left(x_{\sigma, \lambda}\right)(t)\right), \quad t \in I, \\
\tilde{T}_{\lambda}(\sigma) & :=\left\{\psi(\cdot) \in L^{p}(I, E): \psi(t) \in \tilde{M}_{\lambda, \sigma}(t) \text { a.e. }(I)\right\} .
\end{aligned}
$$

It is obvious that $\tilde{F}(\cdot, \cdot)$ satisfies Hypothesis 4.1.
Let $\phi \in T_{\lambda}(\sigma), \delta>0$ and define

$$
\mathcal{G}_{1}(t):=\tilde{M}_{\lambda, \sigma}(t) \cap\left\{z \in X:\|\phi(t)-z\|^{p} \leq M_{2} L(t)\|\lambda-\mu\|_{C}^{p}+p(t)+\delta\right\} .
$$

Using the same argument as used for the set valued map $\mathcal{G}(\cdot)$, we deduce that $\mathcal{G}_{1}(\cdot)$ is measurable with nonempty closed values.

Next, we prove the following estimate:

$$
\begin{equation*}
H^{+}\left(T_{\lambda}(\sigma), \tilde{T}_{\mu}(\sigma)\right) \leq \frac{1}{\alpha^{\frac{1}{p}} M_{1}^{\frac{1}{p}} M_{3}^{\frac{1}{p}}}\|\lambda-\mu\|_{C}+\left(\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t\right)^{\frac{1}{p}} \tag{4.11}
\end{equation*}
$$

Let $\psi(\cdot) \in \tilde{T}_{\mu}(\sigma)$. Then

$$
\begin{aligned}
\|\phi-\psi\|_{p}^{p}= & \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)}\|\phi(t)-\psi(t)\|^{p} d t \\
\leq & \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)}\left[M_{2} L(t)\|\lambda-\mu\|_{C}^{p}+p(t)+\delta\right] d t \\
\leq & \|\lambda-\mu\|_{C}^{p} \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} M_{2} L(t) d t \\
& +\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t+\delta \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} d t \\
\leq & \frac{1}{\alpha M_{1} M_{3}}\|\lambda-\mu\|_{C}^{p}+\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t \\
& +\delta \int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} d t
\end{aligned}
$$

Since δ is arbitrary, so letting $\delta \rightarrow 0$ we deduce from the above inequality that

$$
\|\phi-\psi\|_{p}^{p} \leq \frac{1}{\alpha M_{1} M_{3}}\|\lambda-\mu\|_{C}^{p}+\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t
$$

Thus, by taking $\frac{1}{p}$ th power on both sides of the above inequality breaking the right hand side, one obtains (4.11).

Now applying Proposition 3.8 we obtain

$$
\begin{aligned}
H^{+}\left(\operatorname{Fix}\left(T_{\lambda}\right), \operatorname{Fix}\left(\tilde{T}_{\mu}\right)\right) \leq & \frac{1}{\alpha^{\frac{1}{2 p}}\left(\alpha^{\frac{1}{2 p}}-1\right) M_{1}^{\frac{1}{p}} M_{3}^{\frac{1}{p}}}\|\lambda-\mu\|_{C} \\
& +\frac{\alpha^{\frac{1}{2 p}}}{\alpha^{\frac{1}{2 p}}-1}\left(\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t\right)^{\frac{1}{p}}
\end{aligned}
$$

Since $v(\cdot) \in F i x\left(\tilde{T}_{\mu}\right)$, it follows that there exists $u(\cdot) \in F i x\left(T_{\lambda}\right)$ such that

$$
\begin{equation*}
\|v-u\|_{p} \leq \frac{1}{\alpha^{\frac{1}{2 p}}\left(\alpha^{\frac{1}{2 p}}-1\right) M_{1}^{\frac{1}{p}} M_{3}^{\frac{1}{p}}}\|\lambda-\mu\|_{C}+\frac{\alpha^{\frac{1}{2 p}}}{\alpha^{\frac{1}{2 p}}-1}\left(\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t\right)^{\frac{1}{p}} \tag{4.12}
\end{equation*}
$$

We define

$$
x(t)=\lambda(t)+\int_{0}^{T} k(t, s) g(t, s, u(s)) d s
$$

Then one has the following inequality:

$$
\begin{aligned}
\|x(t)-y(t)\| & \leq\|\lambda(t)-\mu(t)\|+M_{1} M_{3} \int_{0}^{T}\|u(s)-v(s)\|^{p} d s \\
& \leq\|\lambda-\mu\|_{C}+M_{1} M_{3} e^{\alpha M_{1} M_{2} M_{3} L}\|u-v\|_{p}^{p}
\end{aligned}
$$

Combining the last inequality with (4.12) we obtain

$$
\begin{aligned}
\|x(t)-y(t)\| & \leq\|\lambda-\mu\|_{C}+M_{1} M_{3} e^{\alpha M_{1} M_{2} M_{3} L}\left[\frac{1}{\alpha^{\frac{1}{2 p}}\left(\alpha^{\frac{1}{2 p}}-1\right) M_{1}^{\frac{1}{p}} M_{3}^{\frac{1}{p}}}\|\lambda-\mu\|_{C}\right. \\
& \left.+\frac{\alpha^{\frac{1}{2 p}}}{\alpha^{\frac{1}{2 p}}-1}\left(\int_{0}^{T} e^{-\alpha M_{1} M_{2} M_{3} m(t)} p(t) d t\right)^{\frac{1}{p}}\right]^{p}
\end{aligned}
$$

This completes the proof.

Acknowledgments

The authors express their gratitude to the learned referees for their helpful comments on an earlier version of this paper.

References

[1] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM 580, Springer, Berlin, 1977.
[2] A. Cernea, Existance for nonconvex integral inclusions via fixed points, Archi. Math. (Brno), 39 (2003), 293-298.
[3] L. B. Ciric, Fixed points for generalized multi-valued contractions, Math. Vesnik, 9(24) (1972), 265-272.
[4] K. Deimling, Multivalued Differential Equations, W. de Gruyter, Basel, 1992.
[5] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103-112.
[6] M. Frigon and A. Granas, Resultats du type de Leray-Schauder pour les contractions multivoques, Topological Methods in Nonlinear Anal., 4 (1994), 197-208.
[7] C. J. Himmelberg, and F. S. Van Vleck, Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova, 48 (1973), 159-169.
[8] M. Kamenskii, V. Obuhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, W. de Gruyter, Berlin, 2001.
[9] H. Kaneko, Generalized contractive multi-valued mappings and their fixed points, Math. Japon., 133 (1988), 57-64.
[10] D. Klim and D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132-139.
[11] K. Kuratowski, Topology, vol. I, Academic Press, New York and London 1966.
[12] T. Lazar, D. O’Regan and A. Petrusel, Fixed points and homotopy results for Ciric -type multivalued operators on a set with two metrics, Bull. Korean Math. Soc., 45 (2008), 67-73.
[13] T. C. Lim, On fixed point stability for set-valued mappings with applications to generalized differential equationsand their fixed points, J. Math. Anal. Appl., 110 (1985), 136-141.
[14] E. Lami Dozo, Multivalued nonexpansive mappings and Opial's condition, Proc. Amer. Math. Soc., 38 (1973), 286-292.
[15] N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188.
[16] S. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 20 (1969), 475-488.
[17] H. K. Pathak and N. Shahzad, Fixed point results for set-valued contractions by altering distances in complete metric spaces, Nonlinear Analysis, 70 (2009), 2634-2641.
[18] H. K. Pathak and N. Shahzad, A Generalization of Nadler's Fixed Point Theorem and its Application to Nonconvex Integral Inclusions, Topological Methods in Nonlinear Analysis, (2011), accepted.
[19] A. Petrusel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.
[20] S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital., 5 (1972), 26-42.
[21] S. Reich, Some fixed point problems, Atti Acad. Naz. Lincei 57 (1974), 194-198.
[22] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340 (2008), 752-755
(Received June 17, 2011)

[^0]: *Research partially supported by University Grants Commissions, New Delhi, India
 ${ }^{1}$ Corresponding author
 E-mail addresses: hkpathak05@gmail.com (H.K. Pathak), nshahzad@kau.edu.sa (N. Shahzad).

