# Existence and Attractors of Solutions for Nonlinear Parabolic Systems 

By A. El Hachimi and H. El Ouardi


#### Abstract

We prove existence and asymptotic behaviour results for weak solutions of a mixed problem (S). We also obtain the existence of the global attractor and the regularity for this attractor in $\left[H^{2}(\Omega)\right]^{2}$ and we derive estimates of its Haussdorf and fractal dimensions.


Keywords: Nonlinear parabolic systems; existence of solutions; global attractor; asymptotic behaviour; Haussdorf and fractal dimensions.

AMS subject classifications : 35K55, 35K57, 35K65, 35B40

## 0 . Introduction

We consider the following nonlinear system

$$
(S)\left\{\begin{array}{c}
\frac{\partial b_{1}\left(u_{1}\right)}{\partial t}-\Delta u_{1}+f_{1}\left(x, u_{1}, u_{2}\right)=0 \quad \text { in } \Omega \times(0, T) \\
\frac{\partial b_{2}\left(u_{2}\right)}{\partial t}-\triangle u_{2}+f_{2}\left(x, u_{1}, u_{2}\right)=0 \quad \text { in } \Omega \times(0, T) \\
u_{1}=u_{2}=0 \\
\left(b _ { 1 } \left(u_{1}(x, 0), b_{2}\left(u_{2}(x, 0)\right)=\left(b_{1}\left(\varphi_{0}(x)\right), b_{2}\left(\psi_{0}(x)\right)\right) \text { in } \Omega\right.\right.
\end{array}\right.
$$

where $\Omega$ is a bounded open subset in $\mathrm{R}^{N}, N \geq 1$, with a smooth boundary $\partial \Omega$. (S) is an example of nonlinear parabolic systems modelling a reaction diffusion process for which many results on existence, uniqueness and regularity have been obtained in the case where $b_{i}(s)=s$ ( see, for instance $[6,7,18]$ ).

The case of a single equation of the type ( $\mathbf{S}$ ) is studied in $[1,2,3,4,5,8,9,19]$. The purpose of this paper is the natural extension to system ( $\mathbf{S}$ ) of the results by [8], which concerns the single equation $\frac{\partial \beta(u)}{\partial t}-\Delta u+f(x, t, u)=0$.

Actually, our work generalizes the question of existence and regularity of the global attractor obtained therein.

In the first section of this paper, we give some assumptions and preliminaries and in section 2, we prove the existence of absorbing sets and the existence of the gobal attractor; while in section 3 , we present the regularity of the attractor and show stabilization property. Finally, section 4 is devoted to estimates of the Haussdorf and fractal dimensions.

## 1. Preliminaries, Existence and Uniqueness

### 1.1 Notations and Assumptions

Let $b_{i},(i=1,2)$ be continuous functions with $b_{i}(0)=0$. We define for $t \in R$ $\Psi_{i}(t)=\int_{0}^{t} b_{i}(\tau) d \tau$. Then the Legendre transform $\Psi^{*}$ of $\Psi$ is defined by $\Psi_{i}^{*}(\tau)=\sup _{s \in R}\left\{\tau s-\Psi_{i}(s)\right\} . \Omega$ stands for a regular open bounded subset of
$R^{N}$ and for any $T>0$, we set $Q_{T}=\Omega \times(0, T)$ and $S_{T}=\partial \Omega \times(0, T)$, where $\partial \Omega$ is the boundary of $\Omega$. The norm in a space $X$ will be denoted by : $\|\cdot\|_{r}$ if $X=L^{r}(\Omega)$ for all $\mathrm{r}: 1 \leq r \leq+\infty,\|.\|_{X}$ otherwise and $\langle., .\rangle_{X, X^{\prime}}$ will denote the duality product between $X$ and its dual $X^{\prime}$.

We start by introducing our assumptions and making precise the meaning of a solution of $(\mathbf{S})$. Consider the system $(\mathrm{S})$ under the following assumptions:
(H1) $\left(\varphi_{0}, \psi_{0}\right) \in L^{2}(\Omega) \times L^{2}(\Omega)$.
(H2) $b_{i}$ is an increasing continuous function from R into $\mathrm{R}, b_{i}(0)=0$, and there exists $c_{i j}>0$ such that : $\left|b_{i}(s)\right| \leq c_{i 1}|s|+c_{i 2}$, for all $s \in R, i=1,2$.
(H3) $f_{i} \in C^{1}(\bar{\Omega} \times R \times R)$.
( H4) $\forall x \in \Omega, \forall \xi \in R, \exists c_{1}>0, c_{2}>0$ :

$$
\left\{\begin{array}{l}
\operatorname{sign}(\xi) f_{1}(x, \xi, 0) \geq-c_{1} \\
\operatorname{sign}(\xi) f_{2}(x, 0, \xi) \geq-c_{2}
\end{array}\right.
$$

(H5) For any $N>0, \exists c_{3}>0, c_{4}>0, c_{5}>0$ :

$$
\left\{\begin{array}{c}
\operatorname{sign}(\xi) f_{1}(x, \xi, v) \geq c_{3}|\xi|^{p_{1}-1}-c_{4} \\
\left|f_{1}(x, \xi, v)\right| \leq c_{5}\left(|\xi|^{p_{1}-1}+1\right) \\
|f(x, u, v)| \leq a_{1}(|u|) \text {, where } a: R^{+} \rightarrow R^{+} \quad \text { is increasing } \\
\text { for any } v:|v| \leq N .
\end{array}\right.
$$

(H6) For any $M>0, \exists c_{6}>0, c_{7}>0, c_{8}>0$ :

$$
\left\{\begin{array}{c}
\operatorname{sign}(\xi) f_{2}(x, u, \xi) \geq c_{6}|\xi|^{p_{2}-1}-c_{7} \\
\left|f_{2}(x, u, \xi)\right| \leq c_{8}\left(|\xi|^{p_{2}-1}+1\right) \quad p_{2}>2 \\
\left|f_{2}(x, u, v)\right| \leq a_{2}(|v|), \text { where } a_{2}: R^{+} \rightarrow R^{+} \quad \text { is increasing } \\
\text { for any } u:|u| \leq M
\end{array}\right.
$$

(H7) $0<\gamma_{i} \leq b_{i}^{\prime}(s)$ for all $s \in R$.
Definition By a weak solution of (S), we mean an element
$u_{i} \in L^{p_{i}}\left(0, T ; L^{p_{i}}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap L^{\infty}\left(t_{0}, T ; L^{\infty}(\Omega)\right)$, for all $t_{0}>0$ such that
$\frac{\partial b_{i}\left(u_{i}\right)}{\partial t} \in L^{p_{i}^{*}}\left(0, T ; L^{p_{i}^{*}}(\Omega)\right)+L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ and $\forall \phi_{i} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right):$
$\int_{0}^{T}\left\langle\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}, \phi_{i}\right\rangle_{V_{i}^{*}, V_{i}} d t+\int_{0}^{T} \int_{\Omega} \nabla u_{i} \nabla \phi_{i} d x d t+\int_{0}^{T} \int_{\Omega} f_{i}\left(x, u_{1}, u_{2}\right) d x d t=0$,
and if $\left(\phi_{i}\right)_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right), \phi_{i}(T)=0$
$\int_{0}^{T}\left\langle\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}, \phi_{i}\right\rangle_{V_{i}^{\prime}, V_{i}} d t=-\int_{0}^{T} \int_{\Omega}\left(b_{i}\left(u_{i}(t)-b_{i}\left(u_{i}(x, 0)\right)\left(\phi_{i}\right)_{t} d x d t\right.\right.$,
where $V_{i}=L^{p_{i}}(\Omega) \cap H_{0}^{1}(\Omega), V_{i}^{\prime}=L^{p_{i}^{\prime}}(\Omega)+H^{-1}(\Omega), \frac{1}{p_{i}^{\prime}}+\frac{1}{p_{i}}=1, \quad i=1,2$.

### 1.2. Existence theorem.

Theorem 1 Let (H1) to (H6) be satisfied. Then there exists a solution ( $u_{1}, u_{2}$ ) of problem (S) such that for $i=1,2$, we have
$u_{i} \in L^{p_{i}}\left(0, T ; L^{p_{i}}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap L^{\infty}\left(t_{0}, T ; L^{\infty}(\Omega)\right), \forall t_{0}>0$
Proof: By theorem 3.2 in [8], we can choose $u_{i}^{0} \in L^{p_{i}}\left(Q_{T}\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap$ $L^{\infty}\left(\tau, T ; L^{\infty}(\Omega)\right)$, for any $\tau>0$ such that:

$$
\left\{\begin{array}{lc}
\frac{\partial b_{1}\left(u_{1}^{0}\right)}{\partial t}-\Delta u_{1}^{0}+f_{1}\left(x, u_{1}^{0}, 0\right)=0 & \text { in } Q_{T} \\
u_{1}^{0}=0 & \text { in } S_{T} \\
b_{1}\left(u_{1}^{0}\right)_{t=0}=b_{1}\left(\varphi_{0}\right) & \text { in } \Omega
\end{array}\right.
$$

$$
\left\{\begin{array}{lc}
\frac{\partial b_{2}\left(u_{2}^{0}\right)}{\partial t}-\Delta u_{2}^{0}+f_{2}\left(x, 0, u_{2}^{0}\right)=0 & \text { in } Q_{T} \\
u_{2}^{0} \stackrel{ }{=} & \text { in } S_{T} \\
b_{1}\left(u_{2}^{0}\right)_{t=0}=b_{1}\left(\psi_{0}\right) & \text { in } \Omega
\end{array}\right.
$$

and we construct two sequences of functions $\left(u_{1}^{n}\right)$ and $\left(u_{2}^{n}\right)$, such that:

$$
\begin{align*}
& \left\{\begin{array}{lc}
\frac{\partial b_{1}\left(u_{1}^{n}\right)}{\partial t}-\triangle u_{1}^{n}+f\left(x, u_{1}^{n}, u_{2}^{n-1}\right)=0 & \text { in } Q_{T} \\
u_{1}^{n}=0 & \text { in } S_{T} \\
b_{1}\left(u_{1}^{n}\right)_{t=0}=b_{1}\left(\varphi_{0}\right) & \text { in } \Omega
\end{array}\right.  \tag{1.1}\\
& \left\{\begin{array}{lc}
\frac{\partial b_{2}\left(u_{2}^{n}\right)}{\partial t}-\triangle u_{2}^{n}+f_{2}\left(x, u_{1}^{n-1}, u_{2}^{n}\right)=0 & \text { in } Q_{T} \\
u_{2}^{n}=0 & \text { in } S_{T} \\
b_{2}\left(u_{2}^{n}\right)_{t=0}=b_{2}\left(\psi_{0}\right) & \text { in } \Omega
\end{array}\right. \tag{1.2}
\end{align*}
$$

We need lemma 1 and lemma 2 below to complete the proof of theorem 1 .
From now on we denote by $c_{i}$ various positive constants independent of $n$.

## Lemma 1

$$
\begin{equation*}
\forall \tau>0, \exists c_{\tau}>0 \quad \text { such that } \quad\left\|u_{i}^{n}\right\|_{L^{\infty}\left(\tau, T ; L^{\infty}(\Omega)\right)} \leq c_{\tau} \tag{1.7}
\end{equation*}
$$

Proof: For $n=0,(1.7)$ is proved in [7]. So, suppose (1.7) for $(n-1)$. Multiplying (1.1) by $\left|b_{1}\left(u_{1}^{n}\right)\right|^{k} b_{1}\left(u_{1}^{n}\right)$ and using (H2),(H5), we obtain :

$$
\frac{1}{k+2} \int_{\Omega}\left|b_{1}\left(u_{1}^{n}\right)\right|^{k+2} d x+c_{9} \int_{\Omega}\left|b_{1}\left(u_{1}^{n}\right)\right|^{k+p_{1}} d x \leq c_{10} \int_{\Omega}\left|b_{1}\left(u_{1}^{n}\right)\right|^{k+1} d x
$$

Setting $y_{k, n}(t)=\left\|b_{1}\left(u_{1}^{n}\right)\right\|_{L^{k+2}(\Omega)}$ and using Holder's inequality on both sides, we have the existence of two constants $\lambda>0$ and $\delta>0$ such that

$$
\frac{d y_{k, n}(t)}{d t}+\lambda y_{k, n}^{p_{1}-1}(t) \leq \delta
$$

which implies from lemma $5.1([22])$ that $\forall t \geq \tau>0$

$$
y_{k, n}(t) \leq\left(\frac{\delta}{\lambda}\right)^{\frac{1}{p_{1}-1}}+\frac{1}{\left[\lambda\left(p_{1}-2\right) t\right]^{\frac{1}{p_{1}-2}}}
$$

As $k \rightarrow \infty$, we obtain

$$
\left|u_{1}^{n}(t)\right| \leq c_{\tau} \quad \forall t \geq \tau>0
$$

The same holds also for $u_{2}^{n}$
Lemma $2 \forall \tau>0, \exists c_{i}=c_{i}\left(\tau, \varphi_{0}, \psi_{0}\right)>0$ :

$$
\begin{aligned}
\left\|u_{i}^{n}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)} & \leq c_{11}, \\
\left\|u_{i}^{n}\right\|_{L^{\infty}\left(\tau, T ; H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right)} & \leq c_{12}
\end{aligned}
$$

and

$$
\sum_{i=1}^{2}\left[\int_{0}^{T} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{2} d x+c_{13} \int_{0}^{T} \int_{\Omega}\left|u_{i}^{n}\right|^{p_{i}} d x\right] \leq c_{14}
$$

Proof of lemma 2: Multiplying (1.1) by $u_{1}^{n}$ and (1.4) by $u_{2}^{n}$, and adding, we get :

$$
\begin{equation*}
\frac{d}{d t} \sum_{i=1}^{2}\left[\int_{\Omega} \Psi_{i}^{*}\left(b_{i}\left(u_{i}^{n}\right)\right) d x\right]+\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{2} d x+c_{15} \sum_{i=1}^{2} \int_{\Omega}\left|u_{i}^{n}\right|^{p_{i}} d x \leq c_{16} \tag{1.8}
\end{equation*}
$$

## But

$\left|\varphi_{0}\right|_{L^{2}(\Omega)}+\left|\psi_{0}\right|_{L^{2}(\Omega)} \leq c \Rightarrow \int_{\Omega} \Psi_{1}^{*}\left(b_{1}\left(\varphi_{0}\right)\right) d x+\int_{\Omega} \Psi_{2}^{*}\left(b_{2}\left(\psi_{0}\right)\right) d x \leq c$,
so we deduce that $\sum_{i=1}^{2} \int_{0}^{T} \int_{\Omega}\left|\nabla u_{i}^{n}\right|^{2} d x+c_{17} \sum_{i=1}^{2} \int_{0}^{T} \int_{\Omega}\left|u_{i}^{n}\right|^{p_{i}} d x \leq c_{18}$.
Whence lemma 2.
From lemma 2 and Lemma 1, there is a subsequence $u_{i}^{n}(i=1,2)$ with the following properties:
$u_{i}^{n} \rightarrow u_{i}$ weakly in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap L^{p_{i}}\left(0, T ; L^{p_{i}}(\Omega)\right)$
$b_{i}\left(u_{i}^{n}\right) \rightarrow \chi_{i}$ weakly in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$
$b_{i}\left(u_{i}^{n}\right) \rightarrow \chi_{i}$ strongly in $L^{2}\left(\tau, T ; H^{-1}(\Omega)\right)$ ( by the compactness result of
Aubin ( see $[22])$ ). By lemma $7([9])$, we have $\chi_{i}=b_{i}\left(u_{i}\right)$. Moreover,
$f_{1}\left(., u_{1}^{n}, u_{2}^{n-1}\right)$ converges to $f_{1}\left(., u_{1}, u_{2}\right)$ in $L^{r}\left(\tau, T ; L^{r}(\Omega)\right), \forall r \geq 1, \forall \tau \geq 1$ and $f_{2}\left(., u_{1}^{n-1}, u_{2}^{n}\right)$ converges to $f_{2}\left(., u_{1}, u_{2}\right)$ in $L^{r}\left(\tau, T ; L^{r}(\Omega)\right), \forall r \geq 1$;
taking the limit as $n$ goes to $\infty$, we deduce that $\left(u_{1}, u_{2}\right)$ is a weak solution of (S).

### 1.3. Uniqueness

## Theorem 2.

Assume that $f_{1}$ and $f_{2}$ verify :

$$
\text { (H8) }\left\{\begin{array}{c}
\forall M>0, \forall N>0, \exists c_{M}>0, c_{N}>0: \\
\forall u, \bar{u}, v, \bar{v}:|u|+|\bar{u}| \leq M \text { and }|v|+|\bar{v}| \leq N, \text { we have } \\
\left|f_{1}(x, u, v)-f_{1}(x, \bar{u}, \bar{v})\right|^{2}+\left|f_{2}(x, u, v)-f_{2}(x, \bar{u}, \bar{v})\right|^{2} \leq \\
c_{M}\left(b_{1}(u)-b_{1}(\bar{u})\right)(u-\bar{u})+c_{N}\left(b_{2}(v)-b_{2}(\bar{v})\right)(v-\bar{v}) .
\end{array}\right.
$$

Then (S) has a unique solutions $(u, v)$ in $Q_{T}$.
Proof : Let $(u, v)$ and $(\bar{u}, \bar{v})$ be solutions of (S); then we have :

$$
\begin{equation*}
\frac{\partial\left(b_{1}(u)-b_{1}(\bar{u})\right)}{\partial t}-\triangle(u-\bar{u})=f_{1}(x, \bar{u}, \bar{v})-f_{1}(x, u, v) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial\left(b_{2}(v)-b_{2}(\bar{v})\right)}{\partial t}-\triangle(v-\bar{v})=f_{2}(x, \bar{u}, \bar{v})-f_{2}(x, u, v) \tag{1.10}
\end{equation*}
$$

Multiplying (1.9) by $w_{1}=(-\triangle)^{-1}\left(b_{1}(u)-b_{1}(\bar{u})\right)$ and (1.10) by $w_{2}=(-\triangle)^{-1}\left(b_{2}(v)-b_{2}(\bar{v})\right)$ and adding, we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left[\left\|b_{1}(u)-b_{1}(\bar{u})\right\|_{H^{-1}(\Omega)}^{2}+\left\|b_{2}(v)-b_{2}(\bar{v})\right\|_{H^{-1}(\Omega)}^{2}\right]+ \\
& \quad\left(b_{1}(u)-b_{1}(\bar{u}), u-\bar{u}\right)_{L^{2}(\Omega)}+\left(b_{2}(v)-b_{2}(\bar{v}), v-\bar{v}\right)_{L^{2}(\Omega)} \leq \\
& c\left\|f_{1}(x, u, v)-f_{1}(x, \bar{u}, \bar{v})\right\|_{H^{-1}(\Omega)}\left\|b_{1}(u)-b_{1}(\bar{u})\right\|_{H^{-1}(\Omega)}+
\end{aligned}
$$

$$
\begin{equation*}
c\left\|f_{2}(x, u, v)-f_{2}(x, \bar{u}, \bar{v})\right\|_{H^{-1}(\Omega)}\left\|b_{2}(v)-b_{2}(\bar{v})\right\|_{H^{-1}(\Omega)} . \tag{1.11}
\end{equation*}
$$

From hypothesis (H8) we obtain

$$
\begin{align*}
& \left\|f_{1}(x, u, v)-f_{1}(x, \bar{u}, \bar{v})\right\|_{H^{-1}(\Omega)}^{2}+\left\|f_{2}(x, u, v)-f_{2}(x, \bar{u}, \bar{v})\right\|_{H^{-1}(\Omega)}^{2} \\
\leq & c\left[\left\|f_{1}(x, u, v)-f_{1}(x, \bar{u}, \bar{v})\right\|_{L^{2}(\Omega)}^{2}+\left\|f_{2}(x, u, v)-f_{2}(x, \bar{u}, \bar{v})\right\|_{L^{2}(\Omega)}^{2}\right] \\
\leq & c c_{M}\left(b_{1}(u)-b_{1}(\bar{u}), u-\bar{u}\right)_{L^{2}(\Omega)}+c c_{N}\left(b_{2}(v)-b_{2}(\bar{v}), v-\bar{v}\right)_{L^{2}(\Omega)}, \tag{1.12}
\end{align*}
$$

where $M=\|u\|_{L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)}+\|\bar{u}\|_{L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)}$ and $N=\|v\|_{L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)}+$ $\|\bar{v}\|_{L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)}$.

Therefore, using Schwartz inequality in (1.11), the fact that $\left(b_{i}, i=1,2\right)$ is increassing and (1.12), we deduce that

$$
\begin{aligned}
& \frac{d}{d t}\left[\left\|b_{1}(u)-b_{1}(\bar{u})\right\|_{H^{-1}(\Omega)}^{2}+\left\|b_{2}(v)-b_{2}(\bar{v})\right\|_{H^{-1}(\Omega)}^{2}\right] \leq \\
& c \frac{d}{d t}\left[\left\|b_{1}(u)-b_{1}(\bar{u})\right\|_{H^{-1}(\Omega)}^{2}+\left\|b_{2}(v)-b_{2}(\bar{v})\right\|_{H^{-1}(\Omega)}^{2}\right] .
\end{aligned}
$$

Thus, we deduce that $b_{1}(u)=b_{1}(\bar{u})$ and $b_{2}(v)=b_{2}(\bar{v})$, hence $u=\bar{u}$ and $v=\bar{v}$.

Remark 1. Theorem 1 establishes the existence of dynamical system $\{S(t)\}_{t \geq 0}$ which maps $L^{2}(\Omega) \times L^{2}(\Omega)$ into $L^{2}(\Omega) \times L^{2}(\Omega)$ such that $S(t)\left(\varphi_{0}, \psi_{0}\right)=$ $\left(u_{1}(t), u_{2}(t)\right)$.

## 2. Global attractor

Proposition 1 Assume that (H1)-( H8) hold; then the solution $\left(u_{1}, u_{2}\right)$ of system (S) satisfies :

$$
\begin{equation*}
\left|u_{1}(t)\right|_{L^{\infty}(\Omega)}+\left|u_{2}(t)\right|_{L^{\infty}(\Omega)} \leq c\left(t_{0}\right) \quad \forall t \geq t_{0} \tag{2.0}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{2} d x \leq c \quad \forall t \geq t_{0}+r \tag{2.1}
\end{equation*}
$$

Proof : Reasoning as the proof of lemma 1, we also have(2.0).
Multiplying the first equation of (S) by $u_{1}$ and the second by $u_{2}$, by (H2) and (2.5), we get :

$$
\begin{equation*}
\frac{d}{d t} \sum_{i=1}^{2} \int_{\Omega} \Psi_{i}^{*}\left(b_{i}\left(u_{i}\right)\right) d x+\sum_{i=1}^{2} \frac{1}{2} \int_{\Omega}\left|\nabla u_{i}\right|^{2} d x=-\sum_{i=1}^{2} \int_{\Omega} f_{i}(x, u) u_{i} d x \leq c . \tag{2.2}
\end{equation*}
$$

For fixed $r>0$ and $\tau>0$, integrate (2.2) on $] t, t+r[$

$$
\begin{equation*}
\forall t \geq \tau>0 \quad \sum_{i=1}^{2} \int_{t}^{t+r} \int_{\Omega}\left|\nabla u_{i}\right|^{2} d x d s \leq c(\tau) \tag{2.3}
\end{equation*}
$$

Multiplying the first equation of $(\mathrm{S})$ by $\left(u_{1}\right)_{t}$ and the second by $\left(u_{2}\right)_{t}$, we get

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left(\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{2} d x\right)+\sum_{i=1}^{2} \int_{\Omega}\left(b_{i}^{\prime}\left(u_{i}\right)\left(\frac{\partial u_{i}}{\partial t}\right)^{2} d x=\right.  \tag{2.4}\\
\sum_{i=1}^{2} \int_{\Omega} f_{i}(x, u)\left(u_{i}\right)_{t} \leq \frac{1}{2} \sum_{i=1}^{2} \int_{\Omega} \frac{f_{i}^{2}(x, u)}{b_{i}^{\prime}\left(u_{i}\right)} d x+\frac{1}{2} \sum_{i=1}^{2} \int_{\Omega}\left(b_{i}^{\prime}\left(u_{i}\right)\left(\frac{\partial u_{i}}{\partial t}\right)^{2} d x .\right.
\end{gather*}
$$

By (H7) and the properties of functions $f_{i}$, we obtain:

$$
\begin{equation*}
\frac{d}{d t}\left[\sum_{i=1}^{2} \int_{\Omega}\left|\nabla u_{i}\right|^{2} d x\right] \leq c(\tau) \tag{2.5}
\end{equation*}
$$

From the uniform Gronwall's lemma see [22], we get (2.1)
Remark 2. By proposition1 we deduce that there exist absorbing sets in $L^{\sigma_{1}}(\Omega) \times L^{\sigma_{1}}(\Omega)$ for any $\sigma_{i}: 1 \leq \sigma_{i} \leq+\infty$ and absorbing sets in $H_{0}^{1}(\Omega) \times$ $H_{0}^{1}(\Omega)$; then assumptions (1.1), (1.4) and (1.12) in theorem 1.1 [22, p.23] are satisfied with $U=\left[L^{2}(\Omega)\right]^{2}$, so we have the following :

Theorem 2. Assume that (H1) - (H7) are satisfied. Then the semi-group $S(t)$ associated with the boundary value problem (S) possesses a maximal attractor $A$, which is bounded in $\left[H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right] \times\left[H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right]$, compact and connected in $\left[L^{2}(\Omega)\right]^{2}$. Its domain of attraction is the whole space $\left[L^{2}(\Omega)\right]^{2}$.

## 3. A regularity property of the attractor

In this section we shall show supplementary regularity estimates on the solution of problem ( $\mathbf{S}$ ) and by use of them, we shall obtain more regularity on the attractor obtained in section 3. We shall assume that
(H9) $\left\{N \leq 3\right.$ and $b_{i}$ is of class $\mathcal{C}^{3}$.

Hereafter, we shall assume that there exist positive constants $\delta_{i}>0$ and a function $\Phi$ from $R^{N+2}$ to $R$ such that:

$$
(H 10)\left\{\begin{array}{c}
f_{i}(x, u)=f_{i}(u)-h_{i}(x)=\delta_{i} \frac{\partial \Phi}{\partial u_{i}} \\
f_{i} \text { satisfying (H3) to (H6) and } h_{i} \in L^{\infty}(\Omega) .
\end{array}\right.
$$

We shall denote : $r(t)=\sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{2} d x$.
Theorem 3 Let $f_{i}$ and $b_{i}$ satisfies hypothesis (H1) to (H10). Then the solution ( $u_{1}, u_{2}$ ) of problem ( $\mathbf{S}$ ) satisfies the following regularity estimates:

$$
\begin{align*}
& \frac{\partial b_{i}\left(u_{i}\right)}{\partial t} \in L^{2}\left(t_{0},+\infty ; L^{2}(\Omega)\right)  \tag{3.0}\\
& \frac{\partial \nabla u_{i}}{\partial t} \in L^{2}\left(t_{0},+\infty ; L^{2}(\Omega)\right) \tag{3.1}
\end{align*}
$$

and

$$
\begin{equation*}
u_{i} \in H^{2}(\Omega) . \tag{3.2}
\end{equation*}
$$

To prove this theorem, we need the following lemma:
Lemma 3 Under the assumptions of theorem 3, there exist constants $C=$ $C\left(\varphi_{0}, \psi_{0}\right)$, such that for any $T>0$ :

$$
\begin{equation*}
\left\|u_{i}\right\|_{L^{\infty}\left(0, T, H_{0}^{1}(\Omega)\right)} \leq C<\infty \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\frac{\partial u_{i}}{\partial t}\right\|_{L^{2}\left(Q_{T}\right)} \leq C<\infty \tag{3.4}
\end{equation*}
$$

Proof of lemma 3: Multiplying the equation $\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}-\operatorname{div}\left[\nabla u_{i}\right]+\delta_{i} \frac{\partial \Phi}{\partial u_{i}}=0$ by $\frac{1}{\delta_{i}}\left(u_{i}\right)_{t}$ and adding the two equations, we obtain :

$$
\begin{gather*}
\sum_{i=1}^{2} \frac{1}{\delta_{i}} \int_{Q_{T}} b_{i}^{\prime}\left(u_{i}\right)\left(\frac{\partial u_{i}}{\partial t}\right)^{2} d x d t+\sum_{i=1}^{2} \frac{1}{2 \delta_{i}} \int_{\Omega}\left|\nabla u_{i}(., T)\right|^{2} d x= \\
\int_{\Omega}\left[-\Phi\left(., u_{1}(T), u_{2}(T)\right)+\Phi\left(., \varphi_{0}, \psi_{0}\right] d x=\frac{1}{2 \delta_{1}} \int_{\Omega}\left|\nabla \varphi_{0}\right|^{2} d x+\frac{1}{2 \delta_{2}} \int_{\Omega}\left|\nabla \psi_{0}\right|^{2} d x .\right. \tag{3.5}
\end{gather*}
$$

$\Phi$ being continuous and $\left(u_{1}, u_{2}\right)$ bounded, we then obtain:

$$
\begin{equation*}
\sum_{i=1}^{2} \frac{\gamma_{i}}{\delta_{i}} \int_{Q_{T}}\left(\frac{\partial u_{i}}{\partial t}\right)^{2} d x d t+\sum_{i=1}^{2} \frac{1}{2 \delta_{i}} \int_{\Omega}\left|\nabla u_{i}(., T)\right|^{2} d x \leq C\left(\varphi_{0}, \psi_{0}\right) \tag{3.6}
\end{equation*}
$$

whence (3.3) and (3.4)
Proof of theorem 3: Differentiating equation $\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}-\operatorname{div}\left[\nabla u_{i}\right]+$ $f_{i}\left(u_{1}, u_{2}\right)=h_{i}$ we obtain

$$
\begin{equation*}
\left.b_{i}^{\prime}\left(u_{i}\right) u_{i}^{\prime \prime}+b_{i}^{\prime \prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{2}-\operatorname{div}\left(\nabla u_{i}\right)\right)^{\prime}+\sum_{j=1}^{2} \frac{\partial f_{i}(u)}{\partial u_{j}} u_{j}^{\prime}=0 \tag{3.7}
\end{equation*}
$$

Now multiplying (3.7) by $u_{i}^{\prime}$, and integrating over $\Omega$ gives

$$
\begin{equation*}
\frac{1}{2} r^{\prime}(t)+\frac{1}{2} \sum_{i=1}^{2} \int_{\Omega} b_{i}^{\prime \prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{3} d x+\sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{H_{0}^{1}(\Omega)}+\int_{\Omega}\left(\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial f_{i}(u)}{\partial u_{j}} u_{j}^{\prime}\right) u_{i}^{\prime} d x=0 \tag{3.8}
\end{equation*}
$$

The $L^{\infty}$ estimate and hypothesis (H9) imply successively :

$$
\begin{gather*}
\int_{\Omega}\left(\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial f_{i}(u)}{\partial u_{j}} u_{j}^{\prime}\right) u_{i}^{\prime} d x \leq M \sum_{i=1}^{2} \int_{\Omega}\left(u_{i}^{\prime}\right)^{2} d x  \tag{3.9}\\
\gamma \sum_{i=1}^{2} \int_{\Omega}\left(u_{i}^{\prime}\right)^{2} d \leq r(t) \leq M \sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{H_{0}^{1}(\Omega)}^{2} \tag{3.10}
\end{gather*}
$$

and

$$
\begin{equation*}
-\frac{1}{2} \sum_{i=1}^{2} \int_{\Omega} b^{\prime \prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{3} d x \leq \sum_{i=1}^{2} \frac{M_{i}}{2}\left|u_{i}^{\prime}\right|_{L^{3}(\Omega)}^{3} . \tag{3.11}
\end{equation*}
$$

Since for $N \leq 3, H_{0}^{1}(\Omega)$ is continuously imbedded in $L^{6}(\Omega)$, we then obtain by Young's inequality that :

$$
\begin{equation*}
\left|u_{i}^{\prime}\right|_{L^{3}(\Omega)}^{3} \leq c\left|u_{i}^{\prime}\right|_{L^{2}(\Omega)}^{\frac{9}{4}}\left|u_{i}^{\prime}\right|_{L^{3}(\Omega)}^{3} \leq c\left|u_{i}^{\prime}\right|_{L^{2}(\Omega)}^{\frac{18}{5}}+\frac{1}{2}\left\|u_{i}{ }^{\prime}\right\|_{H_{0}^{1}(\Omega)}^{2} . \tag{3.12}
\end{equation*}
$$

By $(3.9),(3.10),(3.11)$ and (3.12), (3.7) becomes :

$$
\begin{equation*}
r^{\prime}(t)+\frac{1}{2} \sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{H_{0}^{1}(\Omega)}^{2}+c r(t) \leq c r(t)^{\frac{9}{5}}+c r(t) \leq c r(t)^{2}+c . \tag{3.13}
\end{equation*}
$$

On the other hand, using (2.4) we obtain :

$$
\begin{equation*}
\sum_{i=1}^{2} \int_{\tau}^{\tau+r} \int_{\Omega} b_{i}^{\prime}\left(u_{i}\right)\left(u_{i}^{\prime}\right)^{2} d x d t \leq c_{\tau}, \text { for any } \tau \geq t_{0} \tag{3.14}
\end{equation*}
$$

Estimates (3.13) and (3.14) and the use of the uniform Gronwall' lemma thus gives

$$
\begin{equation*}
r(t) \leq c\left(t_{0}\right), \text { for any } \quad \forall t \geq t_{0} \tag{3.15}
\end{equation*}
$$

Now, by (3.15) and hypothesis (H1), we get :

$$
\sum_{i=1}^{2} \int_{\Omega}\left(\frac{\partial b_{i}\left(u_{i}\right)}{\partial t}\right)^{2} d x \leq M r(t) \leq c\left(t_{0}\right) \quad \text { for any } t \geq t_{0}
$$

Then (3.0) is satisfied. Now, as we have :

$$
-\triangle u_{i}=-f_{i}(x, u)-b_{i}\left(u_{i}\right)_{t} \in L^{\infty}\left(t_{0},+\infty ; L^{2}(\Omega)\right),
$$

then by (S) $u_{i}(., t)$ is in bounded subset of $H^{2}(\Omega)$. Hence estimate (3.2) follows.

For a solution $\left(u_{1}, u_{2}\right)$ of $(\mathbf{S})$, we define the $\omega$ - limit set by :

$$
\omega\left(\varphi_{0}, \psi_{0}\right)=\left\{\begin{array}{c}
w=\left(w_{1}, w_{2}\right) \in\left(H_{0}^{1}(\Omega) \times L^{\infty}(\Omega) \cap\left(H_{0}^{1}(\Omega) \times L^{\infty}(\Omega)\right)\right. \\
\exists t_{n} \rightarrow+\infty \quad u_{1}\left(., t_{n}\right) \rightarrow w_{1} \operatorname{in} L^{2}(\Omega), u_{2}\left(., t_{n}\right) \rightarrow w_{2} \text { in } L^{2}(\Omega)
\end{array}\right\} .
$$

Corollary 1. Under the assumptions (H1) to (H10), we have $\omega\left(\varphi_{0}, \psi_{0}\right) \neq \emptyset$ and any $\left(w_{1}, w_{2}\right) \in \omega\left(\varphi_{0}, \psi_{0}\right)$ is a bounded weak solution of the stationary problem

$$
\left\{\begin{array}{c}
-\Delta u_{i}+f_{i}\left(x, u_{1}, u_{2}\right)=0 \quad \text { in } \Omega \\
u_{i}=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

Proof : From (3.3) we obtain $\omega\left(\varphi_{0}, \psi_{0}\right) \neq \emptyset$. Setting $w_{i}=\operatorname{Lim}_{n \rightarrow \infty} u_{i}\left(., t_{n}\right)$ and $w=\left(w_{1}, w_{2}\right) \in \omega\left(\varphi_{0}, \psi_{0}\right)$, we get that $w=\left(w_{1}, w_{2}\right)$ is a solution of the Dirichlet problem for elliptic system. The proof is analogous to El Ouardi and de Thélin [12] and is omitted here.

Corollary 2. Under the assumptions (H1) to (H10), we have

$$
\mathcal{A} \subset\left(\mathcal{W}^{2,6}(\Omega)\right)^{2} \text { if } N=3
$$

and

$$
\mathcal{A} \subset\left(\mathcal{W}^{2, r}(\Omega)\right)^{2} \text { for all } r<\infty \text { if } N \leq 2
$$

Proof: Taking the inner product of (4.7) with $u_{i}^{\prime \prime}$, we get
$\frac{d}{d t}\left(\sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{H_{0}^{1}(\Omega)}^{2}\right) \leq c\left(\sum_{i=1}^{2}\left|u_{i}^{\prime}\right|_{H_{0}^{1}(\Omega)}^{4}+\sum_{i=1}^{2}\left|u_{i}^{\prime}\right|_{L^{2}(\Omega)}^{2}\right)$.
By uniform Gronwall's lemma, we get $\sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq c, \forall t \geq T$.
Then $\sum_{i=1}^{2}\left\|u_{i}^{\prime}\right\|_{L^{\alpha_{i}(\Omega)}}^{2} \leq c, \forall t \geq T$ for all $t \geq \tau$ and $\alpha_{i}=6$ if $N=3$ or $1 \leq \alpha_{i}<\infty$ if $N \leq 2$.

## 4. Dimension of the attractor $\mathcal{A}$

### 4.1 Linearized problem

Let $\left(\varphi_{0}, \psi_{0}\right) \in \mathcal{A}$; then by theorem3, $u(t)=\left(u_{1}(t), u_{2}(t)\right)$ belongs to a bounded subset of $\left[H^{2}(\Omega)\right]^{2}$. This fact allows us to linearize the system ( S ) along $u(t)$. Formally, the candidate for the linearized problem is

$$
\left(\mathrm{S}_{L}\right) \quad\left\{\begin{array}{c}
U=\left(U_{1}, U_{2}\right) \in\left[L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right]^{2}\right. \\
\frac{\partial}{\partial t}\left(b_{i}^{\prime}\left(u_{i} U_{i}\right)-\triangle U_{i}+\sum_{j=1}^{2} \frac{\partial f_{i}}{\partial u_{j}} U_{j}=0\right. \\
U(0)=\left(U_{1}(0), U_{2}(0)\right)=U_{0}
\end{array}\right.
$$

The existence and uniqueness of solution can be deduced from (4.0) below

$$
\begin{equation*}
U_{i} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) . \tag{4.0}
\end{equation*}
$$

To deduce (4.0), Multiply the equation in $\left(\mathrm{S}_{L}\right)$ by $b_{i}^{\prime}\left(u_{i}\right) U_{i}$, we obtain

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left(\sum_{i=1}^{2}\left|b_{i}^{\prime}\left(u_{i}\right) U_{i}\right|_{L^{2}(\Omega)}^{2}\right)+\sum_{i=1}^{2}\left(\nabla u_{i}, \nabla\left(b_{i}^{\prime}\left(u_{i}\right) U_{i}\right)\right)_{L^{2}(\Omega)} \\
=\sum_{i=1}^{2}\left(\sum_{j=1}^{2} \frac{\partial f_{i}}{\partial u_{j}} U_{j}, b_{i}^{\prime}\left(u_{i}\right) U_{i}\right)_{L^{2}(\Omega)} \tag{4.1}
\end{gather*}
$$

By the hypothesis on $b_{i}$, we have

$$
\begin{gather*}
\nabla\left(b_{i}^{\prime}\left(u_{i}\right) U_{i}\right)=b_{i}^{\prime}\left(u_{i}\right) \nabla U_{i}+b_{i}^{\prime \prime}\left(u_{i}\right) \nabla u_{i} \cdot U_{i},  \tag{4.2}\\
\left(\nabla U_{i}, b_{i}^{\prime \prime}\left(u_{i}\right) \nabla u_{i} \cdot U_{i}\right)_{L^{2}(\Omega)} \leq c\left|\nabla u_{i}\right|_{L^{4}(\Omega)}\left|U_{i}\right|_{L^{4}(\Omega)}\left|\nabla U_{i}\right|_{L^{2}(\Omega)}, \tag{4.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2}\left(\sum_{j=1}^{2} \frac{\partial f_{i}}{\partial u_{j}} U_{j}, b_{i}^{\prime}\left(u_{i}\right) U_{i}\right)_{L^{2}(\Omega)} \leq M \sum_{i=1}^{2} \sum_{j=1}^{2}\left|U_{j} U_{i}\right|_{L^{1}(\Omega)} \leq c \sum_{i=1}^{2}\left|U_{i}\right|_{L^{2}(\Omega)}^{2} \tag{4.4}
\end{equation*}
$$

From (4.2) to (4.4), (4.1) becomes
$\frac{1}{2} \frac{d}{d t}\left(\sum_{i=1}^{2}\left|b_{i}^{\prime}\left(u_{i}\right) U_{i}\right|_{L^{2}(\Omega)}^{2}\right)+\gamma \sum_{i=1}^{2}\left|U_{i}\right|_{H_{0}^{1}(\Omega)}^{2} \leq c \sum_{i=1}^{2}\left|U_{i}\right|_{L^{2}(\Omega)}^{2} \leq c \sum_{i=1}^{2}\left|b_{i}^{\prime}\left(u_{i}\right) U_{i}\right|_{L^{2}(\Omega)}^{2}$.

By standard application of Gronwall's inequality, we get (4.0).

### 4.2 Differentiability of the Semigroup

We assume that $f_{i} \in \mathcal{C}^{2}(R \times R)(\forall i=1,2)$. Let $u_{0}=\left(\varphi_{0}, \psi_{0}\right), v_{0}=\left(\bar{\varphi}_{0}, \bar{\psi}_{0}\right)$, $S(t)$ be the solution of $(\mathrm{S})$ and $S^{\prime}\left(t, u_{0}\right)$ the solution of $\left(\mathrm{S}_{L}\right)$. The results of [6] imply the following proposition :

## Proposition 3.

Assume (H1) to (H10), then for any $\left(u_{0}, v_{0}\right) \in\left[L^{\infty}(\Omega) \times H^{2}(\Omega)\right]^{2}$, we have $\left|S(t) v_{0}-S(t) u_{0}-S^{\prime}\left(t, u_{0}\right)\left(v_{0}-u_{0}\right)\right|_{\left(L^{2}(\Omega)\right)^{2}} \leq c(t) o\left(\left|v_{0}-u_{0}\right|_{\left(L^{2}(\Omega)\right)^{2}}\right)$

We need the lemma 3 for the proof of proposition 3 :
Let $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ be two solutions of (S) in $\mathcal{A}$ with $\left(u_{1}(0), u_{2}(0)\right)=$ $\left(\varphi_{0}, \psi_{0}\right)$ and $\left(v_{1}(0), v_{2}(0)\right)=\left(\varphi_{1}, \psi_{1}\right)$. Setting $w_{1}=u_{1}-v_{1}$ and $w_{2}=u_{2}-v_{2}$, we have

Lemme 3 Assume (H1) to (H10). For all $T>0$, there exists $c(T)>0$ such that for all $t \in[0, T]$,

$$
\begin{align*}
& \sum_{i=1}^{2}\left|w_{i}(t)\right|_{H_{0}^{1}(\Omega)}^{2} \leq c(T) \sum_{i=1}^{2}\left|w_{i}(0)\right|_{H_{0}^{1}(\Omega)}^{2},  \tag{4.7}\\
& t \sum_{i=1}^{2}\left|w_{i}(t)\right|_{H_{0}^{1}(\Omega)}^{2} \leq c(T) \sum_{i=1}^{2}\left|w_{i}(0)\right|_{L^{2}(\Omega)}^{2}, \tag{4.8}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{2}\left|w_{i}^{\prime}(t)\right|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{2} \leq c(T) \sum_{i=1}^{2}\left|w_{i}(0)\right|_{H_{0}^{1}(\Omega)}^{2} \tag{4.9}
\end{equation*}
$$

Proof : We have

$$
\left\{\begin{array} { r } 
{ \frac { \partial b _ { i } ( u _ { i } ) } { \partial t } - \Delta u _ { i } + f _ { i } ( x , u ) = 0 } \\
{ u ( 0 ) = ( u _ { 1 } ( 0 ) , u _ { 2 } ( 0 ) ) = ( \varphi _ { 0 } , \psi _ { 0 } ) }
\end{array} \quad \left\{\begin{array}{c}
\frac{\partial b_{i}\left(v_{i}\right)}{\partial t}-\Delta v_{i}+f_{i}(x, v)=0 \\
v(0)=\left(v_{1}(0), v_{2}(0)\right)=\left(\varphi_{1}, \psi_{1}\right)
\end{array}\right.\right.
$$

Thus, the difference $w_{i}=u_{i}-v_{i}$ satisfies

$$
\begin{equation*}
b_{i}^{\prime}\left(u_{i}\right) w_{i}^{\prime}-\Delta w_{i}=\left[b_{i}^{\prime}\left(v_{i}\right)-b_{i}^{\prime}\left(u_{i}\right)\right] v_{i}^{\prime}+f_{i}(v)-f_{i}(u) \tag{4.10}
\end{equation*}
$$

Setting
$F_{11}=\int_{0}^{1} \frac{\partial f_{1}}{\partial u_{1}}\left(x, u_{1}+\theta\left(u_{2}-u_{1}\right), u_{2}\right) d \theta, F_{21}=\int_{0}^{1} \frac{\partial f_{1}}{\partial u_{2}}\left(x, u_{1}, u_{2}+\theta\left(u_{2}-u_{1}\right)\right) d \theta$,
$F_{12}=\int_{0}^{1} \frac{\partial f_{2}}{\partial u_{1}}\left(x, u_{1}+\theta\left(u_{2}-u_{1}\right), u_{2}\right) d \theta$ and $F_{22}=\int_{0}^{1} \frac{\partial f_{2}}{\partial u_{2}}\left(x, u_{1}, u_{2}+\theta\left(u_{2}-\right.\right.$ $\left.\left.u_{1}\right)\right) d \theta$,
(4.10) becomes

$$
\begin{equation*}
b_{i}^{\prime}\left(u_{i}\right) w_{i}^{\prime}-\triangle w_{i}=\left[b_{i}^{\prime}\left(v_{i}\right)-b_{i}^{\prime}\left(u_{i}\right)\right] v_{i}^{\prime}+\sum_{i=1}^{2} F_{i j} w_{j} \tag{4.11}
\end{equation*}
$$

We multiply (4.11) by $\frac{w_{i}}{b_{i}^{\prime}\left(u_{i}\right)}$

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t} \sum_{i=1}^{2}\left|w_{i}\right|_{L^{2}(\Omega)}^{2}+\sum_{i=1}^{2}\left(\nabla w_{i}, \nabla\left(\frac{w_{i}}{b_{i}^{\prime}\left(u_{i}\right)}\right)\right)_{L^{2}(\Omega)}= \\
\sum_{i=1}^{2}\left(\frac{b_{i}^{\prime}\left(v_{i}\right)-b_{i}^{\prime}\left(u_{i}\right)}{b_{i}^{\prime}\left(u_{i}\right)} v_{i}^{\prime}, w_{i}\right)_{L^{2}(\Omega)}+\sum_{i=1}^{2} \sum_{j=1}^{2}\left(F_{i j} w_{j}, \frac{w_{i}}{b_{i}^{\prime}\left(u_{i}\right)}\right)_{L^{2}(\Omega)} \tag{4.12}
\end{array}
$$

And parallel to lemma 16 in [8], it is easy to see that (4.7), (4.8) and (4.9) hold.

Proof of proposition 3 : It is similar to the proof for the lemma 15 in [ $8, p .125]$ and is omited.

### 4.3 Dimension Estimates

Consider the linearized problem

$$
\left(S_{L}\right)\left\{\begin{aligned}
U_{i}^{\prime}=F_{i}^{\prime}\left(u_{i}(\tau)\right) U_{i} & \text { in } \Omega \times R^{+} \\
U_{i}=0 & \text { on } \partial \Omega \times R \\
U_{i}(0)=\xi_{i} &
\end{aligned}\right.
$$

where $F_{i}^{\prime}\left(u_{i}(\tau)\right) U_{i}=\frac{1}{b_{i}^{\prime}\left(u_{i}(\tau)\right)} \triangle U_{i}-\frac{b_{i}^{\prime \prime}\left(u_{i}(\tau)\right)}{b_{i}^{\prime}\left(u_{i}(\tau)\right)} u_{i}^{\prime} U_{i}-\frac{1}{b_{i}^{\prime}\left(u_{i}(\tau)\right)} \sum_{j=1}^{2} \frac{\partial f_{i}}{\partial u_{j}} U_{j}$.
This problem can be rewritten as

$$
(\mathrm{L})\left\{\begin{array}{l}
U^{\prime}=F^{\prime}(u(\tau)) U \\
U=0 \\
U(0)=\xi
\end{array}\right.
$$

where $U=\binom{U_{1}}{U_{2}}, \quad F^{\prime}(u(\tau))=\left(\begin{array}{cc}F_{1}^{\prime}\left(u_{1}(\tau)\right) & 0 \\ 0 & F_{1}^{\prime}\left(u_{1}(\tau)\right)\end{array}\right)$.
Let $\bar{U}_{1}, \ldots \ldots, \bar{U}_{m}$ be $m$ solutions of (L) corresponding to the initial data $\xi, \ldots \ldots \ldots, \xi_{m}$ and $\mathcal{Q}_{m}(\tau)$ be the orthogonal projector in $H=L^{2}(\Omega) \times L^{2}(\Omega)$ such that $\mathcal{Q}_{m} H \subset V=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. If $\left\{W^{k}=\left(w_{1}^{k}, w_{2}^{k}\right\}_{k=1}^{m}\right.$ is an orthonormal basis of $\mathcal{Q}_{m}(\tau) H$; then

$$
\begin{aligned}
& \quad \operatorname{Tr}\left(F^{\prime}(u(\tau)) \circ \mathcal{Q}_{m}(\tau)=\sum_{k=1}^{m}\left(F^{\prime}(u(\tau)) W^{k}, W^{k}\right)_{H}=\sum_{i=1}^{2} \sum_{k=1}^{m}\left(F_{i}^{\prime}\left(u_{i}(\tau)\right) W_{i}^{k}, W_{i}^{k}\right)_{L^{2}(\Omega)}\right. \\
& \quad \text { and } \\
& \quad\left(F_{i}^{\prime}\left(u_{i}(\tau)\right) W_{i}^{k}, W_{i}^{k}\right)_{L^{2}(\Omega)}=\left(\triangle w_{i}^{k}, \frac{w_{i}^{k}}{b_{i}^{\prime}\left(u_{i}(\tau)\right)}\right)_{L^{2}(\Omega)}-\left(\frac{b_{i}^{\prime \prime}\left(u_{i}(\tau)\right)}{b_{i}^{\prime}\left(u_{i}(\tau)\right)} u_{i}^{\prime} w_{i}^{k}, w_{i}^{k}\right)_{L^{2}(\Omega)}- \\
& \left(\frac{1}{b_{i}^{\prime}\left(u_{i}(\tau)\right)} \sum_{j=1}^{2} \frac{\partial f_{i}}{\partial u_{j}} w_{j}^{k}, w_{i}^{k}\right)_{L^{2}(\Omega)} \\
& \quad \text { Since } u=\left(u_{1}, u_{2}\right) \in\left(L^{\infty}\left(0,+\infty, L^{\infty}(\Omega)\right)\right)^{2}, \text { we have } b_{i}\left(u_{i}\right), b_{i}^{\prime}\left(u_{i}\right),
\end{aligned}
$$

$$
\begin{gather*}
b_{i}^{\prime \prime}\left(u_{i}\right) \in\left(L^{\infty}\left(0,+\infty, L^{\infty}(\Omega)\right)\right)^{2} \text {, so } \\
\sum_{i=1}^{2}\left(F_{i}^{\prime}\left(u_{i}(\tau)\right) W_{i}^{k}, W_{i}^{k}\right)_{L^{2}(\Omega)} \leq \sum_{i=1}^{2}\left(\triangle w_{i}^{k}, \frac{w_{i}^{k}}{b_{i}^{\prime}\left(u_{i}(\tau)\right)}\right)_{L^{2}(\Omega)}+c \sum_{i=1}^{2} \int_{\Omega}\left|u_{i}^{\prime}\right|\left|w_{i}^{k}\right|^{2} d x+ \\
\left.\int_{\Omega} \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial f_{i}(x, u)}{\partial u_{j}} w_{j}^{k} w_{i}^{k}\right) d x . \tag{4.13}
\end{gather*}
$$

Now, we have

$$
\sum_{i=1}^{2}\left(\triangle w_{i}^{k}, \frac{w_{i}^{k}}{b_{i}^{\prime}\left(u_{i}(\tau)\right)}\right)_{L^{2}(\Omega)} \leq-c \sum_{i=1}^{2}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+c J
$$

where

$$
\begin{gather*}
J=\sum_{i=1}^{2} \int_{\Omega}\left|\nabla w_{i}^{k}\right|\left|w_{i}^{k}\right|\left|\nabla u_{i}\right| d x \leq c\left(\sum_{i=1}^{2}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}\right)^{\frac{1}{2}}\left(\int_{\Omega} \sum_{i=1}^{2}\left|w_{i}^{k}\right|^{2} d x\right)^{\frac{1}{2}} \\
\leq \frac{c}{2} \sum_{i=1}^{2}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+c\left(\int_{\Omega} \sum_{i=1}^{2}\left|w_{i}^{k}\right|^{2} d x\right) \tag{4.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left.\int_{\Omega} \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{\partial f_{i}(u)}{\partial u_{j}} w_{j}^{k} w_{i}^{k}\right) d x \leq c\left(\int_{\Omega} \sum_{i=1}^{2}\left|w_{i}^{k}\right|^{2} d x\right) \tag{4.15}
\end{equation*}
$$

According to (4.14) and (4.15), relation (4.13) becomes

$$
\begin{gather*}
\sum_{i=1}^{2}\left(F_{i}^{\prime}\left(u_{i}(\tau)\right) W_{i}^{k}, W_{i}^{k}\right)_{L^{2}(\Omega)} \leq-c \sum_{i=1}^{2}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+c \sum_{i=1}^{2}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+ \\
c\left(\int_{\Omega} \sum_{i=1}^{2}\left|w_{i}^{k}\right|^{2} d x\right)+c \sum_{i=1}^{2} \int_{\Omega}\left|u_{i}^{\prime}\right|\left|w_{i}^{k}\right|^{2} d x \tag{4.16}
\end{gather*}
$$

Which leads to

$$
\begin{gather*}
\operatorname{Tr}\left(F^{\prime}(u(\tau)) \circ \mathcal{Q}_{m}(\tau) \leq-c_{105} \sum_{i=1}^{2} \sum_{k=1}^{m}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+c \sum_{i=1}^{2} \sum_{k=1}^{m}\left\|w_{i}^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+\right. \\
c\left(\int_{\Omega} \sum_{i=1}^{2} \sum_{k=1}^{m}\left|w_{i}^{k}\right|^{2} d x\right)+c \sum_{i=1}^{2} \sum_{k=1}^{m} \int_{\Omega}\left|u_{i}^{\prime}\right|\left|w_{i}^{k}\right|^{2} d x . \tag{4.17}
\end{gather*}
$$

We set $\rho(x)=\sum_{k=1}^{m}\left|w^{k}(x)\right|^{2}=\sum_{i=1}^{2} \sum_{k=1}^{m}\left|w_{i}^{k}(x)\right|^{2}$ and $\gamma(t)=\max \left(\left|u_{1}^{\prime}(t)\right|,\left|u_{2}^{\prime}(t)\right|\right.$, $\theta(t)=\int_{\Omega} \gamma(t)^{\frac{5}{2}} d x$. So, we get

$$
\begin{equation*}
\sum_{i=1}^{2} \sum_{k=1}^{m} \int_{\Omega}\left|u_{i}^{\prime}\right|\left|w_{i}^{k}\right|^{2} d x \leq \int_{\Omega} \gamma(t) \rho(x) d x \leq c\left[\int_{\Omega} \gamma(t)^{\frac{5}{2}} d x\right]^{\frac{2}{5}}\left[\int_{\Omega} \rho^{\frac{5}{3}} d x\right]^{\frac{3}{5}} \tag{4.18}
\end{equation*}
$$

Therefore by theorem 4.1 in [22], there exists $c_{1}^{\prime}>0$ such that:

$$
\begin{equation*}
\int_{\Omega} \rho^{\frac{5}{3}} d x \leq c_{1}^{\prime} \sum_{k=1}^{m}\left\|w^{k}(x)\right\|_{H_{0}^{1}(\Omega)}^{2} . \tag{4.19}
\end{equation*}
$$

So, we get

$$
\sum_{i=1}^{2} \sum_{k=1}^{m} \int_{\Omega}\left|u_{i}^{\prime}\right|\left|w_{i}^{k}\right|^{2} d x \leq c \int_{\Omega} \gamma(t)^{\frac{5}{2}} d x+\frac{c}{5} \sum_{k=1}^{m}\left\|w^{k}(x)\right\|_{H_{0}^{1}(\Omega)}^{2}
$$

From (4.18) to (4.19), (4.16) becomes

$$
\operatorname{Tr}\left(F^{\prime}(u(\tau)) \circ \mathcal{Q}_{m}(\tau) \leq-c \sum_{k=1}^{m}\left\|w^{k}\right\|_{H_{0}^{1}(\Omega)}^{2}+c \int_{\Omega} \rho d x+c \int_{\Omega} \gamma(t)^{\frac{5}{2}} d x\right.
$$

and as in [22], we obtain:

$$
\begin{equation*}
\operatorname{Tr}\left(F^{\prime}(u(\tau)) \circ \mathcal{Q}_{m}(\tau) \leq-c m^{1+\frac{2}{N}}+c^{\prime} m+\theta(t)\right. \tag{4.20}
\end{equation*}
$$

Setting $\quad q_{m}(t)=\sup _{u_{0} \in \mathcal{A}} \sup _{\substack{\xi_{i} \in H,\left|\xi_{i}\right| \leq 1 \\ i=1, \ldots \ldots, m}}\left\{\frac{1}{t} \int_{0}^{t} \operatorname{Tr}\left(F^{\prime}\left(S(\tau) u_{0}\right)\right) \circ \mathcal{Q}_{m}(\tau) d \tau\right\}$
and

$$
q_{m}=\operatorname{Lim}_{t \rightarrow+\infty} \sup q_{m}(t)
$$

Then, by lemma 15 in [8, p.119], we have $\int_{0}^{\eta} \theta d \tau \leq c(\eta)$ and $u_{i}^{\prime} \in L^{\infty}\left(\eta,+\infty, L^{\infty}(\Omega)\right)$. Thus, $q_{m}(t) \leq \frac{c(\eta)}{t}-c m^{1+\frac{2}{N}}+c^{\prime} m+c^{\prime}(\eta)$ and $q_{m} \leq-c m^{1+\frac{2}{N}}+c^{\prime} m+c^{\prime}(\eta)$
and for all integers $j>0$, we get $\mu_{1}+\mu_{2} \ldots \ldots \ldots+\mu_{j} \leq q_{j} \leq-c j^{1+\frac{2}{N}}+$ $c^{\prime} j+c^{\prime}(\eta)$.

Hence

$$
\begin{equation*}
\mu_{1}+\mu_{2} \ldots \ldots \ldots .+\mu_{m}<0 \quad \text { for any } \quad m<c^{\prime \prime} \tag{4.21}
\end{equation*}
$$

This shows that the fractal dimension of the attractor $\mathcal{A}$ is finite and arguing as for theorem V3.3 in [22], we conclude to the following :

Theorem 4. Assume (H1) to (H10) and let $m$ be an integer satisfying (4.21). Then

$$
\begin{equation*}
\operatorname{dim}_{\text {Fractale }}(\mathcal{A}) \leq 2 m \tag{i}
\end{equation*}
$$

( ii ) $\quad \operatorname{dim}_{H}(\mathcal{A}) \leq m$.

Acknowledgement. The authors would like to thank the referee for his refereeing and helpful comments.

## References

[1] ALT , H .W. and LUCKHAUSS, S . , Quasilinear elliptic and parabolic differential equations. Math.Z,183 (1983), pp311-341.
[2] BAMBERGER , A. , Etude d'une équation doublement non linéaire, J.Func.Ana., 24 (77), pp148-155.
[3] BLANCHARD, D. and FRANCFORT ,G., Study of doubly nonlinear heat equation with no growth assumptions on the parabolic term. Siam.J.Anal.Math, vol $9, n^{\circ} 5$, sept. 1988.
[4] DIAZ, J. and de THELIN, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, Siam.J.Anal.Math, vol25, $n^{\circ} 4$, p1085-1111.
[5] DIAZ, J. and J.F.Padial ,J. F. . Uniqueness and existence of solutions in the $\mathrm{BV}_{t}(Q)$ space to a doubly nonlinear parabolic problem. Publicacions Matematiques, vol40 (1996) , pp527-560.
[6] DUNG.L., Ultimately Uniform Boundedness of Solutions and Gradients for Degenerate Parabolic Systems. Nonlinear Analysis T.M.A.1998, in press.
[7] DUNG.L., Global attractors for a class of degenerate nonlinear parabolic systems, to appear in J.I.D.E.
[8] EDEN, A., MICHAUX , B. and RAKOTOSON, J.M.
Doubly nonlinear parabolic type equations as dynamical systems, Journal of Dynamics and Differential Equations, vol3, $n^{\circ} 1,1991$.
[9] EDEN , A., MICHAUX , B. and RAKOTOSON, J.M. ,
Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis, Indiana Uni.Math.Journal vol 39, $\mathrm{N}^{\circ} 3$ (1990), p737-783.
[10] EL HACHIMI , A. and de THELIN ,F., Supersolutions and stabilisation of the solutions of the equation $u_{t}-\triangle_{p} u=f(x, u)$, Part $I$. Nonlinear Analysis T.M.A12, $\mathrm{n}^{\circ}(88), \mathrm{p} 1385-1398$.
[11] EL HACHIMI , A. and de THELIN ,F., Supersolutions and stabilisation of the solutions of the equation $u_{t}-\triangle_{p} u=f(x, u)$, Part II. Publicaciones Matematiques,vol 35(1991), pp347-362 .
[12] EL OUARDI , H. and de THELIN, F., Supersolutions and Stabilization of the Solutions of a Nonlinear Parabolic System. Publicacions Mathematiques, vol 33 (1989), 369-381.
[13] FOIAS , C. , CONSTANTIN , P. and TEMAM , R. , Attractors representing turbulent flows. AMS Memoirs 53, No.314.
[14] FOIAS , C. and TEMAM , R. , Structure of the set of stationary solutions of the Navier-Stokes equations. Comm. Pure Appl.Math.30.149-164.
[15] LADYZHENSKAYA, O., and all, Linear and quasilinear equations of parabolic type, Trans.Amer. Math.Soc, providence, RI, 1968.
[16] LANGLAIS, M. and PHILLIPS, D., Stabilization of solution of nonlinear and degenerate evolution equatins. Nonlinear Analysis,TMA, 9, (1985), 321-333.
[17] LIONS , J. L. , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969 .
[18] Marion.M, Attractors for reaction-diffusion equation: existence and estimate of their dimension, Applicable Analysis (25) (1987), 101-147.
[19] RAVIART , P.A. , Sur la résolution de certaines équations paraboliques non linéaires .Journa of Functional Analysis 5, 299-328 (1970).
[20] SCHATZMAN , M. , Stationary solutions and asymptotic behavior of a quasilinear parabolic equation. Ind.Univ.J. 33 (1) ,1-29.
[21] SIMON , J., Régularité de la solution d'un problème aux limites non linéaire. Annales Fac. Sc. Toulouse3, série 5 (1981), p247-274.
[22] TEMAM ,R. , Infinite dimensional dynamical systems in mechanics and physics.Applied Mathematical Sciences, $n^{\circ} 68$, springer-verlag (1988).
[23] TSUTSUMI , M. , On solutions of some doubly nonlinear degenerate parabolic systems with absorption. .Journ.Math.Anal. and Applic., 132 (187212), 1988.
A.El Hachimi: UFR Mathématiques Appliquées et Industrielles Faculté des Sciences, B.P 20, El Jadida - Maroc
e-mail adress: aelhachi@yahoo.fr
H. El Ouardi: UFR Mathématiques Appliquées et Industrielles

Faculté des Sciences, B.P 20, El Jadida - Maroc
and
Ecole Nationale Supérieure d'Electricité et de Mécanique
B.P 8118-Casablanca-Oasis - Maroc
e_mail adress: h.elouardi@ensem-uh2c.ac.ma

