The existence of ground state solutions for semi-linear degenerate Schrödinger equations with steep potential well

Ling Ran, Shang-Jie Chen ${ }^{\boxtimes}$ and Lin Li

School of Mathematics and Statistics \& Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing Technology and Business University, Chongqing 400067, China

Received 21 October 2021, appeared 8 July 2022
Communicated by Dimitri Mugnai

Abstract. In this article, we study the following degenerated Schrödinger equations:

$$
\left\{\begin{array}{l}
-\Delta_{\gamma} u+\lambda V(x) u=f(x, u) \quad \text { in } \mathbb{R}^{N} \\
u \in E_{\lambda}
\end{array}\right.
$$

where $\lambda>0$ is a parameter, Δ_{γ} is a degenerate elliptic operator, the potential $V(x)$ has a potential well with bottom and the nonlinearity $f(x, u)$ is either super-linear or sub-linear at infinity in u. The existence of ground state solution be obtained by using the variational methods.
Keywords: steep well potential, mountain pass theorem, strongly degenerate elliptic operator.
2020 Mathematics Subject Classification: 35H20, 35J61, 35 J70.

1 Introduction

This article is concerned with a class of nonlinear Schrödinger equations:

$$
\left\{\begin{array}{l}
-\Delta_{\gamma} u+\lambda V(x) u=f(x, u) \quad \text { in } \mathbb{R}^{N}, \tag{1.1}\\
u \in E_{\lambda},
\end{array}\right.
$$

where $\lambda>0$ is a parameter, Δ_{γ} is a degenerate elliptic operator of the form

$$
\Delta_{\gamma}:=\sum_{j=1}^{N} \partial_{x_{j}}\left(\gamma_{j}^{2} \partial_{x_{j}}\right), \quad \partial_{x_{j}}=\frac{\partial}{\partial x_{j}}, \quad \gamma=\left(\gamma_{1}(x), \gamma_{2}(x), \ldots, \gamma_{N}(x)\right)
$$

[^0]Here, the functions $\gamma_{j}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ are assumed to be continuous, different from zero and of class C^{1} in $\mathbb{R}^{N} \backslash \Pi$, where

$$
\Pi:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: \prod_{j=1}^{N} x_{j}=0\right\} .
$$

Moreover, the function γ_{j} satisfy the following properties:
(i) There exists a semigroup of dilations $\left\{\delta_{t}\right\}_{t>0}$ such that

$$
\delta_{t}: \mathbb{R}^{N} \rightarrow \mathbb{R}, \quad \delta_{t}\left(x_{1}, \ldots, x_{N}\right)=\left(t^{\varepsilon_{1}} x_{1}, \ldots, t^{\varepsilon_{N}} x_{N}\right),
$$

where $1=\varepsilon_{1} \leq \varepsilon_{2} \leq \cdots \leq \varepsilon_{N}$, such that γ_{j} is δ_{t}-homogeneous of degree $\varepsilon_{j}-1$, i.e.

$$
\gamma_{j}\left(\delta_{t}(x)\right)=t^{\varepsilon_{j}-1} \gamma_{j}(x), \quad \forall x \in \mathbb{R}^{N}, \forall t>0, j=1, \ldots, N .
$$

The number

$$
\tilde{N}:=\sum_{j=1}^{N} \varepsilon_{j}
$$

is called the homogeneous dimension of \mathbb{R}^{N} with respect to $\left\{\delta_{t}\right\}_{t>0}$.
(ii) $\gamma_{1}=1, \gamma_{j}(x)=\gamma_{j}\left(x_{1}, x_{2}, \ldots, x_{j-1}\right), j=2, \ldots, N$.
(iii) There exists a constant $\rho \geq 0$ such that

$$
0 \leq x_{k} \partial_{x_{k}} \gamma_{j}(x) \leq \rho \gamma_{j}(x), \quad \forall k \in\{1,2, \ldots, j-1\}, \forall j=2, \ldots, N,
$$

and for every $x \in \overline{\mathbb{R}}_{+}^{N}=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in \mathbb{R}^{N}: x_{j} \geq 0, \forall j=1,2, \ldots, N\right\}$.
(iv) Equalities $\gamma_{j}(x)=\gamma_{j}\left(x^{*}\right)(j=1,2, \ldots, N)$ are satisfied for every $x \in \mathbb{R}^{N}$, where

$$
x^{*}=\left(\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right), \quad \text { if } x=\left(x_{1}, x_{2}, \ldots, x_{N}\right) .
$$

The Δ_{γ}-operator contains the following operator of Grušin-type

$$
G_{\alpha}:=\Delta_{x}+|x|^{2 \alpha} \Delta_{y}, \quad \alpha \geq 0,
$$

where (x, y) denotes the point of $\mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$. This operator was studied by Grušin in [8] when α is an integer, and by Franchi and Lanconeli in [6,7], Loiudice in [11], Monti and Morbidelli in [13] when α is not an integer. The Δ_{γ}-operator also contains following semi-linear strongly degenerate operator

$$
P_{\alpha, \beta}=\Delta_{x}+\Delta_{y}+|x|^{2 \alpha}|y|^{2 \beta} \Delta_{z}, \quad(x, y, z) \in \mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}} \times \mathbb{R}^{N_{3}},
$$

where α, β are nonnegative real numbers. The $P_{\alpha, \beta}$-operator was studied in [1]. For more information about the operator Δ_{γ}, please see [10].

In this paper, we study the existence of ground state solutions for the equation (1.1) under the assumptions that V is neither radially symmetric nor coercive. Precisely, we make the following assumptions.
$(V 1) V(x) \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ satisfying $\inf _{x \in \mathbb{R}^{N}} V(x)>0$.
(V2) There exists $b>0$ such that the set $\left\{x \in \mathbb{R}^{N}: V(x)<b\right\}$ is nonempty and has finite measure.

The conditions $(V 1) \sim(V 2)$ are special cases of steep potential well which were first introduced by Bartsch and Wang in [2]. In recent years, steep potential well are widely used in various equation, such as Schrödinger equations, Schrödinger-Poisson equations and Klein-Gordon-Maxwell system and so on (see [2-4,9,14,15]).

Nextly, wee will require that the nonlinear term satisfies either the assumptions:
$(f 1)^{\prime} f \in C\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right)$ and there are constants $0<a_{1}<a_{2}<a_{3} \cdots<a_{m}<1$ and functions $b_{i}(x) \in L^{\frac{2}{1-a_{i}}}\left(\mathbb{R}^{N},(0,+\infty)\right)$ such that

$$
|f(x, z)| \leq \sum_{i=1}^{m}\left(a_{i}+1\right) b_{i}(x)|z|^{a_{i}}, \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R} ;
$$

$(f 2)^{\prime}$ There exist constants $\eta, \delta>0, a_{0} \in(1,2), \Omega \subset \mathbb{R}^{N}$ such that meas $(\Omega) \neq 0$ and

$$
F(x, z)=\int_{0}^{z} f(x, t) d t \geq \eta|z|^{a_{0}}, \quad \forall x \in \Omega \text { and } \forall|z| \leq \delta,
$$

or the assumptions:
(f1) $\lim _{|z| \rightarrow 0} \frac{f(x, z)}{|z|}=0$ uniformly for $x \in \mathbb{R}^{N}$.
(f2) For some $2<p<2_{\gamma}^{*}, C_{0}>0$,

$$
|f(x, z)| \leq C_{0}\left(|z|+|z|^{p-1}\right), \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R},
$$

where $2_{\gamma}^{*}:=\frac{2 \tilde{N}}{\tilde{N}-2}$ is the critical Sobolev exponent;
(f3) $F(x, z):=\int_{0}^{z} f(x, t) d t \geq 0$ for all $x \in \mathbb{R}^{N}$, and

$$
\lim _{|z| \rightarrow+\infty} \frac{F(x, z)}{|z|^{2}}=+\infty, \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R} ;
$$

(f4) There exist $a_{1}>0, L_{0}>0$ and $\tau>\frac{\tilde{N}}{2}$, such that

$$
|f(x, z)|^{\tau} \leq a_{1} \mathcal{F}(x, z)|z|^{\tau}, \quad \text { for all } x \in \mathbb{R}^{N} \text { and }|z| \geq L_{0},
$$

where

$$
\mathcal{F}(x, z):=\frac{1}{2} f(x, z) z-F(x, z) \geq 0, \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R} ;
$$

(f5) $\frac{f(x, z)}{|z|}$ is an increasing function of z on $\mathbb{R} \backslash\{0\}$ for every $x \in \mathbb{R}^{N}$.
Before stating our main results, we give several notations. For $\lambda>0$, let

$$
\begin{aligned}
S_{\gamma}^{2}\left(\mathbb{R}^{N}\right) & :=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): \gamma_{j} \partial_{x_{j}} u \in L^{2}\left(\mathbb{R}^{N}\right), j=1, \ldots, N\right\}, \\
E_{\lambda} & :=\left\{u \in S_{\gamma}^{2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} \lambda V(x) u^{2} d x<+\infty\right\} .
\end{aligned}
$$

Then, by assumption $(V 1), E_{\lambda}$ is a Hilbert space with the inner product and norm respectively

$$
(u, v)_{\lambda}=\int_{\mathbb{R}^{N}}\left(\nabla_{\gamma} u \nabla_{\gamma} v+\lambda V(x) u v\right) d x, \quad\|u\|_{\lambda}=(u, u)_{\lambda}^{\frac{1}{2}},
$$

where

$$
\nabla_{\gamma} u=\left(\gamma_{1} \partial_{x_{1}} u, \gamma_{2} \partial_{x_{2}} u, \ldots, \gamma_{N} \partial_{x_{N}} u\right) .
$$

Obviously, the embedding $E_{\lambda} \hookrightarrow S_{\gamma}^{2}\left(\mathbb{R}^{N}\right)$ is continuous. It follows that $E_{\lambda} \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)$ is continuous for each $s \in\left[2,2_{\gamma}^{*}\right]$ (see [12]). Thus for each $2 \leq s \leq 2_{\gamma}^{*}$, there exists $d_{s}>0$ such that

$$
\begin{equation*}
|u|_{s} \leq d_{s}\|u\|_{\lambda}, \quad \forall u \in E_{\lambda}, \tag{1.2}
\end{equation*}
$$

where $L^{s}\left(\mathbb{R}^{N}\right)$ denote a Lebesgue space, the norm in $L^{s}\left(\mathbb{R}^{N}\right)$ is denoted by $|\cdot|_{s}$.
We point out that there are Rellich-type compact embeddings hold on bounded domains for subcritical exponents. By $S_{\gamma}^{2}(\Omega)$ we denote the set of all functions $u \in L^{2}(\Omega)$ such that $\gamma_{j} \partial_{x_{j}} u \in L^{2}(\Omega)$ for all $j=1, \ldots, N$, where Ω is a bounded domain with smooth boundary in \mathbb{R}^{N}. The space $S_{\gamma, 0}^{2}(\Omega)$ is defined as the closure of $C_{0}^{1}(\Omega)$ in the space $S_{\gamma}^{2}(\Omega)$. We define the norm on this space as

$$
\int_{\Omega}\left(\left|\nabla_{\gamma} u\right|^{2}+\lambda V(x) u^{2}\right) d x
$$

which is equivalent to $\int_{\Omega}\left|\nabla_{\gamma} u\right|^{2} d x$, by $(V 1)$. Then, we have that the embedding $S_{\gamma, 0}^{2}(\Omega) \hookrightarrow$ $L^{s}(\Omega)$ is compact for every $s \in\left[1,2_{\gamma}^{*}\right)$ (see Proposition 3.2. in [10]).

We can now state the main result:
Theorem 1.1. Assume $(V 1)$ and $(f 1)^{\prime} \sim(f 2)^{\prime}$ are satisfied. Then $\forall \lambda>0$, problem (1.1) admits at least a ground state solution in E_{λ}.

Remark 1.2. To the best of our knowledge, it seems that Theorem 1.1 is the first result about the existence of ground state solutions for the semi-linear Δ_{γ} differential equation in \mathbb{R}^{N}. By the way, we would like to point out that in [12] the authors study existence of infinitely many solutions for semi-linear degenerate Schrödinger equations with the potential $V(x)$ satisfying the coercivity condition which implies $E_{\lambda} \hookrightarrow \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)$ for any $s \in\left[2,2_{\gamma}^{*}\right)$.
Theorem 1.3. Assume $(V 1),(V 2)$ and $(f 1) \sim(f 5)$ are satisfied. Then there exists $\Lambda>0$ such that problem (1.1) has at least a ground state solution in E_{λ}, for all $\lambda>\Lambda$.

Remark 1.4. We point out that the Schrödinger equation with general steep potential well is considered in reference $[3,4]$, but they consider a special nonlinear term, where $f(x, z)=$ $|z|^{p-2} z\left(2<p<2^{*}\right)$. At the same time, we also point out that although the Schrödinger equation with general steep potential well and the general nonlinear term are considered in reference $[2,9]$, the nonlinear term there satisfies the following Ambrosetti-Rabinowitz type condition:
(AR) There exist $\mu>2$ and $L>0$, such that

$$
\mu F(x, z) \leq z f(x, z), \quad \forall x \in \mathbb{R}^{N}, \forall|z| \geq L
$$

The nonlinear term we consider here is not required to satisfy the Ambrosetti-Rabinowitz type condition, for example we allow nonlinearities of the type

$$
f(x, z)=2 z \ln \left(1+z^{2}\right)+\frac{2 z^{3}}{1+z^{2}}, \quad \forall(x, z) \in \mathbb{R}^{3} \times \mathbb{R}
$$

By a simple calculation, we have

$$
F(x, z)=\int_{0}^{z} f(x, t) d t=z^{2} \ln \left(1+z^{2}\right), \quad \mathcal{F}(x, z)=\frac{2 z^{4}}{1+z^{2}}
$$

and

$$
z f(x, z)-\mu F(x, z)=z^{2}\left((2-\mu) \ln \left(1+z^{2}\right)+\frac{2 z^{2}}{1+z^{2}}\right) .
$$

Now, it is easy to verify that the function f satisfies our assumptions and does not satisfy the Ambrosetti-Rabinowitz type condition.

To obtain our main results, we have to overcome some difficulties in our proof. The main difficulty consists in the lack of compactness of the $E_{\lambda} \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)$ with $s \in\left[2,2_{\gamma}^{*}\right]$. Since we assume that the potential is not radially symmetric, we cannot use the usual way to recover compactness, for example, restricting in the subspace of radial functions of E_{λ}. We also cannot borrow some ideas in [12] to recover compactness because the potential do not satisfied the coercivity condition. To recover the compactness, we establish the parameter dependent compactness conditions.

Now, we define the following energy functional

$$
\begin{equation*}
J_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{\gamma} u\right|^{2}+\lambda V(x) u^{2}\right) d x-\int_{\mathbb{R}^{N}} F(x, u) d x, \tag{1.3}
\end{equation*}
$$

for any $u \in E_{\lambda}$. It is well known that J_{λ} is a C^{1} functional with derivative given by

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}(u), v\right\rangle=\int_{\mathbb{R}^{N}}\left(\nabla_{\gamma} u \nabla_{\gamma} v+\lambda V(x) u v\right) d x-\int_{\mathbb{R}^{N}} f(x, u) v d x, \tag{1.4}
\end{equation*}
$$

for any $u, v \in E_{\lambda}$. We have that u is a weak solution of equation (1.1) if only if it is a critical point of $J_{\lambda}(u)$ in E_{λ}.

2 The proof of main results for f sub-linear at infinity in u

Lemma 2.1 (see [17]). Let E be a real Banach space and $J \in C^{1}(E, \mathbb{R})$ satisfy the $(P S)$ condition. If J is bounded from below, then $c=\inf _{E} J$ is critical value of J.

Lemma 2.2. Assume that $(V 1)$ and $(f 1)^{\prime}$ hold, then J_{λ} is bounded from below.
Proof. It follows from $(f 1)^{\prime}$ that we can get

$$
\begin{equation*}
|F(x, z)| \leq \sum_{i=1}^{m} b_{i}(x)|z|^{a_{i}+1}, \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R} . \tag{2.1}
\end{equation*}
$$

The above inequality combined with the Hölder inequality and (1.2) shows that

$$
\begin{align*}
\int_{\mathbb{R}^{N}}|F(x, z)| d x & \leq \int_{\mathbb{R}^{N}} \sum_{i=1}^{m} b_{i}(x)|z|^{a_{i}+1} d x \\
& \leq \sum_{i=1}^{m}\left(\int_{\mathbb{R}^{N}}\left|b_{i}(x)\right|^{\frac{2}{1-a_{i}}} d x\right)^{\frac{1-a_{i}}{2}}\left(\int_{\mathbb{R}^{N}}|z|^{2} d x\right)^{\frac{1+a_{i}}{2}} \tag{2.2}\\
& \leq \sum_{i=1}^{m} d_{2}^{1+a_{i}}\left|b_{i}(x)\right|_{\frac{2}{1-a_{i}}}\|z\|_{\lambda}^{1+a_{i}} .
\end{align*}
$$

Thus

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{\gamma} u\right|^{2}+\lambda V(x) u^{2}\right) d x-\int_{\mathbb{R}^{N}} F(x, u) d x \\
& \geq \frac{1}{2}\|u\|_{\lambda}^{2}-\sum_{i=1}^{m} d_{2}^{1+a_{i}}\left|b_{i}(x)\right|_{\frac{2}{1-a_{i}}}\|u\|_{\lambda}^{1+a_{i}} .
\end{aligned}
$$

In view of $0<a_{1}<a_{2}<a_{3}<\cdots<a_{m}<1$ and $b_{i}(x) \in L^{\frac{2}{1-a_{i}}}\left(\mathbb{R}^{N},(0,+\infty)\right)$, it is clearly shows that J_{λ} is coercive, then J_{λ} is bounded from below.

Lemma 2.3. Assume that (V1) and $(f 1)^{\prime}$ are satisfied, then J_{λ} satisfies the (PS) condition for each $\lambda>0$.

Proof. We suppose that $\left\{u_{n}\right\}$ is a Palais-Smale sequence of J_{λ}, that is for some $c_{\lambda} \in \mathbb{R}$, $J_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda}, J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$. According to lemma 2.2, $\left\{u_{n}\right\}$ is bounded in E_{λ}. Therefore, up to a subsequence, there are $u \in E_{\lambda}$, we have

$$
\begin{array}{ll}
u_{n} \rightharpoonup u, & \text { in } E_{\lambda} ; \\
u_{n} \rightarrow u, & \text { in } L_{l o c}^{s}\left(\mathbb{R}^{N}\right), 2 \leq s<2_{\gamma}^{*} . \tag{2.3}
\end{array}
$$

By $(f 1)^{\prime}$, for any fixed $\varepsilon>0$, we can choose $R_{\varepsilon}>0$ such that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}-B_{R_{\varepsilon}}}\left|b_{i}(x)\right|^{\frac{2}{1-a_{i}}} d x\right)^{\frac{1-a_{i}}{2}}<\varepsilon, \quad i=1,2, \ldots, m . \tag{2.4}
\end{equation*}
$$

It follows that (2.3), we obtain that

$$
\lim _{n \rightarrow \infty} \int_{B_{R_{\varepsilon}}}\left|u_{n}-u\right|^{2} d x=0 .
$$

Hence, there exists $N_{0} \in \mathbb{N}$ such that we have

$$
\begin{equation*}
\int_{B_{R_{\varepsilon}}}\left|u_{n}-u\right|^{2} d x<\varepsilon^{2}, \quad \forall n \geq N_{0} . \tag{2.5}
\end{equation*}
$$

Combing this with the Hölder inequality and $(f 1)^{\prime}$, for any $n \geq N_{0}$ we have that

$$
\begin{align*}
\int_{B_{R_{\varepsilon}}} & \left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \\
& \leq\left(\int_{B_{R_{\varepsilon}}}\left|f\left(x, u_{n}\right)-f(x, u)\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{B_{R_{\varepsilon}}}\left|u_{n}-u\right|^{2} d x\right)^{\frac{1}{2}} \\
& \leq\left(\int_{B_{R_{\varepsilon}}}\left|f\left(x, u_{n}\right)-f(x, u)\right|^{2} d x\right)^{\frac{1}{2}} \cdot \varepsilon \tag{2.6}\\
& \leq\left\{\int_{B_{R_{\varepsilon}}} 2 m\left[\sum_{i=1}^{m}\left(a_{i}+1\right)^{2} b_{i}^{2}(x)\left|u_{n}\right|^{2 a_{i}}+\sum_{i=1}^{m}\left(a_{i}+1\right)^{2} b_{i}^{2}(x)|u|^{2 a_{i}}\right] d x\right\}^{\frac{1}{2}} \cdot \varepsilon \\
& \leq \sqrt{2 m}\left[\sum_{i=1}^{m}\left(a_{i}+1\right)^{2}\left|b_{i}(x)\right|_{12}^{2}\left(\left|u_{n}\right|_{2}^{2 a_{i}}+|u|_{2}^{2 a_{i}}\right)\right]^{\frac{1}{2}} \cdot \varepsilon .
\end{align*}
$$

Again by $(f 1)^{\prime}$, the Hölder inequality and (2.4), we obtain that

$$
\begin{align*}
& \int_{\mathbb{R}^{N}-B_{R_{\varepsilon}}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \\
& \quad \leq \int_{\mathbb{R}^{N}-B_{R_{\varepsilon}}} \sum_{i=1}^{m}\left(a_{i}+1\right) b_{i}(x)\left(\left|u_{n}\right|^{a_{i}+1}+|u|^{a_{i}}\left|u_{n}\right|+\left|u_{n}\right|^{a_{i}}|u|+|u|^{a_{i}+1}\right) d x \\
& \quad \leq \sum_{i=1}^{m}\left(a_{i}+1\right)\left(\int_{\mathbb{R}^{N}-B_{R_{\varepsilon}}}\left|b_{i}\right|^{\frac{2}{1-a_{i}}} d x\right)^{\frac{1-a_{i}}{2}}\left(\left|u_{n}\right|_{2}^{a_{i}+1}+|u|_{2}^{a_{i}}\left|u_{n}\right|_{2}+\left|u_{n}\right|_{2}^{a_{i}}|u|_{2}+|u|_{2}^{a_{i}+1}\right) \tag{2.7}\\
& \quad \leq \varepsilon \sum_{i=1}^{m}\left(a_{i}+1\right)\left(\left|u_{n}\right|_{2}^{a_{i}+1}+|u|_{2}^{a_{i}}\left|u_{n}\right|_{2}+\left|u_{n}\right|_{2}^{a_{i}}|u|_{2}+|u|_{2}^{a_{i}+1}\right) .
\end{align*}
$$

Since ε is arbitrary, by (2.6) and (2.7), we known that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left|f\left(x, u_{n}\right)-f(x, u)\right|\left|u_{n}-u\right| d x \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

Thus, from (1.4) and (2.3), it holds

$$
\left\|u_{n}-u\right\|_{\lambda}^{2}=\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}(u), u_{n}-u\right\rangle+\int_{\mathbb{R}^{N}}\left|f\left(x, u_{n}\right)-f(x, u) \| u_{n}-u\right| d x \rightarrow 0, \quad \text { as } n \rightarrow \infty .
$$

So, $u_{n} \rightarrow u$ in E_{λ}.
Proof of Theorem 1.1. By Lemmas 2.1, 2.2 and 2.3, we known that $c_{\lambda}=\inf _{E_{\lambda}} J_{\lambda}(u)$ is critical value of J_{λ}. Next, we will prove $c_{\lambda} \neq 0$. Let $u \in E_{\lambda}$ and $\|u\|_{\lambda}=1$, by $(f 2)^{\prime}$, we can get

$$
\begin{aligned}
J_{\lambda}(t u) & =\frac{t^{2}}{2}\|u\|_{\lambda}^{2}-\int_{\mathbb{R}^{N}} F(x, t u) d x \\
& \leq \frac{t^{2}}{2}-\eta|t|^{a_{0}} \int_{\Omega}|u|^{a_{0}} d x .
\end{aligned}
$$

Since $1<a_{0}<2$, as $t>0$ small enough, $J_{\lambda}(t u)<0$. Hence $c_{\lambda}=\inf _{E_{\lambda}} J_{\lambda}(u)<0$, equation (1.1) possesses at least a nontrivial ground state solution u_{λ} for every $\lambda>0$. Then the proof of Theorem 1.1 is completed.

3 The proof of main results for f super-linear at infinity in u

To complete the proof of our theorem, we need the following definition of Cerami condition and critical point theorem(see [16]).

If any sequence $\left\{u_{n}\right\} \subset H$ such that $J\left(u_{n}\right) \rightarrow c$ and $J^{\prime}\left(u_{n}\right)\left(1+\left\|u_{n}\right\|\right) \rightarrow 0$, then this sequence is called a $(C)_{c}$ sequence. If any $(C)_{c}$ sequence $\left\{u_{n}\right\} \subset H$ of J has a convergent subsequence, then this C^{1} functional J satisfies $(C)_{c}$ condition.

Theorem 3.1 (Mountain Pass Theorem). Let H be a real Banach space and $J \in C^{1}(H, \mathbb{R})$. Assume that there exist $v_{0} \in H, v_{1} \in H$, and a bounded open neighborhood Ω of v_{0} such that $v_{1} \notin \Omega$ and

$$
\inf _{u \in \partial \Omega} J(u)>\max \left\{J\left(v_{0}\right), J\left(v_{1}\right)\right\} .
$$

Let

$$
\left.\Gamma:=\{\gamma \in C([0,1]), H): \gamma(0)=v_{0}, \gamma(1)=v_{1}\right\}
$$

and

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t))
$$

If J satisfies the $(C)_{c}$ condition, then c is a critical value of J and $c>\max \left\{J\left(v_{0}\right), J\left(v_{1}\right)\right\}$.
We choose $H=E_{\lambda}, J=J_{\lambda}, v_{0}=0$ and define $\Omega=B(0, \rho)$ is a ball with radius ρ and origin at $0 \in H$, where radius ρ is given in following lemma.

Lemma 3.2. Assume ($V 1$) and ($f 1$), ($f 2$) are satisfied, then for each $\lambda>0$, there exist $\rho>0$ such that

$$
\inf _{\|u\|_{\lambda}=\rho} J_{\lambda}(u)>0 .
$$

Proof. According to $(f 1)$, for any $\varepsilon>0$, there exist $\delta=\delta(\varepsilon)>0$, such that

$$
\begin{equation*}
|f(x, z)| \leq \varepsilon|z|, \quad \forall x \in \mathbb{R}^{N} \text { and }|z| \leq \delta . \tag{3.1}
\end{equation*}
$$

By (f2) we can obtain that

$$
\begin{equation*}
|f(x, z)| \leq C_{0}\left(|z|+|z|^{p-1}\right) \leq|z|^{p-1}\left(C_{0} \frac{1}{\delta^{p-2}}+1\right):=C_{\varepsilon}|z|^{p-1}, \quad \forall x \in \mathbb{R}^{N},|z| \geq \delta \tag{3.2}
\end{equation*}
$$

Combining this with (3.1), (3.2) and $F(x, z)=\int_{0}^{1} f(x, t z) z d t$, we get

$$
\begin{equation*}
|f(x, z)| \leq C_{\varepsilon}|z|^{p-1}+\varepsilon|z|, \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|F(x, z)| \leq \frac{C_{\varepsilon}}{p}|z|^{p}+\frac{\varepsilon}{2}|z|^{2}, \quad \forall(x, z) \in \mathbb{R}^{N} \times \mathbb{R} \tag{3.4}
\end{equation*}
$$

Then, from (3.4) and (1.2), we have that

$$
\begin{aligned}
J_{\lambda}(u) & =\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{\gamma} u\right|^{2}+\lambda V(x) u^{2}\right) d x-\int_{\mathbb{R}^{N}} F(x, u) d x \\
& \geq \frac{1}{2}\|u\|_{\lambda}^{2}-\int_{\mathbb{R}^{N}} \frac{\varepsilon}{2}|u|^{2} d x-\int_{\mathbb{R}^{N}} \frac{C_{\varepsilon}}{p}|u|^{p} d x \\
& \geq \frac{1}{2}\|u\|_{\lambda}^{2}-\frac{\varepsilon}{2} d_{2}^{2}\|u\|_{\lambda}^{2}-\frac{C_{\varepsilon}}{p} d_{p}^{p}\|u\|_{\lambda}^{p} \\
& \geq \frac{1}{4}\|u\|_{\lambda}^{2}-\frac{C_{\varepsilon}}{p} d_{p}^{p}\|u\|_{\lambda^{\prime}}^{p}
\end{aligned}
$$

where $2<p<2_{\gamma}^{*}$ and $0<\varepsilon<\frac{1}{2 d_{2}^{2}}$. Choosing $\rho=\|u\|_{\lambda}$ small enough concludes the proof.
Lemma 3.3. Under assumption $(V 1)$ and $(f 3)$, there exist $v_{1} \in E_{\lambda}$, such that $\left\|v_{1}\right\|_{\lambda}>\rho$ and $J_{\lambda}\left(v_{1}\right)<0$.
Proof. Let $u \in E_{\lambda}$ satisfied $u \neq 0$, then meas $\left(\left\{x \in \mathbb{R}^{N}: u(x) \neq 0\right\}\right)>0$. If there exists $M_{0}>0$ such that $J_{\lambda}(t u)>-M_{0}$, then by $(f 3)$ and the Fatou lemma, we have that

$$
\begin{aligned}
0 & =\lim _{t \rightarrow+\infty} \frac{-M_{0}}{t^{2}} \leq \limsup _{t \rightarrow+\infty} \frac{J_{\lambda}(t u)}{t^{2}} \\
& =\limsup _{t \rightarrow+\infty}\left(\frac{\frac{t^{2}}{2}\|u\|_{\lambda}^{2}}{t^{2}}-\int_{\mathbb{R}^{N}} \frac{F(x, t u)}{t^{2}} d x\right) \\
& \leq \frac{1}{2}\|u\|_{\lambda}^{2}-\liminf _{t \rightarrow+\infty} \int_{u(x) \neq 0} \frac{F(x, t u)}{(t u)^{2}} u^{2} d x \\
& =-\infty .
\end{aligned}
$$

Obviously, this is a contradiction. So $J_{\lambda}(t u) \rightarrow-\infty$, as $t \rightarrow+\infty$. Let $v_{1}=t u$, for large enough t, we have $\left\|v_{1}\right\|_{\lambda}>\rho$ and $J_{\lambda}\left(v_{1}\right)<0$. The proof is complete.

It is clear that

$$
\inf _{u \in \partial \Omega} J_{\lambda}(u)=\inf _{\|u\|_{\lambda}=\rho} J_{\lambda}(u)>0=\max \left\{J_{\lambda}(0), J_{\lambda}\left(v_{1}\right)\right\}=\max \left\{J_{\lambda}\left(v_{0}\right), J_{\lambda}\left(v_{1}\right)\right\} .
$$

That is, the geometric conditions of mountain pass theorem are satisfied. Thus, the mountain pass value

$$
c_{\lambda}=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J_{\lambda}(\gamma(t)) .
$$

exists.
Lemma 3.4. Let $(V 1),(V 2)$ and $(f 1) \sim(f 4)$ be satisfied. For any $M>c_{\lambda}$, the $(C)_{c_{\lambda}}$ sequence of J_{λ} is bounded in E_{λ} for enough large λ.
Proof. Let $\left\{u_{n}\right\} \subset E_{\lambda}$ be a $(C)_{c_{\lambda}}$ sequence of J_{λ}, that is

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right) \rightarrow c_{\lambda}, \quad J_{\lambda}^{\prime}\left(u_{n}\right)\left(1+\left\|u_{n}\right\|_{\lambda}\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{3.5}
\end{equation*}
$$

Arguing by contradiction, up to subsequence, we assume that $\left\|u_{n}\right\|_{\lambda} \rightarrow \infty$ as $n \rightarrow \infty$. Let $w_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{\lambda}}$, then $\left\|w_{n}\right\|_{\lambda}=1,\left\{w_{n}\right\}$ is bounded. Going if necessary to a subsequence, there exists a $w \in E_{\lambda}$ such that we have

$$
\begin{align*}
w_{n} \rightarrow w, & \text { in } L_{l o c}^{s}\left(\mathbb{R}^{N}\right), \text { for } 2 \leq s<2_{\gamma}^{*} ; \\
w_{n}(x) \rightarrow w(x), & \text { a.e. } x \in \mathbb{R}^{N} . \tag{3.6}
\end{align*}
$$

Firstly, we consider the case $w=0$. By (1.4) and (3.5), we obtain that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \frac{f\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|_{\lambda}^{2}} d x=1-\frac{\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|_{\lambda}^{2}} \rightarrow 1, \quad \text { as } n \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

From $(f 1)$, there exist $\delta>0$, such that

$$
\begin{equation*}
\left|\frac{f(x, z) z}{z^{2}}\right|=\left|\frac{f(x, z)}{z}\right| \leq 1, \quad \forall x \in \mathbb{R}^{N}, 0<|z|<\delta \tag{3.8}
\end{equation*}
$$

By $(f 2)$, there exist $C>0$ satisfy

$$
\begin{equation*}
\left|\frac{f(x, z) z}{z^{2}}\right| \leq\left|\frac{C_{0}\left(|z|^{2}+|z|^{p}\right)}{z^{2}}\right| \leq C, \quad \forall x \in \mathbb{R}^{N}, \delta \leq|z| \leq L_{0} . \tag{3.9}
\end{equation*}
$$

Hence, from (3.8) and (3.9), we have that

$$
\begin{equation*}
|f(x, z) z| \leq(C+1) z^{2}, \quad \forall x \in \mathbb{R}^{N}, 0<|z| \leq L_{0} . \tag{3.10}
\end{equation*}
$$

By (V2), (3.6) and $\left\|w_{n}\right\|_{\lambda}=1$, we get that

$$
\begin{align*}
\int_{\mathbb{R}^{N}} w_{n}^{2} d x & =\int_{V(x) \geq b} w_{n}^{2} d x+\int_{V(x)<b} w_{n}^{2} d x \\
& \leq \frac{1}{\lambda b} \int_{V(x) \geq b} \lambda V(x) w_{n}^{2} d x+\int_{V(x)<b} w_{n}^{2} d x \\
& \leq \frac{1}{\lambda b} \int_{\mathbb{R}^{N}} \lambda V(x) w_{n}^{2} d x+\int_{V(x)<b} w_{n}^{2} d x \tag{3.11}\\
& \leq \frac{1}{\lambda b}+\int_{V(x)<b} w_{n}^{2} d x \rightarrow 0, \quad \text { as } n \rightarrow \infty, \lambda \rightarrow+\infty .
\end{align*}
$$

In view of (3.10) and (3.11), we obtain that

$$
\begin{align*}
\int_{\left|u_{n}\right| \leq L_{0}} \frac{\left|f\left(x, u_{n}\right) u_{n}\right|}{\left\|u_{n}\right\|_{\lambda}^{2}} d x & \leq(C+1) \int_{\left|u_{n}\right| \leq L_{0}} \frac{u_{n}^{2}}{\left\|u_{n}\right\|_{\lambda}^{2}} d x \\
& =(C+1) \int_{\left|u_{n}\right| \leq L_{0}} w_{n}^{2} d x \tag{3.12}\\
& \leq(C+1) \int_{\mathbb{R}^{N}} w_{n}^{2} d x \rightarrow 0, \quad \text { as } n \rightarrow \infty, \lambda \rightarrow+\infty .
\end{align*}
$$

Combing the Hölder inequality, (1.2), $\left\|w_{n}\right\|_{\lambda}=1$ and (3.11), for any $s \in\left(2,2_{\gamma}^{*}\right)$ we have that

$$
\begin{align*}
\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{s} d x\right)^{\frac{1}{s}} & =\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{\mid s s}\left|w_{n}\right|^{(1-\theta) s} d x\right)^{\frac{1}{s}} \\
& \leq\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{\left\lvert\, \theta \cdot \frac{2}{\varepsilon_{s}}\right.} d x\right)^{\frac{\theta s \cdot 1}{2} \cdot \frac{1}{s}}\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{(1-\theta) s \cdot \frac{2_{\gamma}^{*}}{(1-\theta) s}} d x\right)^{\frac{(1-\theta) s}{2 \frac{2}{\gamma} \cdot \frac{1}{s}}} \tag{3.13}\\
& =\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{2} d x\right)^{\frac{\theta}{2}}\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{2_{\gamma}^{*}} d x\right)^{\frac{1-\theta}{22_{\gamma}^{\prime}}} \\
& \leq d_{2_{\gamma}^{1-\theta}}^{1-\theta}\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{2} d x\right)^{\frac{\theta}{2}} \rightarrow 0, \quad \text { as } n \rightarrow \infty, \lambda \rightarrow+\infty,
\end{align*}
$$

where $\theta=\frac{2\left(2_{\gamma}^{*}-s\right)}{s\left(2_{\gamma}^{*}-2\right)}$. By (3.5) and (f4), we get that for n large enough

$$
\begin{equation*}
M>J_{\lambda}\left(u_{n}\right)-\frac{1}{2}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, u_{n}\right) d x \geq 0 \tag{3.14}
\end{equation*}
$$

From $\tau>\frac{\tilde{N}}{2}$, we easily obtain $\frac{2 \tau}{\tau-1} \in\left(2,2_{\gamma}^{*}\right)$. So, by the Hölder inequality, (f4), (3.14) and (3.13) with $s=\frac{2 \tau}{\tau-1}$, we get that

$$
\begin{aligned}
\int_{\left|u_{n}\right| \geq L_{0}} \frac{\left|f\left(x, u_{n}\right) u_{n}\right|}{\left\|u_{n}\right\|_{\lambda}^{2}} d x & =\int_{\left|u_{n}\right| \geq L_{0}}\left|\frac{f\left(x, u_{n}\right)}{u_{n}}\right| w_{n}^{2} d x \\
& \leq\left(\int_{\left|u_{n}\right| \geq L_{0}}\left|\frac{f\left(x, u_{n}\right)}{u_{n}}\right|^{\tau} d x\right)^{\frac{1}{\tau}}\left(\int_{\left|u_{n}\right| \geq L_{0}}\left|w_{n}\right|^{2 \cdot \frac{\tau}{\tau-1}} d x\right)^{\frac{\tau-1}{\tau}} \\
& \leq\left(\int_{\left|u_{n}\right| \geq L_{0}} a_{1} \mathcal{F}\left(x, u_{n}\right) d x\right)^{\frac{1}{\tau}}\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{\frac{2 \tau}{\tau-1}} d x\right)^{\frac{\tau-1}{\tau}} \\
& \leq a_{1}^{\frac{1}{\tau}}\left(\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, u_{n}\right) d x\right)^{\frac{1}{\tau}}\left(\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{\frac{2 \tau}{\tau-1}} d x\right)^{\frac{\tau-1}{2 \tau}}\right)^{2} \\
& \leq\left(a_{1} M\right)^{\frac{1}{\tau}}\left(\left(\int_{\mathbb{R}^{N}}\left|w_{n}\right|^{\frac{2 \tau}{\tau-1}} d x\right)^{\frac{\tau-1}{2 \tau}}\right)^{2} \rightarrow 0, \quad \text { as } n \rightarrow+\infty, \lambda \rightarrow+\infty .
\end{aligned}
$$

Thus, combining with (3.12), we obtain that
$\int_{\mathbb{R}^{N}} \frac{f\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|_{\lambda}^{2}} d x=\int_{\left|u_{n}\right| \leq L_{0}} \frac{f\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|_{\lambda}^{2}} d x+\int_{\left|u_{n}\right| \geq L_{0}} \frac{f\left(x, u_{n}\right) u_{n}}{\left\|u_{n}\right\|_{\lambda}^{2}} d x \rightarrow 0, \quad$ as $n \rightarrow \infty, \lambda \rightarrow+\infty$,
which is a contradiction with (3.7).

Secondly, we consider the case $w \neq 0$. Evidently, meas $\left(\left\{x \in \mathbb{R}^{N}: w(x) \neq 0\right\}\right)>0$ and $\left|u_{n}(x)\right| \rightarrow \infty$ as $n \rightarrow \infty$, for a.e. $x \in\left\{x \in \mathbb{R}^{N}: w(x) \neq 0\right\}$. Thus, from (f3) and Fatou's lemma, we can get

$$
\begin{align*}
\liminf _{n \rightarrow \infty} \frac{\int_{\mathbb{R}^{N}} F\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|_{\lambda}^{2}} & \geq \liminf _{n \rightarrow \infty} \int_{w(x) \neq 0} \frac{F\left(x, u_{n}\right)}{u_{n}^{2}} w_{n}^{2} d x \\
& \geq \int_{w(x) \neq 0} \liminf _{n \rightarrow \infty} \frac{F\left(x, u_{n}\right)}{u_{n}^{2}} w_{n}^{2} d x \tag{3.15}\\
& =+\infty .
\end{align*}
$$

By (3.5), we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{\int_{\mathbb{R}^{N}} F\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|_{\lambda}^{2}} & \leq \limsup _{n \rightarrow \infty} \frac{\int_{\mathbb{R}^{N}} F\left(x, u_{n}\right) d x}{\left\|u_{n}\right\|_{\lambda}^{2}} \\
& =\limsup _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{J_{\lambda}\left(u_{n}\right)}{\left\|u_{n}\right\|_{\lambda}^{2}}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

which is contradiction with (3.15).
So $\left\{u_{n}\right\}$ is bounded.
Lemma 3.5. Assume $(V 1),(V 2)$ and $(f 1) \sim(f 4)$ be satisfied, then for any $M>c_{\lambda}$, there exist $\Lambda=\Lambda(M)>0$ such that J_{λ} satisfies $(C)_{c_{\lambda}}$ condition for all $\lambda>\Lambda$.

Proof. Let $\left\{u_{n}\right\} \subset E_{\lambda}$ satisfies (3.5). By Lemma 3.4, we known that $\left\{u_{n}\right\}$ is bounded in E_{λ}. Thus, up to a subsequence, we have that

$$
\begin{align*}
u_{n} & \rightharpoonup u, & & \text { in } E_{\lambda} ; \tag{3.16}\\
u_{n} & \rightarrow u, & & \text { in } L_{l o c}^{s}\left(\mathbb{R}^{N}\right), \text { for } 2 \leq s<2_{\gamma}^{*} ; \tag{3.17}\\
u_{n}(x) & \rightarrow u(x), & & \text { a.e. } x \in \mathbb{R}^{N} . \tag{3.18}
\end{align*}
$$

Let $v_{n}:=u_{n}-u$, then $v_{n} \rightharpoonup 0$ in E_{λ} by (3.16), which implies that

$$
\begin{equation*}
\left\|u_{n}\right\|_{\lambda}^{2}=\left(v_{n}+u, v_{n}+u\right)_{\lambda}=\left\|v_{n}\right\|_{\lambda}^{2}+\|u\|_{\lambda}^{2}+o(1) . \tag{3.19}
\end{equation*}
$$

Next, by using the similar proof method of Proposition A. 1 in the literature [5], we can get that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} F\left(x, u_{n}\right) d x=\int_{\mathbb{R}^{N}} F\left(x, v_{n}\right) d x+\int_{\mathbb{R}^{N}} F(x, u) d x+o(1) \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f\left(x, u_{n}\right) \varphi d x=\int_{\mathbb{R}^{N}} f\left(x, v_{n}\right) \varphi d x+\int_{\mathbb{R}^{N}} f(x, u) \varphi d x+o(1) \tag{3.21}
\end{equation*}
$$

for any $\varphi \in E_{\lambda}$. By (3.19) and (3.20), we can obtain that

$$
\begin{equation*}
J_{\lambda}\left(u_{n}\right)=J_{\lambda}\left(v_{n}\right)+J_{\lambda}(u)+o(1) . \tag{3.22}
\end{equation*}
$$

Combing with (3.21) and $u_{n}=v_{n}+u$, for any $\varphi \in E_{\lambda}$ we have that

$$
\begin{equation*}
\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \varphi\right\rangle=\left\langle J_{\lambda}^{\prime}\left(v_{n}\right), \varphi\right\rangle+\left\langle J_{\lambda}^{\prime}(u), \varphi\right\rangle+o(1) \tag{3.23}
\end{equation*}
$$

From (3.3), (3.18) and the dominated convergence theorem, for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, we obtain that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n}\right)-f(x, u)\right) \varphi d x=\int_{\Omega_{\varphi}}\left(f\left(x, u_{n}\right)-f(x, u)\right) \varphi d x \rightarrow 0, \quad \text { as } n \rightarrow \infty, \tag{3.24}
\end{equation*}
$$

here Ω_{φ} is the support set of φ. For each $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, by (3.16) we have

$$
\begin{equation*}
\left(u_{n}-u, \varphi\right)_{\lambda} \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{3.25}
\end{equation*}
$$

By (3.25), (3.24), (3.5) and the dense of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ in E_{λ}, it shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), \varphi\right\rangle=\left\langle J_{\lambda}^{\prime}(u), \varphi\right\rangle=0, \quad \forall \varphi \in E_{\lambda} . \tag{3.26}
\end{equation*}
$$

Hence, $J_{\lambda}^{\prime}(u)=0$ and from ($f 4$) we can obtain that

$$
J_{\lambda}(u)=J_{\lambda}(u)-\frac{1}{2}\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=\int_{\mathbb{R}^{N}} \mathcal{F}(x, u) d x \geq 0 .
$$

So, by (3.22), (3.23), (3.26) and the boundedness of $\left\{v_{n}\right\}$, we get that

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, v_{n}\right) d x & =J_{\lambda}\left(v_{n}\right)-\frac{1}{2}\left\langle J_{\lambda}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \\
& =J_{\lambda}\left(u_{n}\right)-J_{\lambda}(u)-\frac{1}{2}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right)-J_{\lambda}^{\prime}(u), v_{n}\right\rangle+o(1) \\
& \leq J_{\lambda}\left(u_{n}\right)+o(1)
\end{aligned}
$$

Thus, for enough large n, we have that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, v_{n}\right) d x<M . \tag{3.27}
\end{equation*}
$$

Now, we will show that $v_{n} \rightarrow 0$ in E_{λ}. By ($V 2$) and (3.17) that

$$
\begin{equation*}
\int_{\mathbb{R}^{v}} v_{n}^{2} d x=\int_{V(x) \geq b} v_{n}^{2} d x+\int_{V(x)<b} v_{n}^{2} d x \leq \frac{1}{\lambda b}\left\|v_{n}\right\|_{\lambda}^{2}+o(1) . \tag{3.28}
\end{equation*}
$$

Thus, combing with the Hölder inequality and (1.2), for any $s \in\left(2,2_{\gamma}^{*}\right)$ we have

$$
\begin{align*}
\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{s} d x\right)^{\frac{1}{s}} & =\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{\theta s}\left|v_{n}\right|^{(1-\theta) s} d x\right)^{\frac{1}{s}} \\
& \leq\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{\theta s \cdot \frac{2}{\theta s}} d x\right)^{\frac{\theta s}{2} \cdot \frac{1}{s}}\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{(1-\theta) s \cdot \frac{2_{\gamma}^{*}}{(1-\theta) s}} d x\right)^{\frac{(1-\theta) s \cdot s}{2 \frac{1}{\gamma}} \cdot \frac{1}{s}} \tag{3.29}\\
& =\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2} d x\right)^{\frac{\theta}{2}}\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{2 *} d x\right)^{\frac{1-\theta}{2 \hat{\gamma}}} \\
& \leq d_{2_{\gamma}^{*}}^{1-\theta}(\lambda b)^{-\frac{\theta}{2}}\left\|v_{n}\right\|_{\lambda}+o(1)
\end{align*}
$$

where $\theta=\frac{2\left(2_{\gamma}^{*}-s\right)}{s\left(2_{\gamma}^{*}-2\right)}$. According to (3.28) and (3.10), we obtain that

$$
\begin{align*}
\int_{v_{n} \leq L_{0}} f\left(x, v_{n}\right) v_{n} d x & \leq(C+1) \int_{v_{n} \leq L_{0}} v_{n}^{2} d x \\
& \leq(C+1) \int_{\mathbb{R}^{N}} v_{n}^{2} d x \tag{3.30}\\
& \leq \frac{C+1}{\lambda b}\left\|v_{n}\right\|_{\lambda}^{2}+o(1) .
\end{align*}
$$

By $\tau>\frac{\tilde{N}}{2}$, it is easy obtained that $\frac{2 \tau}{\tau-1} \in\left(2,2_{\gamma}^{*}\right)$. Thus, from the Hölder inequality, (3.27), (3.29) with $s=\frac{2 \tau}{\tau-1}$ and the boundedness of $\left\{v_{n}\right\}$, we can see that

$$
\begin{align*}
\int_{v_{n} \geq L_{0}} f\left(x, v_{n}\right) v_{n} d x & \leq \int_{\left|u_{n}\right| \geq L_{0}}\left|\frac{f\left(x, v_{n}\right)}{v_{n}}\right| v_{n}^{2} d x \\
& \leq\left(\int_{v_{n} \geq L_{0}}\left|\frac{f\left(x, v_{n}\right)}{v_{n}}\right|^{\tau} d x\right)^{\frac{1}{\tau}}\left(\int_{v_{n} \geq L_{0}}\left|v_{n}\right|^{2 \cdot \frac{\tau}{\tau-1}} d x\right)^{\frac{\tau-1}{\tau}} \\
& \leq\left(\int_{v_{n} \geq L_{0}} a_{1} \mathcal{F}\left(x, v_{n}\right) d x\right)^{\frac{1}{\tau}}\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{\frac{2 \tau}{\tau-1}} d x\right)^{\frac{\tau-1}{\tau}} \tag{3.31}\\
& \leq a_{1}^{\frac{1}{\tau}}\left(\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, v_{n}\right) d x\right)^{\frac{1}{\tau}}\left(\left(\int_{\mathbb{R}^{N}}\left|v_{n}\right|^{\frac{2 \tau}{\tau-1}} d x\right)^{\frac{\tau-1}{\tau \tau}}\right)^{2} \\
& \leq\left(a_{1} M\right)^{\frac{1}{\tau}} d_{2_{\gamma}^{2}}^{2(1-\theta)}(\lambda b)^{-\theta}\left\|v_{n}\right\|_{\lambda}^{2}+o(1) .
\end{align*}
$$

Therefore, by (3.30) and (3.31), we have

$$
\begin{aligned}
o(1) & =\left\langle J_{\lambda}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \\
& =\left\|v_{n}\right\|_{\lambda}^{2}-\int_{\mathbb{R}^{N}} f\left(x, v_{n}\right) v_{n} d x \\
& =\left\|v_{n}\right\|_{\lambda}^{2}-\int_{v_{n} \leq L_{0}} f\left(x, v_{n}\right) v_{n} d x-\int_{v_{n} \geq L_{0}} f\left(x, v_{n}\right) v_{n} d x \\
& \geq\left[1-\frac{C+1}{\lambda b}-\left(a_{1} M\right)^{\frac{1}{\tau}} d_{2_{r}^{*}}^{2(1-\theta)}(\lambda b)^{-\theta}\right]\left\|v_{n}\right\|_{\lambda}^{2}+o(1) .
\end{aligned}
$$

So, there exist $\Lambda=\Lambda(M)>0$ such that $v_{n} \rightarrow 0$ in E_{λ} as $n \rightarrow \infty$ for any $\lambda>\Lambda$. The proof is complete.

Proof of Theorem 1.3. By Lemma 3.2, 3.3, 3.4 and 3.5, all condition of Theorem 3.1 are satisfied. Thus equation (1.1) possesses at least a nontrivial solution $u_{\lambda} \in E_{\lambda}$ and $J_{\lambda}\left(u_{\lambda}\right)=c_{\lambda}$ is a critical value, as $\lambda>\Lambda$. Set $S=\left\{u \in E_{\lambda}-\{0\}: J_{\lambda}^{\prime}(u)=0\right\}$. Evidently, by $u_{\lambda} \in S$ we have that

$$
\inf _{u \in S} J_{\lambda}(u) \leq J_{\lambda}\left(u_{\lambda}\right)=c_{\lambda} .
$$

For any $u \in S$, let $\gamma_{u}(t)=t t_{0} u, t \in[0,1]$, then $\gamma \in \Gamma$ for enough large t_{0} by Lemma 3.3. Thus, according to the definition of c_{λ} for any $u \in S$ we have

$$
c_{\lambda} \leq \max _{t \in[0,1]} J_{\lambda}\left(\gamma_{u}(t)\right)=\max _{t \in[0,1]} J_{\lambda}\left(t t_{0} u\right)=\max _{t \in\left[0, t_{0}\right]} J_{\lambda}(t u)=\max _{t \geq 0} J_{\lambda}(t u) .
$$

It is easy obtained that $J_{\lambda}(u)=\max _{t \geq 0} J_{\lambda}(t u)$ by $(f 5)$ for any $u \in S$. So, from the arbitrariness of u, we obtain

$$
\inf _{u \in S} J_{\lambda}(u) \geq c_{\lambda} .
$$

Thus,

$$
c_{\lambda}=\inf _{u \in S} J_{\lambda}(u),
$$

and we can conclude that u_{λ} is the ground state solution, then the proof of Theorem 1.3 is completed.

Acknowledgements

This work is supported by Chongqing Technology and Business University Graduate Research Innovation Project (No. yjscxx2021-112-57), Chongqing Municipal Education Commission (No. KJQN20190081), Chongqing Technology and Business University (No. CTBUZDPTTD201909).

References

[1] C. T. Anh, Global attractor for a semilinear strongly degenerate parabolic equation on \mathbb{R}^{N}, NoDEA Nonlinear Differential Equations Appl. 21(2014), No. 5, 663-678. https://doi. org/10.1007/s00030-013-0261-y; MR3265192; Zbl 1333.35119
[2] T. Bartsch, Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^{N}, Commun. Partial Differential Equations 20(1995), No. 9-10, 1725-1741. https://doi.org/10.1080/03605309508821149; MR1349229; Zbl 0837.35043
[3] T. Bartsch, A. Pankov, Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3(2001), No. 4, 549-569. https://doi.org/10.1142/ S0219199701000494; MR1869104; Zbl 1076.35037
[4] T. Bartsch, Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst. 33(2013), No. 1, 7-26. https://doi.org/10.3934/dcds.2013.33.7; MR2972943; Zbl 1284.35390
[5] G. Evéquoz, T. Weth, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud. 12(2012), No. 2, 281-314. https://doi.org/10.1515/ ans-2012-0206; MR2951719
[6] B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10(1983), No. 4, 523-541. MR753153; Zbl 0552.35032
[7] B. Franchi, E. Lanconelli, An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality, Commun. Partial Differential Equations 9(1984), No. 13, 1237-1264. https://doi.org/10.1080/03605308408820362; MR764663; Zbl 0589.46023
[8] V. V. Grušin, A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold (in Russian), Mat. Sb. (N.S.) 84(126)(1971), 163-195. MR283630
[9] Q. Jin, Multiple sign-changing solutions for nonlinear Schrödinger equations with potential well, Appl. Anal. 99(2020), No. 15, 2555-2570. https://doi.org/10.1080/00036811. 2019.1572883; MR4161316; Zbl 1454.35073
[10] A. E. Kogoj, E. Lanconelli, On semilinear Δ_{λ}-Laplace equation, Nonlinear Anal. 75(2012), No. 12, 4637-4649. https://doi.org/10.1016/j.na.2011.10.007; MR2927124; Zbl 1260.35020
[11] A. Loiudice, Asymptotic estimates and nonexistence results for critical problems with Hardy term involving Grushin-type operators, Ann. Mat. Pura Appl. (4) 198(2019), No. 6, 1909-1930. https://doi.org/10.1007/s10231-019-00847-8; MR4031832; Zbl 1444.35076
[12] D. T. Luyen, N. M. Tri, Existence of infinitely many solutions for semilinear degenerate Schrödinger equations, J. Math. Anal. Appl. 461(2018), No. 2, 1271-1286. https://doi. org/10.1016/j.jmaa.2018.01.016; MR3765489; Zbl 1392.35146
[13] R. Monti, D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J. 131(2006), No. 1, 167-202. https://doi.org/10.1215/ S0012-7094-05-13115-5; MR2219239; Zbl 1094.35036
[14] J. Sun, T. Wu, On Schrödinger-Poisson systems under the effect of steep potential well ($2<p<4$), J. Math. Phys. 61(2020), No. 7, 071506, 13 pp. https://doi.org/10.1063/1. 5114672; MR4124518; Zbl 1454.81076
[15] L. Wang, S.-J. Chen, Two solutions for nonhomogeneous Klein-Gordon-Maxwell system with sign-changing potential, Electron. J. Differential Equations 2018, No. 124, 1-21. MR3831870; Zbl 1398.35218
[16] C.-K Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl. 205(1997), No. 1, 239-250. https://doi.org/10.1006/jmaa.1996.5168; MR1426991; Zbl 0870.49015
[17] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, MA, Boston, 1996. https://doi.org/10.1007/ 978-1-4612-4146-1; MR1400007; Zbl 0856.49001

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: 11183356@qq.com

