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Abstract. In this article, we study the following degenerated Schrödinger equations:{
−∆γu + λV(x)u = f (x, u) in RN ,
u ∈ Eλ ,

where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator, the potential V(x)
has a potential well with bottom and the nonlinearity f (x, u) is either super-linear or
sub-linear at infinity in u. The existence of ground state solution be obtained by using
the variational methods.
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1 Introduction

This article is concerned with a class of nonlinear Schrödinger equations:{
−∆γu + λV(x)u = f (x, u) in RN ,

u ∈ Eλ ,
(1.1)

where λ > 0 is a parameter, ∆γ is a degenerate elliptic operator of the form

∆γ :=
N

∑
j=1

∂xj(γ
2
j ∂xj), ∂xj =

∂

∂xj
, γ = (γ1(x), γ2(x), . . . , γN(x)).
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Here, the functions γj : RN → R are assumed to be continuous, different from zero and of
class C1 in RN \Π, where

Π :=

{
x = (x1, x2, . . . , xN) ∈ RN :

N

∏
j=1

xj = 0

}
.

Moreover, the function γj satisfy the following properties:

(i) There exists a semigroup of dilations {δt}t>0 such that

δt : RN → R, δt(x1, . . . , xN) = (tε1 x1, . . . , tεN xN),

where 1 = ε1 ≤ ε2 ≤ · · · ≤ εN , such that γj is δt-homogeneous of degree ε j − 1, i.e.

γj(δt(x)) = tε j−1γj(x), ∀x ∈ RN , ∀t > 0, j = 1, . . . , N.

The number

Ñ :=
N

∑
j=1

ε j

is called the homogeneous dimension of RN with respect to {δt}t>0.

(ii) γ1 = 1, γj(x) = γj(x1, x2, . . . , xj−1), j = 2, . . . , N.

(iii) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk γj(x) ≤ ργj(x), ∀k ∈ {1, 2, . . . , j− 1}, ∀j = 2, . . . , N,

and for every x ∈ R
N
+ = {(x1, x2, . . . , xN) ∈ RN : xj ≥ 0, ∀j = 1, 2, . . . , N}.

(iv) Equalities γj(x) = γj(x∗)(j = 1, 2, . . . , N) are satisfied for every x ∈ RN , where

x∗ = (|x1|, . . . , |xN |), if x = (x1, x2, . . . , xN).

The ∆γ-operator contains the following operator of Grušin-type

Gα := ∆x + |x|2α∆y, α ≥ 0,

where (x, y) denotes the point of RN1 ×RN2 . This operator was studied by Grušin in [8] when
α is an integer, and by Franchi and Lanconeli in [6, 7], Loiudice in [11], Monti and Morbidelli
in [13] when α is not an integer. The ∆γ-operator also contains following semi-linear strongly
degenerate operator

Pα,β = ∆x + ∆y + |x|2α|y|2β∆z, (x, y, z) ∈ RN1 ×RN2 ×RN3 ,

where α, β are nonnegative real numbers. The Pα,β-operator was studied in [1]. For more
information about the operator ∆γ, please see [10].

In this paper, we study the existence of ground state solutions for the equation (1.1) under
the assumptions that V is neither radially symmetric nor coercive. Precisely, we make the
following assumptions.
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(V1) V(x) ∈ C(RN , R) satisfying infx∈RN V(x) > 0.

(V2) There exists b > 0 such that the set {x ∈ RN : V(x) < b} is nonempty and has finite
measure.

The conditions (V1) ∼ (V2) are special cases of steep potential well which were first intro-
duced by Bartsch and Wang in [2]. In recent years, steep potential well are widely used in
various equation, such as Schrödinger equations, Schrödinger–Poisson equations and Klein–
Gordon–Maxwell system and so on (see [2–4, 9, 14, 15]).

Nextly, wee will require that the nonlinear term satisfies either the assumptions:

( f 1)′ f ∈ C(RN ×R, R) and there are constants 0 < a1 < a2 < a3 · · · < am < 1 and functions

bi(x) ∈ L
2

1−ai (RN , (0,+∞)) such that

| f (x, z)| ≤
m

∑
i=1

(ai + 1)bi(x)|z|ai , ∀(x, z) ∈ RN ×R;

( f 2)′ There exist constants η, δ > 0, a0 ∈ (1, 2), Ω ⊂ RN such that meas(Ω) 6= 0 and

F(x, z) =
∫ z

0
f (x, t)dt ≥ η|z|a0 , ∀x ∈ Ω and ∀ |z| ≤ δ,

or the assumptions:

( f 1) lim|z|→0
f (x,z)
|z| = 0 uniformly for x ∈ RN .

( f 2) For some 2 < p < 2∗γ, C0 > 0,

| f (x, z)| ≤ C0(|z|+ |z|p−1), ∀(x, z) ∈ RN ×R,

where 2∗γ := 2Ñ
Ñ−2 is the critical Sobolev exponent;

( f 3) F(x, z) :=
∫ z

0 f (x, t)dt ≥ 0 for all x ∈ RN , and

lim
|z|→+∞

F(x, z)
|z|2 = +∞, ∀(x, z) ∈ RN ×R;

( f 4) There exist a1 > 0, L0 > 0 and τ > Ñ
2 , such that

| f (x, z)|τ ≤ a1F (x, z)|z|τ, for all x ∈ RN and |z| ≥ L0,

where
F (x, z) :=

1
2

f (x, z)z− F(x, z) ≥ 0, ∀(x, z) ∈ RN ×R;

( f 5) f (x,z)
|z| is an increasing function of z on R \ {0} for every x ∈ RN .

Before stating our main results, we give several notations. For λ > 0, let

S2
γ(R

N) :=
{

u ∈ L2(RN) : γj∂xj u ∈ L2(RN), j = 1, . . . , N
}

,

Eλ :=
{

u ∈ S2
γ(R

N) :
∫

RN
λV(x)u2dx < +∞

}
.
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Then, by assumption (V1), Eλ is a Hilbert space with the inner product and norm respectively

(u, v)λ =
∫

RN
(∇γu∇γv + λV(x)uv)dx, ‖u‖λ = (u, u)

1
2
λ ,

where
∇γu = (γ1∂x1 u, γ2∂x2 u, . . . , γN∂xN u).

Obviously, the embedding Eλ ↪→ S2
γ(R

N) is continuous. It follows that Eλ ↪→ Ls(RN) is
continuous for each s ∈ [2, 2∗γ] (see [12]). Thus for each 2 ≤ s ≤ 2∗γ, there exists ds > 0 such
that

|u|s ≤ ds‖u‖λ, ∀u ∈ Eλ, (1.2)

where Ls(RN) denote a Lebesgue space, the norm in Ls(RN) is denoted by | · |s.
We point out that there are Rellich-type compact embeddings hold on bounded domains

for subcritical exponents. By S2
γ(Ω) we denote the set of all functions u ∈ L2(Ω) such that

γj∂xj u ∈ L2(Ω) for all j = 1, . . . , N, where Ω is a bounded domain with smooth boundary in
RN . The space S2

γ,0(Ω) is defined as the closure of C1
0(Ω) in the space S2

γ(Ω). We define the
norm on this space as ∫

Ω
(|∇γu|2 + λV(x)u2)dx,

which is equivalent to
∫

Ω |∇γu|2dx, by (V1). Then, we have that the embedding S2
γ,0(Ω) ↪→

Ls(Ω) is compact for every s ∈ [1, 2∗γ) (see Proposition 3.2. in [10]).
We can now state the main result:

Theorem 1.1. Assume (V1) and ( f 1)′ ∼ ( f 2)′ are satisfied. Then ∀λ > 0, problem (1.1) admits at
least a ground state solution in Eλ.

Remark 1.2. To the best of our knowledge, it seems that Theorem 1.1 is the first result about
the existence of ground state solutions for the semi-linear ∆γ differential equation in RN . By
the way, we would like to point out that in [12] the authors study existence of infinitely many
solutions for semi-linear degenerate Schrödinger equations with the potential V(x) satisfying
the coercivity condition which implies Eλ ↪→↪→ Ls(RN) for any s ∈ [2, 2∗γ).

Theorem 1.3. Assume (V1), (V2) and ( f 1) ∼ ( f 5) are satisfied. Then there exists Λ > 0 such that
problem (1.1) has at least a ground state solution in Eλ, for all λ > Λ.

Remark 1.4. We point out that the Schrödinger equation with general steep potential well
is considered in reference [3, 4], but they consider a special nonlinear term, where f (x, z) =

|z|p−2z(2 < p < 2∗). At the same time, we also point out that although the Schrödinger
equation with general steep potential well and the general nonlinear term are considered in
reference [2, 9], the nonlinear term there satisfies the following Ambrosetti–Rabinowitz type
condition:

(AR) There exist µ > 2 and L > 0, such that

µF(x, z) ≤ z f (x, z), ∀x ∈ RN , ∀|z| ≥ L.

The nonlinear term we consider here is not required to satisfy the Ambrosetti–Rabinowitz
type condition, for example we allow nonlinearities of the type

f (x, z) = 2z ln(1 + z2) +
2z3

1 + z2 , ∀(x, z) ∈ R3 ×R.
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By a simple calculation, we have

F(x, z) =
∫ z

0
f (x, t)dt = z2 ln(1 + z2), F (x, z) =

2z4

1 + z2 ,

and

z f (x, z)− µF(x, z) = z2
(
(2− µ) ln(1 + z2) +

2z2

1 + z2

)
.

Now, it is easy to verify that the function f satisfies our assumptions and does not satisfy the
Ambrosetti–Rabinowitz type condition.

To obtain our main results, we have to overcome some difficulties in our proof. The
main difficulty consists in the lack of compactness of the Eλ ↪→ Ls(RN) with s ∈ [2, 2∗γ].
Since we assume that the potential is not radially symmetric, we cannot use the usual way to
recover compactness, for example, restricting in the subspace of radial functions of Eλ. We
also cannot borrow some ideas in [12] to recover compactness because the potential do not
satisfied the coercivity condition. To recover the compactness, we establish the parameter
dependent compactness conditions.

Now, we define the following energy functional

Jλ(u) =
1
2

∫
RN

(|∇γu|2 + λV(x)u2)dx−
∫

RN
F(x, u)dx, (1.3)

for any u ∈ Eλ. It is well known that Jλ is a C1 functional with derivative given by

〈J′λ(u), v〉 =
∫

RN
(∇γu∇γv + λV(x)uv)dx−

∫
RN

f (x, u)vdx, (1.4)

for any u, v ∈ Eλ. We have that u is a weak solution of equation (1.1) if only if it is a critical
point of Jλ(u) in Eλ.

2 The proof of main results for f sub-linear at infinity in u

Lemma 2.1 (see [17]). Let E be a real Banach space and J ∈ C1(E, R) satisfy the (PS) condition. If
J is bounded from below, then c = infE J is critical value of J.

Lemma 2.2. Assume that (V1) and ( f 1)′ hold, then Jλ is bounded from below.

Proof. It follows from ( f 1)′ that we can get

|F(x, z)| ≤
m

∑
i=1

bi(x)|z|ai+1, ∀(x, z) ∈ RN ×R. (2.1)

The above inequality combined with the Hölder inequality and (1.2) shows that∫
RN
|F(x, z)|dx ≤

∫
RN

m

∑
i=1

bi(x)|z|ai+1dx

≤
m

∑
i=1

(∫
RN
|bi(x)|

2
1−ai dx

) 1−ai
2
(∫

RN
|z|2dx

) 1+ai
2

≤
m

∑
i=1

d1+ai
2 |bi(x)| 2

1−ai
‖z‖1+ai

λ .

(2.2)
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Thus

Jλ(u) =
1
2

∫
RN

(|∇γu|2 + λV(x)u2)dx−
∫

RN
F(x, u)dx

≥ 1
2
‖u‖2

λ −
m

∑
i=1

d1+ai
2 |bi(x)| 2

1−ai
‖u‖1+ai

λ .

In view of 0 < a1 < a2 < a3 < · · · < am < 1 and bi(x) ∈ L
2

1−ai (RN , (0,+∞)), it is clearly shows
that Jλ is coercive, then Jλ is bounded from below.

Lemma 2.3. Assume that (V1) and ( f 1)′ are satisfied, then Jλ satisfies the (PS) condition for each
λ > 0.

Proof. We suppose that {un} is a Palais–Smale sequence of Jλ, that is for some cλ ∈ R,
Jλ(un) → cλ, J′λ(un) → 0, as n → ∞. According to lemma 2.2, {un} is bounded in Eλ.
Therefore, up to a subsequence, there are u ∈ Eλ, we have

un ⇀ u, in Eλ;

un → u, in Ls
loc(R

N), 2 ≤ s < 2∗γ.
(2.3)

By ( f 1)′, for any fixed ε > 0, we can choose Rε > 0 such that

(∫
RN−BRε

|bi(x)|
2

1−ai dx
) 1−ai

2

< ε, i = 1, 2, . . . , m. (2.4)

It follows that (2.3), we obtain that

lim
n→∞

∫
BRε

|un − u|2dx = 0.

Hence, there exists N0 ∈N such that we have∫
BRε

|un − u|2dx < ε2, ∀n ≥ N0. (2.5)

Combing this with the Hölder inequality and ( f 1)′, for any n ≥ N0 we have that∫
BRε

| f (x, un)− f (x, u)||un − u|dx

≤
(∫

BRε

| f (x, un)− f (x, u)|2dx
) 1

2
(∫

BRε

|un − u|2dx
) 1

2

≤
(∫

BRε

| f (x, un)− f (x, u)|2dx
) 1

2

· ε

≤
{∫

BRε

2m

[
m

∑
i=1

(ai + 1)2b2
i (x)|un|2ai +

m

∑
i=1

(ai + 1)2b2
i (x)|u|2ai

]
dx

} 1
2

· ε

≤
√

2m

[
m

∑
i=1

(ai + 1)2|bi(x)|2 2
1−ai

(|un|2ai
2 + |u|2ai

2 )

] 1
2

· ε.

(2.6)
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Again by ( f 1)′, the Hölder inequality and (2.4), we obtain that∫
RN−BRε

| f (x, un)− f (x, u)||un − u|dx

≤
∫

RN−BRε

m

∑
i=1

(ai + 1)bi(x)(|un|ai+1 + |u|ai |un|+ |un|ai |u|+ |u|ai+1)dx

≤
m

∑
i=1

(ai + 1)
(∫

RN−BRε

|bi|
2

1−ai dx
) 1−ai

2 (
|un|ai+1

2 + |u|ai
2 |un|2 + |un|ai

2 |u|2 + |u|
ai+1
2

)
≤ ε

m

∑
i=1

(ai + 1)
(
|un|ai+1

2 + |u|ai
2 |un|2 + |un|ai

2 |u|2 + |u|
ai+1
2

)
.

(2.7)

Since ε is arbitrary, by (2.6) and (2.7), we known that∫
RN
| f (x, un)− f (x, u)||un − u|dx → 0, as n→ ∞. (2.8)

Thus, from (1.4) and (2.3), it holds

‖un − u‖2
λ = 〈J′λ(un)− J′λ(u), un − u〉+

∫
RN
| f (x, un)− f (x, u)||un − u|dx → 0, as n→ ∞.

So, un → u in Eλ.

Proof of Theorem 1.1. By Lemmas 2.1, 2.2 and 2.3, we known that cλ = infEλ
Jλ(u) is critical

value of Jλ. Next, we will prove cλ 6= 0. Let u ∈ Eλ and ‖u‖λ = 1, by ( f 2)′, we can get

Jλ(tu) =
t2

2
‖u‖2

λ −
∫

RN
F(x, tu)dx

≤ t2

2
− η|t|a0

∫
Ω
|u|a0 dx.

Since 1 < a0 < 2, as t > 0 small enough, Jλ(tu) < 0. Hence cλ = infEλ
Jλ(u) < 0, equation

(1.1) possesses at least a nontrivial ground state solution uλ for every λ > 0. Then the proof
of Theorem 1.1 is completed.

3 The proof of main results for f super-linear at infinity in u

To complete the proof of our theorem, we need the following definition of Cerami condition
and critical point theorem(see [16]).

If any sequence {un} ⊂ H such that J(un) → c and J′(un)(1 + ‖un‖) → 0, then this
sequence is called a (C)c sequence. If any (C)c sequence {un} ⊂ H of J has a convergent
subsequence, then this C1 functional J satisfies (C)c condition.

Theorem 3.1 (Mountain Pass Theorem). Let H be a real Banach space and J ∈ C1(H, R). Assume
that there exist v0 ∈ H, v1 ∈ H, and a bounded open neighborhood Ω of v0 such that v1 6∈ Ω and

inf
u∈∂Ω

J(u) > max {J(v0), J(v1)} .

Let
Γ := {γ ∈ C ([0, 1]), H) : γ(0) = v0, γ(1) = v1}
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and
c = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)).

If J satisfies the (C)c condition, then c is a critical value of J and c > max{J(v0), J(v1)}.
We choose H = Eλ, J = Jλ, v0 = 0 and define Ω = B(0, ρ) is a ball with radius ρ and origin

at 0 ∈ H, where radius ρ is given in following lemma.

Lemma 3.2. Assume (V1) and ( f 1), ( f 2) are satisfied, then for each λ > 0, there exist ρ > 0 such
that

inf
‖u‖λ=ρ

Jλ(u) > 0.

Proof. According to ( f 1), for any ε > 0, there exist δ = δ(ε) > 0, such that

| f (x, z)| ≤ ε|z|, ∀x ∈ RN and |z| ≤ δ. (3.1)

By ( f 2) we can obtain that

| f (x, z)| ≤ C0(|z|+ |z|p−1) ≤ |z|p−1
(

C0
1

δp−2 + 1
)

:= Cε|z|p−1, ∀x ∈ RN , |z| ≥ δ. (3.2)

Combining this with (3.1), (3.2) and F(x, z) =
∫ 1

0 f (x, tz)zdt, we get

| f (x, z)| ≤ Cε|z|p−1 + ε|z|, ∀(x, z) ∈ RN ×R, (3.3)

and
|F(x, z)| ≤ Cε

p
|z|p + ε

2
|z|2, ∀(x, z) ∈ RN ×R. (3.4)

Then, from (3.4) and (1.2), we have that

Jλ(u) =
1
2

∫
RN

(|∇γu|2 + λV(x)u2)dx−
∫

RN
F(x, u)dx

≥ 1
2
‖u‖2

λ −
∫

RN

ε

2
|u|2dx−

∫
RN

Cε

p
|u|pdx

≥ 1
2
‖u‖2

λ −
ε

2
d2

2‖u‖2
λ −

Cε

p
dp

p‖u‖
p
λ

≥ 1
4
‖u‖2

λ −
Cε

p
dp

p‖u‖
p
λ,

where 2 < p < 2∗γ and 0 < ε < 1
2d2

2
. Choosing ρ = ‖u‖λ small enough concludes the proof.

Lemma 3.3. Under assumption (V1) and ( f 3), there exist v1 ∈ Eλ, such that ‖v1‖λ > ρ and
Jλ(v1) < 0.

Proof. Let u ∈ Eλ satisfied u 6= 0, then meas({x ∈ RN : u(x) 6= 0}) > 0. If there exists M0 > 0
such that Jλ(tu) > −M0, then by ( f 3) and the Fatou lemma, we have that

0 = lim
t→+∞

−M0

t2 ≤ lim sup
t→+∞

Jλ(tu)
t2

= lim sup
t→+∞

(
t2

2 ‖u‖2
λ

t2 −
∫

RN

F(x, tu)
t2 dx

)

≤ 1
2
‖u‖2

λ − lim inf
t→+∞

∫
u(x) 6=0

F(x, tu)
(tu)2 u2dx

= −∞.
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Obviously, this is a contradiction. So Jλ(tu)→ −∞, as t→ +∞. Let v1 = tu, for large enough
t, we have ‖v1‖λ > ρ and Jλ(v1) < 0. The proof is complete.

It is clear that

inf
u∈∂Ω

Jλ(u) = inf
‖u‖λ=ρ

Jλ(u) > 0 = max {Jλ(0), Jλ(v1)} = max {Jλ(v0), Jλ(v1)} .

That is, the geometric conditions of mountain pass theorem are satisfied. Thus, the mountain
pass value

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)).

exists.

Lemma 3.4. Let (V1), (V2) and ( f 1) ∼ ( f 4) be satisfied. For any M > cλ, the (C)cλ
sequence of Jλ

is bounded in Eλ for enough large λ.

Proof. Let {un} ⊂ Eλ be a (C)cλ
sequence of Jλ, that is

Jλ(un)→ cλ, J′λ(un)(1 + ‖un‖λ)→ 0, as n→ ∞. (3.5)

Arguing by contradiction, up to subsequence, we assume that ‖un‖λ → ∞ as n → ∞. Let
wn = un

‖un‖λ
, then ‖wn‖λ = 1, {wn} is bounded. Going if necessary to a subsequence, there

exists a w ∈ Eλ such that we have

wn → w, in Ls
loc(R

N), for 2 ≤ s < 2∗γ;

wn(x)→ w(x), a.e. x ∈ RN .
(3.6)

Firstly, we consider the case w = 0. By (1.4) and (3.5), we obtain that∫
RN

f (x, un)un

‖un‖2
λ

dx = 1−
〈J′λ(un), un〉
‖un‖2

λ

→ 1, as n→ ∞. (3.7)

From ( f 1), there exist δ > 0, such that∣∣∣∣ f (x, z)z
z2

∣∣∣∣ = ∣∣∣∣ f (x, z)
z

∣∣∣∣ ≤ 1, ∀x ∈ RN , 0 < |z| < δ. (3.8)

By ( f 2), there exist C > 0 satisfy∣∣∣∣ f (x, z)z
z2

∣∣∣∣ ≤ ∣∣∣∣C0(|z|2 + |z|p)
z2

∣∣∣∣ ≤ C, ∀x ∈ RN , δ ≤ |z| ≤ L0. (3.9)

Hence, from (3.8) and (3.9), we have that

| f (x, z)z| ≤ (C + 1)z2, ∀x ∈ RN , 0 < |z| ≤ L0. (3.10)

By (V2), (3.6) and ‖wn‖λ = 1, we get that∫
RN

w2
ndx =

∫
V(x)≥b

w2
ndx +

∫
V(x)<b

w2
ndx

≤ 1
λb

∫
V(x)≥b

λV(x)w2
ndx +

∫
V(x)<b

w2
ndx

≤ 1
λb

∫
RN

λV(x)w2
ndx +

∫
V(x)<b

w2
ndx

≤ 1
λb

+
∫

V(x)<b
w2

ndx → 0, as n→ ∞, λ→ +∞.

(3.11)
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In view of (3.10) and (3.11), we obtain that∫
|un|≤L0

| f (x, un)un|
‖un‖2

λ

dx ≤ (C + 1)
∫
|un|≤L0

u2
n

‖un‖2
λ

dx

= (C + 1)
∫
|un|≤L0

w2
ndx

≤ (C + 1)
∫

RN
w2

ndx → 0, as n→ ∞, λ→ +∞.

(3.12)

Combing the Hölder inequality, (1.2), ‖wn‖λ = 1 and (3.11), for any s ∈ (2, 2∗γ) we have that

(∫
RN
|wn|sdx

) 1
s

=

(∫
RN
|wn|θs|wn|(1−θ)sdx

) 1
s

≤
(∫

RN
|wn|θs· 2

θs dx
) θs

2 ·
1
s
(∫

RN
|wn|(1−θ)s· 2∗γ

(1−θ)s dx
) (1−θ)s

2∗γ
· 1s

=

(∫
RN
|wn|2dx

) θ
2
(∫

RN
|wn|2

∗
γ dx
) 1−θ

2∗γ

≤ d1−θ
2∗γ

(∫
RN
|wn|2dx

) θ
2

→ 0, as n→ ∞, λ→ +∞,

(3.13)

where θ =
2(2∗γ−s)
s(2∗γ−2) . By (3.5) and ( f 4), we get that for n large enough

M > Jλ(un)−
1
2
〈J′λ(un), un〉 =

∫
RN
F (x, un)dx ≥ 0. (3.14)

From τ > Ñ
2 , we easily obtain 2τ

τ−1 ∈ (2, 2∗γ). So, by the Hölder inequality, ( f 4), (3.14) and
(3.13) with s = 2τ

τ−1 , we get that

∫
|un|≥L0

| f (x, un)un|
‖un‖2

λ

dx =
∫
|un|≥L0

∣∣∣∣ f (x, un)

un

∣∣∣∣w2
ndx

≤
(∫
|un|≥L0

∣∣∣∣ f (x, un)

un

∣∣∣∣τ dx
) 1

τ
(∫
|un|≥L0

|wn|2·
τ

τ−1 dx
) τ−1

τ

≤
(∫
|un|≥L0

a1F (x, un)dx
) 1

τ
(∫

RN
|wn|

2τ
τ−1 dx

) τ−1
τ

≤ a
1
τ
1

(∫
RN
F (x, un)dx

) 1
τ

((∫
RN
|wn|

2τ
τ−1 dx

) τ−1
2τ

)2

≤ (a1M)
1
τ

((∫
RN
|wn|

2τ
τ−1 dx

) τ−1
2τ

)2

→ 0, as n→ +∞, λ→ +∞.

Thus, combining with (3.12), we obtain that∫
RN

f (x, un)un

‖un‖2
λ

dx =
∫
|un|≤L0

f (x, un)un

‖un‖2
λ

dx +
∫
|un|≥L0

f (x, un)un

‖un‖2
λ

dx → 0, as n→ ∞, λ→ +∞,

which is a contradiction with (3.7).
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Secondly, we consider the case w 6= 0. Evidently, meas({x ∈ RN : w(x) 6= 0}) > 0 and
|un(x)| → ∞ as n → ∞, for a.e. x ∈ {x ∈ RN : w(x) 6= 0}. Thus, from ( f 3) and Fatou’s
lemma, we can get

lim inf
n→∞

∫
RN F(x, un)dx
‖un‖2

λ

≥ lim inf
n→∞

∫
w(x) 6=0

F(x, un)

u2
n

w2
ndx

≥
∫

w(x) 6=0
lim inf

n→∞

F(x, un)

u2
n

w2
ndx

= +∞.

(3.15)

By (3.5), we have

lim inf
n→∞

∫
RN F(x, un)dx
‖un‖2

λ

≤ lim sup
n→∞

∫
RN F(x, un)dx
‖un‖2

λ

= lim sup
n→∞

(
1
2
− Jλ(un)

‖un‖2
λ

)

=
1
2

,

which is contradiction with (3.15).
So {un} is bounded.

Lemma 3.5. Assume (V1), (V2) and ( f 1) ∼ ( f 4) be satisfied, then for any M > cλ, there exist
Λ = Λ(M) > 0 such that Jλ satisfies (C)cλ

condition for all λ > Λ.

Proof. Let {un} ⊂ Eλ satisfies (3.5). By Lemma 3.4, we known that {un} is bounded in Eλ.
Thus, up to a subsequence, we have that

un ⇀ u, in Eλ; (3.16)

un → u, in Ls
loc(R

N), for 2 ≤ s < 2∗γ; (3.17)

un(x)→ u(x), a.e. x ∈ RN . (3.18)

Let vn := un − u, then vn ⇀ 0 in Eλ by (3.16), which implies that

‖un‖2
λ = (vn + u, vn + u)λ = ‖vn‖2

λ + ‖u‖2
λ + o(1). (3.19)

Next, by using the similar proof method of Proposition A.1 in the literature [5], we can get
that ∫

RN
F(x, un)dx =

∫
RN

F(x, vn)dx +
∫

RN
F(x, u)dx + o(1), (3.20)

and ∫
RN

f (x, un)ϕdx =
∫

RN
f (x, vn)ϕdx +

∫
RN

f (x, u)ϕdx + o(1), (3.21)

for any ϕ ∈ Eλ. By (3.19) and (3.20), we can obtain that

Jλ(un) = Jλ(vn) + Jλ(u) + o(1). (3.22)

Combing with (3.21) and un = vn + u, for any ϕ ∈ Eλ we have that

〈J′λ(un), ϕ〉 = 〈J′λ(vn), ϕ〉+ 〈J′λ(u), ϕ〉+ o(1). (3.23)
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From (3.3), (3.18) and the dominated convergence theorem, for any ϕ ∈ C∞
0 (RN), we obtain

that ∫
RN

( f (x, un)− f (x, u))ϕdx =
∫

Ωϕ

( f (x, un)− f (x, u))ϕdx → 0, as n→ ∞, (3.24)

here Ωϕ is the support set of ϕ. For each ϕ ∈ C∞
0 (RN), by (3.16) we have

(un − u, ϕ)λ → 0, as n→ ∞. (3.25)

By (3.25), (3.24), (3.5) and the dense of C∞
0 (RN) in Eλ, it shows that

lim
n→∞
〈J′λ(un), ϕ〉 = 〈J′λ(u), ϕ〉 = 0, ∀ϕ ∈ Eλ. (3.26)

Hence, J′λ(u) = 0 and from ( f 4) we can obtain that

Jλ(u) = Jλ(u)−
1
2
〈J′λ(u), u〉 =

∫
RN
F (x, u)dx ≥ 0.

So, by (3.22), (3.23), (3.26) and the boundedness of {vn}, we get that∫
RN
F (x, vn)dx = Jλ(vn)−

1
2
〈J′λ(vn), vn〉

= Jλ(un)− Jλ(u)−
1
2
〈J′λ(un)− J′λ(u), vn〉+ o(1)

≤ Jλ(un) + o(1).

Thus, for enough large n, we have that∫
RN
F (x, vn)dx < M. (3.27)

Now, we will show that vn → 0 in Eλ. By (V2) and (3.17) that∫
RN

v2
ndx =

∫
V(x)≥b

v2
ndx +

∫
V(x)<b

v2
ndx ≤ 1

λb
‖vn‖2

λ + o(1). (3.28)

Thus, combing with the Hölder inequality and (1.2), for any s ∈ (2, 2∗γ) we have(∫
RN
|vn|sdx

) 1
s

=

(∫
RN
|vn|θs|vn|(1−θ)sdx

) 1
s

≤
(∫

RN
|vn|θs· 2

θs dx
) θs

2 ·
1
s
(∫

RN
|vn|(1−θ)s· 2∗γ

(1−θ)s dx
) (1−θ)s

2∗γ
· 1s

=

(∫
RN
|vn|2dx

) θ
2
(∫

RN
|vn|2

∗
γ dx
) 1−θ

2∗γ

≤ d1−θ
2∗γ

(λb)−
θ
2 ‖vn‖λ + o(1),

(3.29)

where θ =
2(2∗γ−s)
s(2∗γ−2) . According to (3.28) and (3.10), we obtain that∫

vn≤L0

f (x, vn)vndx ≤ (C + 1)
∫

vn≤L0

v2
ndx

≤ (C + 1)
∫

RN
v2

ndx

≤ C + 1
λb
‖vn‖2

λ + o(1).

(3.30)
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By τ > Ñ
2 , it is easy obtained that 2τ

τ−1 ∈ (2, 2∗γ). Thus, from the Hölder inequality, (3.27), (3.29)
with s = 2τ

τ−1 and the boundedness of {vn}, we can see that

∫
vn≥L0

f (x, vn)vndx ≤
∫
|un|≥L0

∣∣∣∣ f (x, vn)

vn

∣∣∣∣ v2
ndx

≤
(∫

vn≥L0

∣∣∣∣ f (x, vn)

vn

∣∣∣∣τ dx
) 1

τ
(∫

vn≥L0

|vn|2·
τ

τ−1 dx
) τ−1

τ

≤
(∫

vn≥L0

a1F (x, vn)dx
) 1

τ
(∫

RN
|vn|

2τ
τ−1 dx

) τ−1
τ

≤ a
1
τ
1

(∫
RN
F (x, vn)dx

) 1
τ

((∫
RN
|vn|

2τ
τ−1 dx

) τ−1
2τ

)2

≤ (a1M)
1
τ d2(1−θ)

2∗γ
(λb)−θ‖vn‖2

λ + o(1).

(3.31)

Therefore, by (3.30) and (3.31), we have

o(1) = 〈J′λ(vn), vn〉

= ‖vn‖2
λ −

∫
RN

f (x, vn)vndx

= ‖vn‖2
λ −

∫
vn≤L0

f (x, vn)vndx−
∫

vn≥L0

f (x, vn)vndx

≥
[

1− C + 1
λb
− (a1M)

1
τ d2(1−θ)

2∗γ
(λb)−θ

]
‖vn‖2

λ + o(1).

So, there exist Λ = Λ(M) > 0 such that vn → 0 in Eλ as n → ∞ for any λ > Λ. The proof is
complete.

Proof of Theorem 1.3. By Lemma 3.2, 3.3, 3.4 and 3.5, all condition of Theorem 3.1 are satisfied.
Thus equation (1.1) possesses at least a nontrivial solution uλ ∈ Eλ and Jλ(uλ) = cλ is a critical
value, as λ > Λ. Set S = {u ∈ Eλ − {0} : J′λ(u) = 0}. Evidently, by uλ ∈ S we have that

inf
u∈S

Jλ(u) ≤ Jλ(uλ) = cλ.

For any u ∈ S, let γu(t) = tt0u, t ∈ [0, 1], then γ ∈ Γ for enough large t0 by Lemma 3.3. Thus,
according to the definition of cλ for any u ∈ S we have

cλ ≤ max
t∈[0,1]

Jλ(γu(t)) = max
t∈[0,1]

Jλ(tt0u) = max
t∈[0,t0]

Jλ(tu) = max
t≥0

Jλ(tu).

It is easy obtained that Jλ(u) = maxt≥0 Jλ(tu) by ( f 5) for any u ∈ S. So, from the arbitrariness
of u, we obtain

inf
u∈S

Jλ(u) ≥ cλ.

Thus,
cλ = inf

u∈S
Jλ(u),

and we can conclude that uλ is the ground state solution, then the proof of Theorem 1.3 is
completed.



14 L. Ran, S.-J. Chen and L. Li

Acknowledgements

This work is supported by Chongqing Technology and Business University Graduate Re-
search Innovation Project (No. yjscxx2021-112-57), Chongqing Municipal Education Com-
mission (No. KJQN20190081), Chongqing Technology and Business University (No. CT-
BUZDPTTD201909).

References

[1] C. T. Anh, Global attractor for a semilinear strongly degenerate parabolic equation on
RN , NoDEA Nonlinear Differential Equations Appl. 21(2014), No. 5, 663–678. https://doi.
org/10.1007/s00030-013-0261-y; MR3265192; Zbl 1333.35119

[2] T. Bartsch, Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic
problems on RN , Commun. Partial Differential Equations 20(1995), No. 9–10, 1725–1741.
https://doi.org/10.1080/03605309508821149; MR1349229; Zbl 0837.35043

[3] T. Bartsch, A. Pankov, Z.-Q. Wang, Nonlinear Schrödinger equations with steep poten-
tial well, Commun. Contemp. Math. 3(2001), No. 4, 549–569. https://doi.org/10.1142/
S0219199701000494; MR1869104; Zbl 1076.35037

[4] T. Bartsch, Z. Tang, Multibump solutions of nonlinear Schrödinger equations with steep
potential well and indefinite potential, Discrete Contin. Dyn. Syst. 33(2013), No. 1, 7–26.
https://doi.org/10.3934/dcds.2013.33.7; MR2972943; Zbl 1284.35390

[5] G. Evéquoz, T. Weth, Entire solutions to nonlinear scalar field equations with indefinite
linear part, Adv. Nonlinear Stud. 12(2012), No. 2, 281–314. https://doi.org/10.1515/
ans-2012-0206; MR2951719

[6] B. Franchi, E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly
elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
10(1983), No. 4, 523–541. MR753153; Zbl 0552.35032

[7] B. Franchi, E. Lanconelli, An embedding theorem for Sobolev spaces related to
nonsmooth vector fields and Harnack inequality, Commun. Partial Differential Equations
9(1984), No. 13, 1237–1264. https://doi.org/10.1080/03605308408820362; MR764663;
Zbl 0589.46023

[8] V. V. Grušin, A certain class of elliptic pseudodifferential operators that are degenerate
on a submanifold (in Russian), Mat. Sb. (N.S.) 84(126)(1971), 163–195. MR283630

[9] Q. Jin, Multiple sign-changing solutions for nonlinear Schrödinger equations with poten-
tial well, Appl. Anal. 99(2020), No. 15, 2555–2570. https://doi.org/10.1080/00036811.
2019.1572883; MR4161316; Zbl 1454.35073

[10] A. E. Kogoj, E. Lanconelli, On semilinear ∆λ-Laplace equation, Nonlinear Anal.
75(2012), No. 12, 4637–4649. https://doi.org/10.1016/j.na.2011.10.007; MR2927124;
Zbl 1260.35020

[11] A. Loiudice, Asymptotic estimates and nonexistence results for critical problems with
Hardy term involving Grushin-type operators, Ann. Mat. Pura Appl. (4) 198(2019), No. 6,
1909–1930. https://doi.org/10.1007/s10231-019-00847-8; MR4031832; Zbl 1444.35076

https://doi.org/10.1007/s00030-013-0261-y
https://doi.org/10.1007/s00030-013-0261-y
https://www.ams.org/mathscinet-getitem?mr=3265192
https://zbmath.org/?q=an:1333.35119
https://doi.org/10.1080/03605309508821149
https://www.ams.org/mathscinet-getitem?mr=1349229
https://zbmath.org/?q=an:0837.35043
https://doi.org/10.1142/S0219199701000494
https://doi.org/10.1142/S0219199701000494
https://www.ams.org/mathscinet-getitem?mr=1869104
https://zbmath.org/?q=an:1076.35037
https://doi.org/10.3934/dcds.2013.33.7
https://www.ams.org/mathscinet-getitem?mr=2972943
https://zbmath.org/?q=an:1284.35390
https://doi.org/10.1515/ans-2012-0206
https://doi.org/10.1515/ans-2012-0206
https://www.ams.org/mathscinet-getitem?mr=2951719
https://www.ams.org/mathscinet-getitem?mr=753153
https://zbmath.org/?q=an:0552.35032
https://doi.org/10.1080/03605308408820362
https://www.ams.org/mathscinet-getitem?mr=764663
https://zbmath.org/?q=an:0589.46023
https://www.ams.org/mathscinet-getitem?mr=283630
https://doi.org/10.1080/00036811.2019.1572883
https://doi.org/10.1080/00036811.2019.1572883
https://www.ams.org/mathscinet-getitem?mr=4161316
https://zbmath.org/?q=an:1454.35073
https://doi.org/10.1016/j.na.2011.10.007
https://www.ams.org/mathscinet-getitem?mr=2927124
https://zbmath.org/?q=an:1260.35020
https://doi.org/10.1007/s10231-019-00847-8
https://www.ams.org/mathscinet-getitem?mr=4031832
https://zbmath.org/?q=an:1444.35076


Ground state solutions for degenerate Schrödinger equations 15

[12] D. T. Luyen, N. M. Tri, Existence of infinitely many solutions for semilinear degenerate
Schrödinger equations, J. Math. Anal. Appl. 461(2018), No. 2, 1271–1286. https://doi.
org/10.1016/j.jmaa.2018.01.016; MR3765489; Zbl 1392.35146

[13] R. Monti, D. Morbidelli, Kelvin transform for Grushin operators and critical semi-
linear equations, Duke Math. J. 131(2006), No. 1, 167–202. https://doi.org/10.1215/
S0012-7094-05-13115-5; MR2219239; Zbl 1094.35036

[14] J. Sun, T. Wu, On Schrödinger–Poisson systems under the effect of steep potential well
(2 < p < 4), J. Math. Phys. 61(2020), No. 7, 071506, 13 pp. https://doi.org/10.1063/1.
5114672; MR4124518; Zbl 1454.81076

[15] L. Wang, S.-J. Chen, Two solutions for nonhomogeneous Klein–Gordon–Maxwell sys-
tem with sign-changing potential, Electron. J. Differential Equations 2018, No. 124, 1–21.
MR3831870; Zbl 1398.35218

[16] C.-K Zhong, On Ekeland’s variational principle and a minimax theorem, J. Math.
Anal. Appl. 205(1997), No. 1, 239–250. https://doi.org/10.1006/jmaa.1996.5168;
MR1426991; Zbl 0870.49015

[17] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their
Applications, Vol. 24, Birkhäuser Boston, MA, Boston, 1996. https://doi.org/10.1007/
978-1-4612-4146-1; MR1400007; Zbl 0856.49001

https://doi.org/10.1016/j.jmaa.2018.01.016
https://doi.org/10.1016/j.jmaa.2018.01.016
https://www.ams.org/mathscinet-getitem?mr=3765489
https://zbmath.org/?q=an:1392.35146
https://doi.org/10.1215/S0012-7094-05-13115-5
https://doi.org/10.1215/S0012-7094-05-13115-5
https://www.ams.org/mathscinet-getitem?mr=2219239
https://zbmath.org/?q=an:1094.35036
https://doi.org/10.1063/1.5114672
https://doi.org/10.1063/1.5114672
https://www.ams.org/mathscinet-getitem?mr=4124518
https://zbmath.org/?q=an:1454.81076
https://www.ams.org/mathscinet-getitem?mr=3831870
https://zbmath.org/?q=an:1398.35218
https://doi.org/10.1006/jmaa.1996.5168
https://www.ams.org/mathscinet-getitem?mr=1426991
https://zbmath.org/?q=an:0870.49015
https://doi.org/10.1007/978-1-4612-4146-1
https://doi.org/10.1007/978-1-4612-4146-1
https://www.ams.org/mathscinet-getitem?mr=1400007
https://zbmath.org/?q=an:0856.49001

	Introduction
	The proof of main results for f sub-linear at infinity in u
	The proof of main results for f super-linear at infinity in u

