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1 Introduction

Let Ω ⊂ RN (N ≥ 2) be a smooth bounded connected domain in real N-dimensional Eu-
clidean space. We are concerned with the existence of weak solutions of the following Neu-
mann problem of semilinear elliptic systems

∆u + f (v) = h1(x), in Ω,

∆v + g(u) = h2(x), in Ω,
∂u
∂ν

=
∂v
∂ν

= 0, on ∂Ω,

(1.1)

where f , g : R → R are continuous functions, ∂
∂ν denotes the outward normal derivative on

∂Ω, the boundary of Ω, and h1, h2 ∈ L1(Ω).

The motivation for this work is the paper F. O. de Paiva, W. Rosa [12], in which the authors
showed the following resonant Neumann problems

− ∆u = (v+)p + h1(x), in Ω,

− ∆v = (u+)q + h2(x), in Ω,
∂u
∂ν

=
∂v
∂ν

= 0, on ∂Ω

(1.2)
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has at least one solution (u, v) in H1(Ω) × H1(Ω) under the assumptions h1, h2 ∈ Lr(Ω),
r > N

2 , 1 < p, q < N
N−2 and ∫

Ω
hi(x)dx < 0, i = 1, 2. (1.3)

We first define the bilinear form associated with the Laplacian operator. For u, v ∈
W1,1(Ω), φ, ψ ∈ W1,∞(Ω), we define B1(u, φ) and B2(v, ψ) by

B1(u, φ) = −
N

∑
i=1

∫
Ω

∂u
∂xi

∂φ

∂xi
dx,

B2(v, ψ) = −
N

∑
i=1

∫
Ω

∂v
∂xi

∂ψ

∂xi
dx,

where the derivatives are taken in the distributional sense. By a weak solution of (1.1), we mean
a pair (u, v) ∈ W1,1(Ω)× W1,1(Ω), such that f (v(·)) ∈ L1(Ω), g(u(·)) ∈ L1(Ω) and

B1(u, φ) +
∫

Ω
f (v)φdx =

∫
Ω

h1(x)φdx, ∀ φ ∈ W1,∞(Ω),

B2(v, ψ) +
∫

Ω
g(u)ψdx =

∫
Ω

h2(x)ψdx, ∀ ψ ∈ W1,∞(Ω).

Denote
f−∞ = lim sup

s→−∞
f (s), g−∞ = lim sup

s→−∞
g(s),

f+∞ = lim inf
s→+∞

f (s), g+∞ = lim inf
s→+∞

g(s).

We will make the following assumptions.

(C0) h1, h2 ∈ L1(Ω).

(Cl) There are the nonnegative constants C1, C2 ∈ (0, ∞) such that

f (t) ≥ −C1, g(t) ≥ −C2, t ∈ R

and for all t ≤ 0 we have also | f (t)| ≤ C1, |g(t)| ≤ C2.

(C2) There are the constants a, b ∈ R and p with 1 ≤ p < N/(N − 2) for N ≥ 3 and
1 ≤ p < ∞ for N = 2 such that for all t ≥ 0 the inequality

| f (t)|, |g(t)| ≤ atp + b a.e. on Ω.

(C3) We assume f , g tends to be nondecreasing in that there is a γ ∈ R and a number M ≥ 0
such that the inequalities

f (t1) ≤ f (t2) + γ, g(t1) ≤ g(t2) + γ

hold a.e. on Ω whenever t2 − t1 ≥ M.

(C4) ∫
Ω

f−∞ <
∫

Ω
h1(x)dx <

∫
Ω

f+∞,
∫

Ω
g−∞ <

∫
Ω

h2(x)dx <
∫

Ω
g+∞.
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Our main result is the following

Theorem 1.1. Under assumptions (C0)–(C4) the Neumann problem (1.1) has a weak solution (u, v) ∈
W1,1(Ω)×W1,1(Ω). Moreover the solution (u, v) ∈ W1,q(Ω)×W1,q(Ω) for all 1 ≤ q < N/(N − 1).

Remark 1.2. Obviously, (1.3) in F. O. de Paiva, W. Rosa [12] are the special case of (C0) and
(C4).

Remark 1.3. Our proof is based upon ideas found in Ward Jr [16]. He used the well-known
Mawhin’s continuation theorem to get a weak solution of the scale elliptic equation

∆u + f (x, u) = k(x), in Ω,
∂u
∂ν

= 0, on ∂Ω
(1.4)

under the conditions k ∈ L1(Ω),

| f (x, t)| ≤ α(x)|t|p + β(x), x ∈ Ω,

where p ∈ [1, N
N−2 ), α ∈ L∞(Ω), β ∈ L1(Ω), and Landesman–Lazer condition∫

Ω
f−∞ <

∫
Ω

k(x)dx <
∫

Ω
f+∞.

Remark 1.4. Similar problems, under Dirichlet and Neumann boundary condition, can be
found in D. Arcoya and S. Villegas [2], M. Cuesta and C. De Coster [3], F. M. Ferreira, F. O. de
Paiva [4], R. Kannan and R. Ortega [6, 7], S. Kyritsi and N. S. Papageorgiou [8], D. Motreanu,
V. Motreanu, N. S. Papageorgiou [10], K. Perera [14], N. S. Papageorgiou and V. D. Rădulescu
[13], F. O. de Paiva and A. E. Presoto [11], L. Recova and A. Rumbos [15], J. R. Ward [16].

2 The preliminaries

Before proving Theorem 1.1 we will need a lemma. In the following we will write Lp for
Lp(Ω) and W1,p for W1,p(Ω). We denote the norm in Lp by | · |p, that of W1,p by | · |1,p. For
h ∈ L1. Let Qh be the projection

Qh = |Ω|−1
∫

Ω
hdx.

Lemma 2.1 ([16]). For each h ∈ L1(Ω) with Qh = 0. There is a unique w ∈ W1,1(Ω) with Qw = 0
such that

B(w, φ) =
∫

Ω
h(x)φdx,

for all φ ∈ W1,∞, where B(w, φ) = −∑N
i=1

∫
Ω

∂w
∂xi

∂φ
∂xi

dx. Moreover w ∈ W1,q for each q satisfying
1 ≤ q < N/(N − 1) and there is a constant C(q) such that

|w|1,q ≤ C(q)|h|1.

By the Rellich–Kondrachov theorem W1,q is compactly imbedded in Lp for 1 ≤ p < Nq
N−q

since q < N/(N − 1) ≤ N for all N ≥ 2. (e.g. see [1, p. 144]). Assume that the number p in
condition (C2) is fixed hereafter, satisfying 1 ≤ p < N/(N − 2) if N ≥ 3 and 1 ≤ p < ∞ if
N = 2.
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Choose q so that

p <
Nq

N − q
and 1 < q <

N
N − 1

.

We have that W1,q is compactly imbedded in Lp.

Let X1 denote the closed subspace of L1 defined by h ∈ X1 if and only if

Qh = 0.

Let T denotes the operator mapping X1 into W1,q ∩ X1 given by h → w where w is the unique
weak solution to

∆w = h in Ω, Qu = 0,
∂w
∂ν

= 0 on ∂Ω.

Note that W1,q = (W1,q ∩ X1)⊕ R. T maps X1 into W1,q and we see that Ψ ◦ T maps X1

compactly into Lp if Ψ is the imbedding of W1,q into Lp. Let

K = Ψ ◦ T,

and define an operator L : Lp → L1. Because L1 is not the dual space to L∞, we do not use the
usual method of defining L. Instead, we let

D(L) = Range K ⊕ R

and
L(w1 + α̃) = h,

where h ∈ X1 and Kh = w1, for w1 ∈ Range K and α̃ ∈ R. It is easy to see that L is a Fredholm
operator: it has closed range X1 and since ker(L) = R and the dimension of L1 \ X1 is clearly
1, the index of L is 0,

index(L) = dim ker L − dim coker L.

We now define the substitution operators N1, N2 : Lp → L1 by

N1v(x) = f (v(x))− h1(x), v ∈ Lp and x ∈ Ω.

N2u(x) = g(u(x))− h2(x), u ∈ Lp and x ∈ Ω.

It is well known that the conditions on f and g imply that Nj maps Lp into L1 continuously
and Nj obviously takes sets bounded in Lp into sets bounded in L1 for j = 1, 2.

A function (u, v) ∈ W1,1 × W1,1 is a weak solution of (1.1) if and only if (u, v) ∈ D(L)×
D(L) and

Lu + N1v = 0,

Lv + N2u = 0.
(2.1)

Recalling that for u ∈ L1 we have defined Qu to be the mean value of u, we have from
our remarks above that K(I − Q)Nj : Lp → Lp is compact and continuous, clearly QNj is
also compact and continuous for j = 1, 2. Thus Nj is L-compact (see [5]) on Ḡ for any open
bounded set Ḡ in Lp for j = 1, 2. We will use a well known continuation theorem of Mawhin
(see [5] and [9]).
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3 Proof of the main result

We are in the position to prove our main result.

Proof of Theorem 1.1. By one of Mawhin’s continuation theorems (see [5, p. 40] or [9, The-
orem 7.2]) and our remarks above, if we can show the existence of a bounded open set
G := Ḡ × Ḡ in Lp × Lp such that conditions (i) and (ii) below hold, then (2.1) has a solu-
tion. The conditions are:

(i) For each λ ∈ (0, 1) and each (u, v) ∈ (D(L)× D(L)) ∩ ∂G,

Lu + λN1v ̸= 0,

Lv + λN2u ̸= 0.
(3.1)

(ii) QNjw ̸= 0 for each j = 1, 2, w ∈ ker L ∩ ∂Ḡ and

d(Γ, G ∩ (ker L × ker L), 0) ̸= 0,

where Γ := (JQN1, JQN2), J : Im Q → ker L is an isomorphism, and d is the Brouwer
topological degree.

We first verify (i). We consider
Lu + λN1v = 0,

Lv + λN1u = 0
(3.2)

for 0 < λ < 1. If ((u, v), λ) is a solution of (3.2) then

B1(u, φ) + λ
∫

Ω
f (v)φ = λ

∫
Ω

h1φ, ∀ φ ∈ W1,∞,

B2(v, ψ) + λ
∫

Ω
g(u)ψ = λ

∫
Ω

h2ψ, ∀ ψ ∈ W1,∞.

In particular by taking φ = ψ = 1, then∫
Ω

f (v) =
∫

Ω
h1,

∫
Ω

g(u) =
∫

Ω
h2.

It follows from (Cl) that for each t ∈ R

| f (t)| ≤ f (t) + 2C1, |g(t)| ≤ g(t) + 2C2.

Thus

|N1v|1 =
∫

Ω
| f (v)− h1(x)|dx

≤
∫

Ω

(
f (v) + 2C1 + |h1(x)|

)
dx

≤
∫

Ω
h1dx + 2|C1| · |Ω|+

∫
Ω
|h1(x)|dx =: d1,
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|N2u|1 =
∫

Ω
|g(u)− h2(x)|dx

≤
∫

Ω

(
g(u) + 2C2 + |h2(x)|

)
dx

≤
∫

Ω
h2dx + 2|C2| · |Ω|+

∫
Ω
|h2(x)|dx =: d2.

Writing u = u1 + α, v = v1 + β with u1, v1 ∈ Range K and α, β ∈ R by Lemma 2.1 we have

|u1|1,q ≤ C(q)d1 =: m1,

|v1|1,q ≤ C(q)d2 =: m2,

where m1 and m2 are independently of λ ∈ (0, 1). By the Sobolev imbedding theorem

|u1|p ≤ m3, |v1|p ≤ m4

for some constants m3 and m4.

We now show that for solutions ((u, v), λ) =
(
(u1 + α, v1 + β), λ

)
that α and β are also

bounded independently of λ ∈ (0, 1).

Suppose this is not the case. Then there is a sequence ((un, vn), λn) of solutions to (3.2)
with

un = u1n + αn, vn = v1n + βn

and
|αn|+ |βn| → ∞, as n → ∞.

Suppose first that a subsequence of {αn}, relabeled as {αn}, tends to +∞. Then using
|u1n|1,q ≤ m1 is easy to show that

lim
n→∞

un(x) = +∞ a.e. (3.3)

For otherwise there is a constant k1 > 0 and sets Ω(n) in Ω for infinitely many n (without
loss of generality we assume for all n) such that |Ω(n)| ≥ δ > 0 and un(x) ≤ k1 for x ∈ Ω(n).
We have u1n + αn ≤ k1 implies

k1|Ω| ≥
∫

Ω(n)
k1dx ≥

∫
Ω(n)

u1n + αndx

≥ αn|Ω(n)| −
∫

Ω
|u1n|

≥ αnδ − C

for C, a constant, which contradicts αn → ∞. Thus (3.3) holds and

lim inf
n→∞

g(un(x)) = g+∞ a.e.

Since g(un(x)) ≥ −C2 for all n and C2 ∈ R we have by Fatou’s lemma∫
Ω

h2 = lim inf
n→∞

∫
Ω

g(un(x))dx ≥
∫

Ω
g+∞dx

which contradicts (C4). Thus the {αn} must be bounded above.
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Suppose αn → −∞. It follows as for (3.3) that

lim
n→∞

un(x) = −∞ a.e.

Because g(t) is not everywhere bounded above by an L1 function, we cannot use the simple
Fatou’s lemma argument as in the case of αn → −∞.

We proceed as follows. Since |u1n|1,q ≤ m1, we may without loss of generality assume the
existence of ũ1 ∈ Lp such that u1n → ũ1 in Lp.

Let 0 < ϵ < |Ω| be given. Then ũ1 ∈ Lp implies that there exists an integer n(ϵ) and a
measurable set E ⊆ Ω such that if F = Ω − E then |F| < ϵ and

un(x) ≤ 0, x ∈ E, n ≥ n(ϵ),

hence

g(un(x)) ≤ C2, x ∈ E, n ≥ n(ϵ).

Moreover there exists another integer m such that for n ≥ m we have αn ≤ −M, where M
is a positive constant.

Thus, for n ≥ max{n(ϵ), m},∫
Ω

h2 =
∫

E
g(u1n + αn) +

∫
F

g(u1n + αn)

≤
∫

E
g(u1n + αn) +

∫
F

g(u1n) +
∫

F
γ

and ∫
Ω

h2 ≤ lim sup
n→∞

[∫
E

g(un) +
∫

F
g(u1n)

]
+

∫
F

γ

≤
∫

E
g−∞dx +

∫
F

g(ũ1)dx +
∫

F
γ

(3.4)

by Fatou’s lemma for the integral over E and by convergence in L1 for the integral over F.

Now choose η > 0 such that ∫
Ω

g−∞dx + η <
∫

Ω
h2dx. (3.5)

We may choose ϵ > 0 so small that, since |F| < ϵ,∣∣∣∣∫F
g−∞dx

∣∣∣∣ < η

3
,

∣∣∣∣∫F
g(ũ1)dx

∣∣∣∣ < η

3
,

∣∣∣∣∫F
γ

∣∣∣∣ < η

3
.

For such as ϵ we have from (3.4) and (3.5)∫
Ω

h2 ≤
∫

Ω
g−∞dx −

∫
F

g−∞dx +
∫

F
g(ũ1)dx +

∫
F

γ ≤
∫

Ω
g−∞dx + η <

∫
Ω

h2. (3.6)

Therefore we cannot have αn → +∞ or αn → −∞ and this, combined with |u1|p ≤ m3 shows
that if ((u, v), λ) is a solution of (3.2) then |u|p = |u1 + α|p ≤ m3 + C3 for some constant C3.
Similarly, We can obtain |v|p = |v1 + α|p ≤ m4 + C4 for some constant C4.

This verifies condition (i) above for any ball G in L1 × L1, centered at the origin and with
radius larger than ρ1 = max{m3 + C3, m4 + C4}.
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The verification of condition (ii) is now straightforward. Both the range of Q and the
kernel of L may be identified with R, so that the isomorphism J in (ii) we may take to be the
identity on R. Now for α, β ∈ R,

QN1β = |Ω|−1
∫

Ω

[
f (β)− h1(x)

]
dx, QN2α = |Ω|−1

∫
Ω

[
g(α)− h2(x)

]
dx.

We may now make two simple applications of Fatou’s lemma using (Cl) to show, using (C4),
that there exists an r > 0 such that

QN1(β) > 0, QN1(−β) < 0, for α > r,

QN2(α) > 0, QN2(−α) < 0, for β > r.

Thus for r̄ ≥ r max{1, |Ω|},

d(QNj, [−r̄, r̄] ∩ ker L, 0) ̸= 0, j = 1, 2.

By the product formula of Brouwer degree, we obtain

d(Γ, [−r̄, r̄]2 ∩ (ker L × ker L), 0) ̸= 0.

Now let ρ := max{ρ1, r · max{1, |Ω|}}. Then we have that both (i) and (ii) are satisfied on
[Bρ]2, where Bρ is the ball in Lp with radius ρ centered at the origin. Thus (2.1) has a solution
(u, v) ∈ D(L)× D(L) with

|u|p ≤ ρ, |v|p ≤ ρ,

and (u, v) ∈ W1,p × W1,p and is a weak solution of (1.1). This completes the proof of Theo-
rem 1.1.
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