# Neumann problems of superlinear elliptic systems at resonance 

Ruyun Ma ${ }^{1,2}$, Zhongzi Zhao ${ }^{\boxtimes 1}$ and Mantang Ma ${ }^{2}$<br>${ }^{1}$ School of Mathematics and Statistics, Xidian University, Xi'an 710071, P. R. China<br>${ }^{2}$ Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China

Received 12 October 2021, appeared 2 February 2022
Communicated by Dimitri Mugnai


#### Abstract

We prove existence of weak solutions of Neumann problem of nonhomogeneous elliptic system with asymmetric nonlinearities that may resonant at $-\infty$ and superlinear at $+\infty$. The proof is based on Mawhin's coincidence theory and the product formula of Brouwer degree.


Keywords: elliptic equation, Neumann problem, weak solution, continuation methods.
2020 Mathematics Subject Classification: 35J25, 35J60, 47 H 11.

## 1 Introduction

Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a smooth bounded connected domain in real $N$-dimensional Euclidean space. We are concerned with the existence of weak solutions of the following Neumann problem of semilinear elliptic systems

$$
\begin{array}{ll}
\Delta u+f(v)=h_{1}(x), & \text { in } \Omega, \\
\Delta v+g(u)=h_{2}(x), & \text { in } \Omega,  \tag{1.1}\\
\frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0, & \text { on } \partial \Omega,
\end{array}
$$

where $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions, $\frac{\partial}{\partial \nu}$ denotes the outward normal derivative on $\partial \Omega$, the boundary of $\Omega$, and $h_{1}, h_{2} \in L^{1}(\Omega)$.

The motivation for this work is the paper F. O. de Paiva, W. Rosa [12], in which the authors showed the following resonant Neumann problems

$$
\begin{array}{ll}
-\Delta u=\left(v^{+}\right)^{p}+h_{1}(x), & \text { in } \Omega, \\
-\Delta v=\left(u^{+}\right)^{q}+h_{2}(x), & \text { in } \Omega,  \tag{1.2}\\
\frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0, & \text { on } \partial \Omega
\end{array}
$$

[^0]has at least one solution $(u, v)$ in $H^{1}(\Omega) \times H^{1}(\Omega)$ under the assumptions $h_{1}, h_{2} \in L^{r}(\Omega)$, $r>\frac{N}{2}, 1<p, q<\frac{N}{N-2}$ and
\[

$$
\begin{equation*}
\int_{\Omega} h_{i}(x) d x<0, \quad i=1,2 \tag{1.3}
\end{equation*}
$$

\]

We first define the bilinear form associated with the Laplacian operator. For $u, v \in$ $W^{1,1}(\Omega), \varphi, \psi \in W^{1, \infty}(\Omega)$, we define $B_{1}(u, \varphi)$ and $B_{2}(v, \psi)$ by

$$
\begin{aligned}
& B_{1}(u, \varphi)=-\sum_{i=1}^{N} \int_{\Omega} \frac{\partial u}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{i}} d x, \\
& B_{2}(v, \psi)=-\sum_{i=1}^{N} \int_{\Omega} \frac{\partial v}{\partial x_{i}} \frac{\partial \psi}{\partial x_{i}} d x,
\end{aligned}
$$

where the derivatives are taken in the distributional sense. By a weak solution of (1.1), we mean a pair $(u, v) \in W^{1,1}(\Omega) \times W^{1,1}(\Omega)$, such that $f(v(\cdot)) \in L^{1}(\Omega), g(u(\cdot)) \in L^{1}(\Omega)$ and

$$
\begin{array}{ll}
B_{1}(u, \varphi)+\int_{\Omega} f(v) \varphi d x=\int_{\Omega} h_{1}(x) \varphi d x, & \forall \varphi \in W^{1, \infty}(\Omega), \\
B_{2}(v, \psi)+\int_{\Omega} g(u) \psi d x=\int_{\Omega} h_{2}(x) \psi d x, & \forall \psi \in W^{1, \infty}(\Omega) .
\end{array}
$$

Denote

$$
\begin{aligned}
f^{-\infty} & =\limsup _{s \rightarrow-\infty} f(s), & & g^{-\infty}
\end{aligned}=\limsup _{s \rightarrow-\infty} g(s), ~ 子{ }_{s \rightarrow+\infty} f(s), \quad \begin{array}{ll}
f_{+\infty} & =\liminf _{s \rightarrow+\infty} g(s) .
\end{array}
$$

We will make the following assumptions.
(C0) $h_{1}, h_{2} \in L^{1}(\Omega)$.
(Cl) There are the nonnegative constants $C_{1}, C_{2} \in(0, \infty)$ such that

$$
f(t) \geq-C_{1}, \quad g(t) \geq-C_{2}, \quad t \in \mathbb{R}
$$

and for all $t \leq 0$ we have also $|f(t)| \leq C_{1},|g(t)| \leq C_{2}$.
(C2) There are the constants $a, b \in \mathbb{R}$ and $p$ with $1 \leq p<N /(N-2)$ for $N \geq 3$ and $1 \leq p<\infty$ for $N=2$ such that for all $t \geq 0$ the inequality

$$
|f(t)|,|g(t)| \leq a t^{p}+b \quad \text { a.e. on } \Omega .
$$

(C3) We assume $f, g$ tends to be nondecreasing in that there is a $\gamma \in \mathbb{R}$ and a number $M \geq 0$ such that the inequalities

$$
f\left(t_{1}\right) \leq f\left(t_{2}\right)+\gamma, \quad g\left(t_{1}\right) \leq g\left(t_{2}\right)+\gamma
$$

hold a.e. on $\Omega$ whenever $t_{2}-t_{1} \geq M$.
(C4)

$$
\int_{\Omega} f^{-\infty}<\int_{\Omega} h_{1}(x) d x<\int_{\Omega} f_{+\infty}, \quad \int_{\Omega} g^{-\infty}<\int_{\Omega} h_{2}(x) d x<\int_{\Omega} g_{+\infty} .
$$

Our main result is the following
Theorem 1.1. Under assumptions (C0)-(C4) the Neumann problem (1.1) has a weak solution $(u, v) \in$ $W^{1,1}(\Omega) \times W^{1,1}(\Omega)$. Moreover the solution $(u, v) \in W^{1, q}(\Omega) \times W^{1, q}(\Omega)$ for all $1 \leq q<N /(N-1)$.

Remark 1.2. Obviously, (1.3) in F. O. de Paiva, W. Rosa [12] are the special case of (C0) and (C4).

Remark 1.3. Our proof is based upon ideas found in Ward Jr [16]. He used the well-known Mawhin's continuation theorem to get a weak solution of the scale elliptic equation

$$
\begin{array}{ll}
\Delta u+f(x, u)=k(x), & \text { in } \Omega, \\
\frac{\partial u}{\partial v}=0, & \text { on } \partial \Omega \tag{1.4}
\end{array}
$$

under the conditions $k \in L^{1}(\Omega)$,

$$
|f(x, t)| \leq \alpha(x)|t|^{p}+\beta(x), \quad x \in \Omega,
$$

where $p \in\left[1, \frac{N}{N-2}\right), \alpha \in L^{\infty}(\Omega), \beta \in L^{1}(\Omega)$, and Landesman-Lazer condition

$$
\int_{\Omega} f^{-\infty}<\int_{\Omega} k(x) d x<\int_{\Omega} f_{+\infty}
$$

Remark 1.4. Similar problems, under Dirichlet and Neumann boundary condition, can be found in D. Arcoya and S. Villegas [2], M. Cuesta and C. De Coster [3], F. M. Ferreira, F. O. de Paiva [4], R. Kannan and R. Ortega [6,7], S. Kyritsi and N. S. Papageorgiou [8], D. Motreanu, V. Motreanu, N. S. Papageorgiou [10], K. Perera [14], N. S. Papageorgiou and V. D. Rădulescu [13], F. O. de Paiva and A. E. Presoto [11], L. Recova and A. Rumbos [15], J. R. Ward [16].

## 2 The preliminaries

Before proving Theorem 1.1 we will need a lemma. In the following we will write $L^{p}$ for $L^{p}(\Omega)$ and $W^{1, p}$ for $W^{1, p}(\Omega)$. We denote the norm in $L^{p}$ by $|\cdot|_{p}$, that of $W^{1, p}$ by $|\cdot|_{1, p}$. For $h \in L^{1}$. Let $Q h$ be the projection

$$
Q h=|\Omega|^{-1} \int_{\Omega} h d x
$$

Lemma 2.1 ([16]). For each $h \in L^{1}(\Omega)$ with $Q h=0$. There is a unique $w \in W^{1,1}(\Omega)$ with $Q w=0$ such that

$$
B(w, \varphi)=\int_{\Omega} h(x) \varphi d x
$$

for all $\varphi \in W^{1, \infty}$, where $B(w, \varphi)=-\sum_{i=1}^{N} \int_{\Omega} \frac{\partial w}{\partial x_{i}} \frac{\partial \varphi}{\partial x_{i}} d x$. Moreover $w \in W^{1, q}$ for each $q$ satisfying $1 \leq q<N /(N-1)$ and there is a constant $C(q)$ such that

$$
|w|_{1, q} \leq C(q)|h|_{1} .
$$

By the Rellich-Kondrachov theorem $W^{1, q}$ is compactly imbedded in $L^{p}$ for $1 \leq p<\frac{N q}{N-q}$ since $q<N /(N-1) \leq N$ for all $N \geq 2$. (e.g. see [1, p. 144]). Assume that the number $p$ in condition (C2) is fixed hereafter, satisfying $1 \leq p<N /(N-2)$ if $N \geq 3$ and $1 \leq p<\infty$ if $N=2$.

Choose $q$ so that

$$
p<\frac{N q}{N-q} \quad \text { and } \quad 1<q<\frac{N}{N-1} .
$$

We have that $W^{1, q}$ is compactly imbedded in $L^{p}$.
Let $X_{1}$ denote the closed subspace of $L^{1}$ defined by $h \in X_{1}$ if and only if

$$
Q h=0 .
$$

Let $T$ denotes the operator mapping $X_{1}$ into $W^{1, q} \cap X_{1}$ given by $h \rightarrow w$ where $w$ is the unique weak solution to

$$
\begin{array}{lll}
\Delta w=h & \text { in } \Omega, \quad Q u=0, \\
\frac{\partial w}{\partial v}=0 & \text { on } \partial \Omega . &
\end{array}
$$

Note that $W^{1, q}=\left(W^{1, q} \cap X_{1}\right) \oplus \mathbb{R}$. $T$ maps $X_{1}$ into $W^{1, q}$ and we see that $\Psi \circ T$ maps $X_{1}$ compactly into $L^{p}$ if $\Psi$ is the imbedding of $W^{1, q}$ into $L^{p}$. Let

$$
K=\Psi \circ T,
$$

and define an operator $L: L^{p} \rightarrow L^{1}$. Because $L^{1}$ is not the dual space to $L^{\infty}$, we do not use the usual method of defining $L$. Instead, we let

$$
D(L)=\text { Range } K \oplus \mathbb{R}
$$

and

$$
L\left(w_{1}+\tilde{\alpha}\right)=h,
$$

where $h \in X_{1}$ and $K h=w_{1}$, for $w_{1} \in \operatorname{Range} K$ and $\tilde{\alpha} \in \mathbb{R}$. It is easy to see that $L$ is a Fredholm operator: it has closed range $X_{1}$ and since $\operatorname{ker}(L)=\mathbb{R}$ and the dimension of $L^{1} \backslash X_{1}$ is clearly 1 , the index of $L$ is 0 ,

$$
\operatorname{index}(L)=\operatorname{dim} \operatorname{ker} L-\operatorname{dim} \text { coker } L .
$$

We now define the substitution operators $N_{1}, N_{2}: L^{p} \rightarrow L^{1}$ by

$$
\begin{array}{ll}
N_{1} v(x)=f(v(x))-h_{1}(x), & v \in L^{p} \text { and } x \in \Omega . \\
N_{2} u(x)=g(u(x))-h_{2}(x), & u \in L^{p} \text { and } x \in \Omega .
\end{array}
$$

It is well known that the conditions on $f$ and $g$ imply that $N_{j}$ maps $L^{p}$ into $L^{1}$ continuously and $N_{j}$ obviously takes sets bounded in $L^{p}$ into sets bounded in $L^{1}$ for $j=1,2$.

A function $(u, v) \in W^{1,1} \times W^{1,1}$ is a weak solution of (1.1) if and only if $(u, v) \in D(L) \times$ $D(L)$ and

$$
\begin{align*}
& L u+N_{1} v=0, \\
& L v+N_{2} u=0 . \tag{2.1}
\end{align*}
$$

Recalling that for $u \in L^{1}$ we have defined $Q u$ to be the mean value of $u$, we have from our remarks above that $K(I-Q) N_{j}: L^{p} \rightarrow L^{p}$ is compact and continuous, clearly $Q N_{j}$ is also compact and continuous for $j=1,2$. Thus $N_{j}$ is $L$-compact (see [5]) on $\bar{G}$ for any open bounded set $\bar{G}$ in $L^{p}$ for $j=1,2$. We will use a well known continuation theorem of Mawhin (see [5] and [9]).

## 3 Proof of the main result

We are in the position to prove our main result.
Proof of Theorem 1.1. By one of Mawhin's continuation theorems (see [5, p. 40] or [9, Theorem 7.2]) and our remarks above, if we can show the existence of a bounded open set $G:=\bar{G} \times \bar{G}$ in $L^{p} \times L^{p}$ such that conditions (i) and (ii) below hold, then (2.1) has a solution. The conditions are:
(i) For each $\lambda \in(0,1)$ and each $(u, v) \in(D(L) \times D(L)) \cap \partial G$,

$$
\begin{align*}
& L u+\lambda N_{1} v \neq 0, \\
& L v+\lambda N_{2} u \neq 0 . \tag{3.1}
\end{align*}
$$

(ii) $Q N_{j} w \neq 0$ for each $j=1,2, w \in \operatorname{ker} L \cap \partial \bar{G}$ and

$$
d(\Gamma, G \cap(\operatorname{ker} L \times \operatorname{ker} L), 0) \neq 0,
$$

where $\Gamma:=\left(J Q N_{1}, J Q N_{2}\right), J: \operatorname{Im} Q \rightarrow \operatorname{ker} L$ is an isomorphism, and $d$ is the Brouwer topological degree.

We first verify (i). We consider

$$
\begin{align*}
& L u+\lambda N_{1} v=0, \\
& L v+\lambda N_{1} u=0 \tag{3.2}
\end{align*}
$$

for $0<\lambda<1$. If $((u, v), \lambda)$ is a solution of (3.2) then

$$
\begin{array}{ll}
B_{1}(u, \varphi)+\lambda \int_{\Omega} f(v) \varphi=\lambda \int_{\Omega} h_{1} \varphi, & \forall \varphi \in W^{1, \infty}, \\
B_{2}(v, \psi)+\lambda \int_{\Omega} g(u) \psi=\lambda \int_{\Omega} h_{2} \psi, & \forall \psi \in W^{1, \infty} .
\end{array}
$$

In particular by taking $\varphi=\psi=1$, then

$$
\begin{aligned}
& \int_{\Omega} f(v)=\int_{\Omega} h_{1}, \\
& \int_{\Omega} g(u)=\int_{\Omega} h_{2} .
\end{aligned}
$$

It follows from (Cl) that for each $t \in \mathbb{R}$

$$
|f(t)| \leq f(t)+2 C_{1}, \quad|g(t)| \leq g(t)+2 C_{2} .
$$

Thus

$$
\begin{aligned}
\left|N_{1} v\right|_{1} & =\int_{\Omega}\left|f(v)-h_{1}(x)\right| d x \\
& \leq \int_{\Omega}\left(f(v)+2 C_{1}+\left|h_{1}(x)\right|\right) d x \\
& \leq \int_{\Omega} h_{1} d x+2\left|C_{1}\right| \cdot|\Omega|+\int_{\Omega}\left|h_{1}(x)\right| d x=: d_{1},
\end{aligned}
$$

$$
\begin{aligned}
\left|N_{2} u\right|_{1} & =\int_{\Omega}\left|g(u)-h_{2}(x)\right| d x \\
& \leq \int_{\Omega}\left(g(u)+2 C_{2}+\left|h_{2}(x)\right|\right) d x \\
& \leq \int_{\Omega} h_{2} d x+2\left|C_{2}\right| \cdot|\Omega|+\int_{\Omega}\left|h_{2}(x)\right| d x=: d_{2} .
\end{aligned}
$$

Writing $u=u_{1}+\alpha, v=v_{1}+\beta$ with $u_{1}, v_{1} \in$ Range $K$ and $\alpha, \beta \in \mathbb{R}$ by Lemma 2.1 we have

$$
\begin{aligned}
& \left|u_{1}\right|_{1, q} \leq C(q) d_{1}=: m_{1}, \\
& \left|v_{1}\right|_{1, q} \leq C(q) d_{2}=: m_{2},
\end{aligned}
$$

where $m_{1}$ and $m_{2}$ are independently of $\lambda \in(0,1)$. By the Sobolev imbedding theorem

$$
\left|u_{1}\right|_{p} \leq m_{3}, \quad\left|v_{1}\right|_{p} \leq m_{4}
$$

for some constants $m_{3}$ and $m_{4}$.
We now show that for solutions $((u, v), \lambda)=\left(\left(u_{1}+\alpha, v_{1}+\beta\right), \lambda\right)$ that $\alpha$ and $\beta$ are also bounded independently of $\lambda \in(0,1)$.

Suppose this is not the case. Then there is a sequence $\left(\left(u_{n}, v_{n}\right), \lambda_{n}\right)$ of solutions to (3.2) with

$$
u_{n}=u_{1 n}+\alpha_{n}, \quad v_{n}=v_{1 n}+\beta_{n}
$$

and

$$
\left|\alpha_{n}\right|+\left|\beta_{n}\right| \rightarrow \infty, \quad \text { as } n \rightarrow \infty .
$$

Suppose first that a subsequence of $\left\{\alpha_{n}\right\}$, relabeled as $\left\{\alpha_{n}\right\}$, tends to $+\infty$. Then using $\left|u_{1 n}\right|_{1, q} \leq m_{1}$ is easy to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}(x)=+\infty \quad \text { a.e. } \tag{3.3}
\end{equation*}
$$

For otherwise there is a constant $k_{1}>0$ and sets $\Omega(n)$ in $\Omega$ for infinitely many $n$ (without loss of generality we assume for all $n$ ) such that $|\Omega(n)| \geq \delta>0$ and $u_{n}(x) \leq k_{1}$ for $x \in \Omega(n)$. We have $u_{1 n}+\alpha_{n} \leq k_{1}$ implies

$$
\begin{aligned}
k_{1}|\Omega| & \geq \int_{\Omega(n)} k_{1} d x \geq \int_{\Omega(n)} u_{1 n}+\alpha_{n} d x \\
& \geq \alpha_{n}|\Omega(n)|-\int_{\Omega}\left|u_{1 n}\right| \\
& \geq \alpha_{n} \delta-C
\end{aligned}
$$

for $C$, a constant, which contradicts $\alpha_{n} \rightarrow \infty$. Thus (3.3) holds and

$$
\liminf _{n \rightarrow \infty} g\left(u_{n}(x)\right)=g_{+\infty} \quad \text { a.e. }
$$

Since $g\left(u_{n}(x)\right) \geq-C_{2}$ for all $n$ and $C_{2} \in \mathbb{R}$ we have by Fatou's lemma

$$
\int_{\Omega} h_{2}=\liminf _{n \rightarrow \infty} \int_{\Omega} g\left(u_{n}(x)\right) d x \geq \int_{\Omega} g_{+\infty} d x
$$

which contradicts (C4). Thus the $\left\{\alpha_{n}\right\}$ must be bounded above.

Suppose $\alpha_{n} \rightarrow-\infty$. It follows as for (3.3) that

$$
\lim _{n \rightarrow \infty} u_{n}(x)=-\infty \quad \text { a.e. }
$$

Because $g(t)$ is not everywhere bounded above by an $L^{1}$ function, we cannot use the simple Fatou's lemma argument as in the case of $\alpha_{n} \rightarrow-\infty$.

We proceed as follows. Since $\left|u_{1 n}\right|_{1, q} \leq m_{1}$, we may without loss of generality assume the existence of $\tilde{u}_{1} \in L^{p}$ such that $u_{1 n} \rightarrow \tilde{u}_{1}$ in $L^{p}$.

Let $0<\epsilon<|\Omega|$ be given. Then $\tilde{u}_{1} \in L^{p}$ implies that there exists an integer $n(\epsilon)$ and a measurable set $E \subseteq \Omega$ such that if $F=\Omega-E$ then $|F|<\epsilon$ and

$$
u_{n}(x) \leq 0, \quad x \in E, \quad n \geq n(\epsilon),
$$

hence

$$
g\left(u_{n}(x)\right) \leq C_{2}, \quad x \in E, \quad n \geq n(\epsilon) .
$$

Moreover there exists another integer $m$ such that for $n \geq m$ we have $\alpha_{n} \leq-\bar{M}$, where $\bar{M}$ is a positive constant.

Thus, for $n \geq \max \{n(\epsilon), m\}$,

$$
\begin{aligned}
\int_{\Omega} h_{2} & =\int_{E} g\left(u_{1 n}+\alpha_{n}\right)+\int_{F} g\left(u_{1 n}+\alpha_{n}\right) \\
& \leq \int_{E} g\left(u_{1 n}+\alpha_{n}\right)+\int_{F} g\left(u_{1 n}\right)+\int_{F} \gamma
\end{aligned}
$$

and

$$
\begin{align*}
\int_{\Omega} h_{2} & \leq \limsup _{n \rightarrow \infty}\left[\int_{E} g\left(u_{n}\right)+\int_{F} g\left(u_{1 n}\right)\right]+\int_{F} \gamma  \tag{3.4}\\
& \leq \int_{E} g^{-\infty} d x+\int_{F} g\left(\tilde{u}_{1}\right) d x+\int_{F} \gamma
\end{align*}
$$

by Fatou's lemma for the integral over $E$ and by convergence in $L^{1}$ for the integral over $F$.
Now choose $\eta>0$ such that

$$
\begin{equation*}
\int_{\Omega} g^{-\infty} d x+\eta<\int_{\Omega} h_{2} d x \tag{3.5}
\end{equation*}
$$

We may choose $\epsilon>0$ so small that, since $|F|<\epsilon$,

$$
\left|\int_{F} g^{-\infty} d x\right|<\frac{\eta}{3}, \quad\left|\int_{F} g\left(\tilde{u}_{1}\right) d x\right|<\frac{\eta}{3}, \quad\left|\int_{F} \gamma\right|<\frac{\eta}{3} .
$$

For such as $\epsilon$ we have from (3.4) and (3.5)

$$
\begin{equation*}
\int_{\Omega} h_{2} \leq \int_{\Omega} g^{-\infty} d x-\int_{F} g^{-\infty} d x+\int_{F} g\left(\tilde{u}_{1}\right) d x+\int_{F} \gamma \leq \int_{\Omega} g^{-\infty} d x+\eta<\int_{\Omega} h_{2} . \tag{3.6}
\end{equation*}
$$

Therefore we cannot have $\alpha_{n} \rightarrow+\infty$ or $\alpha_{n} \rightarrow-\infty$ and this, combined with $\left|u_{1}\right|_{p} \leq m_{3}$ shows that if $((u, v), \lambda)$ is a solution of (3.2) then $|u|_{p}=\left|u_{1}+\alpha\right|_{p} \leq m_{3}+C_{3}$ for some constant $C_{3}$. Similarly, We can obtain $|v|_{p}=\left|v_{1}+\alpha\right|_{p} \leq m_{4}+C_{4}$ for some constant $C_{4}$.

This verifies condition (i) above for any ball $G$ in $L^{1} \times L^{1}$, centered at the origin and with radius larger than $\rho_{1}=\max \left\{m_{3}+C_{3}, m_{4}+C_{4}\right\}$.

The verification of condition (ii) is now straightforward. Both the range of $Q$ and the kernel of $L$ may be identified with $\mathbb{R}$, so that the isomorphism $J$ in (ii) we may take to be the identity on $\mathbb{R}$. Now for $\alpha, \beta \in \mathbb{R}$,

$$
Q N_{1} \beta=|\Omega|^{-1} \int_{\Omega}\left[f(\beta)-h_{1}(x)\right] d x, \quad Q N_{2} \alpha=|\Omega|^{-1} \int_{\Omega}\left[g(\alpha)-h_{2}(x)\right] d x
$$

We may now make two simple applications of Fatou's lemma using ( Cl ) to show, using ( C 4 ), that there exists an $r>0$ such that

$$
\begin{array}{ll}
Q N_{1}(\beta)>0, & Q N_{1}(-\beta)<0, \\
\text { for } \alpha>r \\
Q N_{2}(\alpha)>0, & Q N_{2}(-\alpha)<0,
\end{array} \quad \text { for } \beta>r . ~ \$
$$

Thus for $\bar{r} \geq r \max \{1,|\Omega|\}$,

$$
d\left(Q N_{j},[-\bar{r}, \bar{r}] \cap \operatorname{ker} L, 0\right) \neq 0, \quad j=1,2 .
$$

By the product formula of Brouwer degree, we obtain

$$
d\left(\Gamma,[-\bar{r}, \bar{r}]^{2} \cap(\operatorname{ker} L \times \operatorname{ker} L), 0\right) \neq 0
$$

Now let $\rho:=\max \left\{\rho_{1}, r \cdot \max \{1,|\Omega|\}\right\}$. Then we have that both (i) and (ii) are satisfied on $\left[B_{\rho}\right]^{2}$, where $B_{\rho}$ is the ball in $L^{p}$ with radius $\rho$ centered at the origin. Thus (2.1) has a solution $(u, v) \in D(L) \times D(L)$ with

$$
|u|_{p} \leq \rho, \quad|v|_{p} \leq \rho,
$$

and $(u, v) \in W^{1, p} \times W^{1, p}$ and is a weak solution of (1.1). This completes the proof of Theorem 1.1.

## Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions.

## References

[1] R. A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York, 1975. MR0450957; Zbl 0314.46030
[2] D. Arcoya, S. Villegas, Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at $-\infty$ and superlinear at $+\infty$, Math. Z. 219(1995), No. 4, 499513. https://doi.org/10.1007/BF02572378; MR1343659; Zbl 0834.35048
[3] M. Cuesta, C. De Coster, Superlinear critical resonant problems with small forcing term, Calc. Var. Partial Differential Equations 54(2015), No. 1, 349-363. https://doi.org/ 10.1007/s00526-014-0788-8; MR3385163; Zbl 1323.35022
[4] F. M. Ferreira, F. O. de Paiva, On a resonant and superlinear elliptic system, Discrete Contin. Dyn. Syst. 39(2019), No. 10, 5775-5784. https://doi. org/10.3934/dcds.2019253; MR4027011; Zbl 1425.35036
[5] R. E. Gaines, J. L. Mawhin, Coincidence degree, and nonlinear differential equations, Lecture Notes in Mathematics, Vol. 568, Springer-Verlag, Berlin-New York, 1977. MR0637067; Zbl 0339.47031
[6] R. Kannan, R. Ortega, Superlinear elliptic boundary value problems, Czech. Math. J. 37(1987), No. 3, 386-399. MR904766; Zbl 0668.35032
[7] R. Kannan, R. Ortega, Landesman-Lazer conditions for problems with one-side unbounded nonlinearities, Nonlinear. Anal. 9(1985), No. 2, 1313-1317. https://doi .org/10. 1016/0362-546X (85) 90090-2; MR820641; Zbl 0624.35033
[8] S. Kyritsi, N. S. Papageorgiou, Multiple solutions for superlinear Dirichlet problems with an indefinite potential, Ann. Math. Pura Appl. (4) 192(2013), No. 2, 297-315. https: //doi.org/10.1007/s10231-011-0224-z; MR3035141; Zbl 1268.35061
[9] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12(1972), 610-636. https://doi.org/10.1016/0022-0396(72)90028-9; MR328703; Zbl 0244.47049
[10] D. Motreanu, V. Motreanu, N. S. Papageorgiou, Multiple solutions for Dirichlet problems which are superlinear at $+\infty$ and sublinear at $-\infty$, Commun. Appl. Anal. 13(2009), No. 3, 341-358. MR2562309; Zbl 1181.35053
[11] F. O. de Paiva, A. E. Presoto, Semilinear elliptic problems with asymmetric nonlinearities, J. Math. Anal. Appl. 409(2014), No. 1, 254-262. https://doi. org/10.1016/j. jmaa. 2013.06.042; MR3095036; Zbl 1310.35122
[12] F. O. de Paiva, W. Rosa, Neumann problems with resonance in the first eigenvalue, Math. Nachr. 290(2017), No. 14-15, 2198-2206. https://doi.org/10.1002/mana.201600139; MR3711779; Zbl 1377.35071
[13] N. S. Papageorgiou, V. D. Rădulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Contemp. Math. 595(2013), 293-315. https://doi.org/10.1090/conm/595/11801; MR3156380; Zbl 1301.35052
[14] K. Perera, Existence and multiplicity results for a Sturm-Liouville equation asymptotically linear at $-\infty$ and superlinear at $+\infty$, Nonlinear Anal. 39(2000), No. 6, 669-684. https://doi.org/10.1016/S0362-546X(98)00228-4; MR1733121; Zbl 0942.34021
[15] L. Recova, A. Rumbos, An asymmetric superlinear elliptic problem at resonance, Nonlinear Anal. 112(2015), 181-198. https://doi.org/10.1016/j.na.2014.09.019; MR3274292; Zbl 1303.35013
[16] J. R. Ward Jr., Perturbations with some superlinear growth for a class of second order elliptic boundary value problems, Nonlinear Anal. 6(1982), No. 4, 367-374. https://doi . org/10.1016/0362-546X (82) 90022-0; MR654812; Zbl 0533.35033


[^0]:    ${ }^{\boxtimes}$ Corresponding author. Email: 15193193403@163.com

