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1 Introduction

Let N, Z and C be the sets of natural, integer and complex numbers, respectively, and
N0 = N ∪ {0}. Difference equations and systems have been studied for a long time. Some
information on old results can be found in the classical books such as [4, 8, 9, 15–18]. Each
of the books contain a part devoted to solvability. Solvability seems the first topic which has
been seriously studied. The following papers and books contain some of the most important
classical results on solvability [3,5–7,12–14]. Quite old presentations of these and other old re-
sults can be found in [10, 11]. Many difference equations and systems have appeared in some
applications. Some classical applications can be found in [8, 9, 17, 29, 44]. A great majority of
the equations and systems is very difficult or impossible to solve, because of which it is of
some interest to look for their invariants, which might also help in studying of long-term be-
haviour of their solutions as it was the case, for example, in [20–22,25,30,31,35]. The following
papers: [26, 28, 32–34, 36–43] contain some recent results on solvability.

During the ’90s Papaschinopoulos and Schinas started studying systems which frequently
possessed some kind of symmetry (see, e.g., [19–25, 27, 30, 31]), which was one of the moti-
vations for our investigation of solvability of such systems (see, e.g., [32–34, 36–39, 42, 43]).
Product-type difference equations and systems are closely related to linear ones, some of
which are solvable. This fact motivated some recent investigations of their solvability (see,
e.g., [32]).
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The following class of systems (the hyperbolic-cotangent-type class)

xn+1 =
pn−kqn−l + a
pn−k + qn−l

, yn+1 =
rn−ksn−l + a
rn−k + sn−l

, n ∈N0, (1.1)

with complex initial values, where k, l ∈N0, a ∈ C, and pn, qn, rn, sn are xn or yn for all n, has
been studied considerably during the last several years. The corresponding scalar equation
has been studied for the last two decades (see [28, 40] and the related references therein). The
fact that the equation can be easily reduced to the case a = 1, which has the form of the
hyperbolic-cotangent sum formula, has suggested the name of the class of systems.

System (1.1) is closely related to some product-type ones. Depending on the characteristic
polynomial associated with a linear difference equation appearing during finding closed-form
formulas for solutions to such a system, some of them are theoretically, but some are prac-
tically solvable, i.e., solvable in closed form, due to the Abel theorem [1] (each linear homo-
geneous difference equation with constant coefficients of order less than or equal to four is
practically solvable, unlike the case when the order is bigger than four when in some cases the
equation is only theoretically solvable). This fact suggests that for practical solvability delays
k and l have to take small values. In a series of papers we have studied solvability of the
systems of the form in (1.1) with small k and l. In [34, 42, 43] was investigated the case k = 0
and l = 1, in [33] the case k = 1 and l = 2, in [37] the case k = 0 and l = 2, in [38] the case
k = 2 and l = 3, in [39] the case k = 0 and l = 3, in [36] the case k = l ∈ N0. The case k = 1
and l = 3 reduces to the case k = 0 and l = 1, since in the case the system is with interlacing
indices (for the notion and some basic fact see, e.g., [41]). In these papers was shown that the
corresponding systems are practically solvable, which in some cases is a bit surprising result,
e.g., when k = 2 and l = 3. Namely, it turns out that all the associated polynomials appearing
during finding solutions to the corresponding systems are solvable by radicals.

It is a natural problem to study solvability of the corresponding thee-dimensional sys-
tems of difference equations. Hence, in this paper we study solvability of some of the three-
dimensional systems of difference equations of the form

xn+1 =
pnqn + a
pn + qn

, yn+1 =
rnsn + a
rn + sn

, zn+1 =
tngn + a
tn + gn

, n ∈N0, (1.2)

where a, p0, q0, r0, s0, t0, g0 ∈ C, and pn, qn, rn, sn, tn, gn are one of the sequences xn, yn, zn.

2 Systems studied in the paper

In this section we transform the system (1.2) into another and give a list of its special cases
which are studied in the paper. Before we do this we first note that if a = 0, then the system
(1.2) is essentially linear with constant coefficients (see [34]; special cases frequently appear in
problem books [2]), so the case is not much interesting. Hence, the case will not be treated
here and we may assume that a 6= 0.

First note that from (1.2) we easily obtain

xn+1 ±
√

a =
(pn ±

√
a)(qn ±

√
a)

pn + qn
,

yn+1 ±
√

a =
(rn ±

√
a)(sn ±

√
a)

rn + sn
,

zn+1 ±
√

a =
(tn ±

√
a)(gn ±

√
a)

tn + gn
,
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for n ∈N0, and consequently

xn+1 +
√

a
xn+1 −

√
a
=

pn +
√

a
pn −

√
a
· qn +

√
a

qn −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

rn +
√

a
rn −

√
a
· sn +

√
a

sn −
√

a
, (2.1)

zn+1 +
√

a
zn+1 −

√
a
=

tn +
√

a
tn −
√

a
· gn +

√
a

gn −
√

a
,

for n ∈N0.
Since each of the sequences pn, qn, rn, sn, tn, gn is one of the sequences xn, yn, zn, there are

a lot of systems of difference equations of the form in (2.1). They all are not different, since
some of them are equivalent to each other.

By using the change of variables

un =
xn +

√
a

xn −
√

a
, vn =

yn +
√

a
yn −

√
a

, wn =
zn +

√
a

zn −
√

a
, n ∈N0, (2.2)

the systems of difference equations in (2.1) are transformed to some product type systems of
difference equations. Bearing in mind that the product type systems of difference equations
are theoretically solvable and that some of them are practically solvable, it is a natural problem
to study practical solvability of (1.2).

Note that from (2.2) we have the following relations

xn =
√

a
un + 1
un − 1

, yn =
√

a
vn + 1
vn − 1

, zn =
√

a
wn + 1
wn − 1

, n ∈N0, (2.3)

which will be used in the proofs of all the theorems in the paper.
Our aim here is to show practical solvability of the following 36 systems of difference

equations by presenting closed-form formulas for their well-defined solutions.

System 1. Case pn = qn = rn = sn = tn = gn = xn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.4)

System 2. Case pn = qn = rn = sn = tn = xn, gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.5)

System 3. Case pn = qn = rn = sn = xn, tn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.6)
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System 4. pn = qn = rn = sn = tn = xn, gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.7)

System 5. Case pn = qn = rn = sn = xn, tn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.8)

System 6. Case pn = qn = rn = sn = xn, tn = yn, gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.9)

System 7. Case pn = qn = rn = tn = gn = xn, sn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.10)

System 8. Case pn = qn = rn = tn = xn, sn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.11)

System 9. Case pn = qn = rn = xn, sn = tn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.12)
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System 10. Case pn = qn = rn = tn = xn, sn = yn, gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.13)

System 11. Case pn = qn = rn = xn, sn = yn, tn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.14)

System 12. Case pn = qn = rn = xn, sn = tn = yn, gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.15)

System 13. Case pn = qn = tn = gn = xn, rn = sn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.16)

System 14. Case pn = qn = tn = xn, rn = sn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.17)

System 15. Case pn = qn = xn, rn = sn = tn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.18)
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System 16. Case pn = qn = tn = xn, rn = sn = yn, gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.19)

System 17. Case pn = qn = xn, rn = sn = yn, tn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.20)

System 18. Case pn = qn = xn, rn = sn = tn = yn, gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.21)

System 19. Case pn = qn = rn = tn = gn = xn, sn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.22)

System 20. Case pn = qn = rn = tn = xn, sn = zn, gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.23)

System 21. Case pn = qn = rn = xn, sn = zn, tn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.24)
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System 22. Case pn = qn = rn = tn = xn, sn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.25)

System 23. Case pn = qn = rn = xn, sn = tn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.26)

System 24. Case pn = qn = rn = xn, sn = gn = zn, tn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.27)

System 25. Case pn = qn = tn = gn = xn, rn = sn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.28)

System 26. Case pn = qn = tn = xn, rn = sn = zn, gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.29)

System 27. Case pn = qn = xn, rn = sn = zn, tn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.30)
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System 28. Case pn = qn = tn = xn, rn = sn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.31)

System 29. Case pn = qn = xn, rn = sn = tn = gn = zn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.32)

System 30. Case pn = qn = xn, rn = sn = gn = zn, tn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
zn +

√
a

zn −
√

a

)2

,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.33)

System 31. Case pn = qn = tn = gn = xn, sn = zn, rn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

.

(2.34)

System 32. Case pn = qn = tn = xn, sn = zn, rn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
yn +

√
a

yn −
√

a

)
.

(2.35)

System 33. Case pn = qn = xn, sn = zn, rn = tn = gn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)2

.

(2.36)
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System 34. Case pn = qn = tn = xn, sn = gn = zn, rn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.37)

System 35. Case pn = qn = xn, sn = tn = gn = zn, rn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
zn +

√
a

zn −
√

a

)2

.

(2.38)

System 36. Case pn = qn = xn, sn = gn = zn, rn = tn = yn.

xn+1 +
√

a
xn+1 −

√
a
=

(
xn +

√
a

xn −
√

a

)2

,
yn+1 +

√
a

yn+1 −
√

a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
,

zn+1 +
√

a
zn+1 −

√
a
=

(
yn +

√
a

yn −
√

a

)(
zn +

√
a

zn −
√

a

)
.

(2.39)

3 Main results

Here we analyse solvability of each of the systems (2.4)–(2.39), and as a consequence of the
analysis, for each of them, we state the corresponding result on its solvability. For each system
we also use (2.3).

System 1. By using the change of variables (2.2) system (2.4) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = u2
n, n ∈N0. (3.1)

From the first equation in (3.1) we easily obtain

un = u2n

0 , n ∈N0. (3.2)

By using (3.2) in the second and third equation in (3.1) we get

vn = u2n

0 , wn = u2n

0 , n ∈N. (3.3)

From (2.3), (3.2) and (3.3) we have that the following theorem holds.
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Theorem 3.1. If a 6= 0, then the general solution to system (2.4) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N.

Remark 3.2. Note that in the formulas in Theorem 3.1 do not participate the initial values y0

and z0, which is caused by the form of system (2.4). The situation that some of the initial
values x0, y0, z0, do not participate in the corresponding formulas appears also in several
other systems considered in this paper. Such systems seem less interesting than the other
ones. Nevertheless, we will also consider them.

System 2. By using the change of variables (2.2) system (2.5) becomes

un+1 = u2
n, vn+1 = u2

n, wn+1 = unvn, n ∈N0. (3.4)

We have that (3.2) and the first equality in (3.3) hold. By using these relations in the third
equation in (3.4) we have

wn = un−1vn−1 = u2n−1

0 u2n−1

0 = u2n

0 , n ≥ 2. (3.5)

From (2.3), (3.2), (3.3) and (3.5) we have that the following theorem holds.

Theorem 3.3. If a 6= 0, then the general solution to system (2.5) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ≥ 2.

Remark 3.4. Note that the solutions to systems (2.4) and (2.5) are not the same. Namely, the
formula for zn holds for n ∈ N, that is, n ≥ 2, respectively, whereas the values for z1 can be
different.

System 3. By using the change of variables (2.2) system (2.6) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = v2
n, n ∈N0. (3.6)
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We have that (3.2) and the first equality in (3.3) hold. By using (3.3) in the third equation
in (3.6) we have

wn = v2
n−1 = (u2n−1

0 )2 = u2n

0 , n ≥ 2. (3.7)

From (2.3), (3.2), (3.3) and (3.7) we have that the following theorem holds.

Theorem 3.5. If a 6= 0, then the general solution to system (2.6) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ≥ 2.

Remark 3.6. Note that the solutions to systems (2.5) and (2.6) are not the same. Namely, the
corresponding values for z1 can be different.

System 4. By using the change of variables (2.2) system (2.7) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = unwn, n ∈N0. (3.8)

We have that (3.2) and the first equality in (3.3) hold. By using (3.2) in the third equation
in (3.8) we have

wn = un−1wn−1 = u2n−1

0 wn−1 = w0

n−1

∏
j=0

u2j

0 = w0u
∑n−1

j=0 2j

0 = w0u2n−1
0 , n ∈N0. (3.9)

From (2.3), (3.2), (3.3) and (3.9) we have that the following theorem holds.

Theorem 3.7. If a 6= 0, then the general solution to system (2.7) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 5. By using the change of variables (2.2) system (2.8) becomes

un+1 = u2
n, vn+1 = u2

n, wn+1 = w2
n, n ∈N0. (3.10)
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We have that (3.2) and the first equality in (3.3) hold, whereas from the third equation in
(3.10) we have

wn = w2n

0 , n ∈N0. (3.11)

From (2.3), (3.2), (3.3) and (3.11) we have that the following theorem holds.

Theorem 3.8. If a 6= 0, then the general solution to system (2.8) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0.

System 6. By using the change of variables (2.2) system (2.9) is transformed to

un+1 = u2
n, vn+1 = u2

n, wn+1 = vnwn, n ∈N0. (3.12)

We have that (3.2) and the first equality in (3.3) hold. By using (3.3) in the third equation
in (3.12) we have

wn = vn−1wn−1 = u2n−1

0 wn−1 = w1

n−1

∏
j=1

u2j

0 = v0w0u
∑n−1

j=1 2j

0 = v0w0u2n−2
0 , (3.13)

for n ∈N.
From (2.3), (3.2), (3.3) and (3.13) we have that the following theorem holds.

Theorem 3.9. If a 6= 0, then the general solution to system (2.9) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−2 ( y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−2 ( y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)
− 1

, n ∈N.

System 7. By using the change of variables (2.2) system (2.10) becomes

un+1 = u2
n, vn+1 = unvn, wn+1 = u2

n, n ∈N0. (3.14)
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We have that (3.2) and the second equality in (3.3) hold. By using (3.2) in the second
equation in (3.14) we have

vn = un−1vn−1 = u2n−1

0 vn−1 = v0

n−1

∏
j=0

u2j

0 = v0u
∑n−1

j=0 2j

0 = v0u2n−1
0 , n ∈N0. (3.15)

From (2.3), (3.2), (3.3) and (3.15) we have that the following theorem holds.

Theorem 3.10. If a 6= 0, then the general solution to system (2.10) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N.

System 8. By using the change of variables (2.2) system (2.11) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = unvn, n ∈N0. (3.16)

We have that (3.2) and (3.15) hold. From this and since vn = wn, n ∈N, we have

wn = v0u2n−1
0 , n ∈N. (3.17)

From (2.3), (3.2), (3.15) and (3.17) we have that the following theorem holds.

Theorem 3.11. If a 6= 0, then the general solution to system (2.11) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N.

System 9. By using the change of variables (2.2) system (2.12) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = v2

n, n ∈N0. (3.18)

We have that (3.2) and (3.15) hold. From this and the third equation in (3.18), we have

wn = v2
n−1 = v2

0u2n−2
0 , n ∈N. (3.19)

From (2.3), (3.2), (3.15) and (3.19) we have that the following theorem holds.
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Theorem 3.12. If a 6= 0, then the general solution to system (2.12) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−2 ( y0+
√

a
y0−
√

a

)2
+ 1(

x0+
√

a
x0−
√

a

)2n−2 ( y0+
√

a
y0−
√

a

)2
− 1

, n ∈N.

System 10. By using the change of variables (2.2) system (2.13) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = unwn, n ∈N0. (3.20)

We have that (3.2) and (3.15) hold. From this and the third equation in (3.20), we have

wn = un−1wn−1 = w0

n−1

∏
j=0

u2j

0 = w0u
∑n−1

j=0 2j

0 = w0u2n−1
0 , n ∈N0. (3.21)

From (2.3), (3.2), (3.15) and (3.21) we have that the following theorem holds.

Theorem 3.13. If a 6= 0, then the general solution to system (2.13) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 11. By using the change of variables (2.2) system (2.14) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = w2

n, n ∈N0. (3.22)

We have that (3.2), (3.11), (3.15) hold, form which along with (2.3) it follows that the
following theorem holds.
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Theorem 3.14. If a 6= 0, then the general solution to system (2.14) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

zn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0.

System 12. By using the change of variables (2.2) system (2.15) is transformed to

un+1 = u2
n, vn+1 = unvn, wn+1 = vnwn, n ∈N0. (3.23)

We have that (3.2) and (3.15) hold. From this and the third equation in (3.23), we have

wn = vn−1wn−1 = w0

n−1

∏
j=0

vj = w0

n−1

∏
j=0

v0u2j−1
0

= w0vn
0 u

∑n−1
j=0 (2

j−1)
0 = w0vn

0 u2n−n−1
0 , n ∈N0. (3.24)

From (2.3), (3.2), (3.15) and (3.24) we have that the following theorem holds.

Theorem 3.15. If a 6= 0, then the general solution to system (2.15) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−n−1 ( y0+
√

a
y0−
√

a

)n ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−n−1 ( y0+
√

a
y0−
√

a

)n ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 13. By using the change of variables (2.2) system (2.16) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = u2
n, n ∈N0. (3.25)

We have that (3.2) and the second equality in (3.3) hold, whereas from the second equation
in (3.25) we have

vn = v2n

0 , n ∈N0. (3.26)

From (2.3), (3.2), (3.3) and (3.26) we have that the following theorem holds.
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Theorem 3.16. If a 6= 0, then the general solution to system (2.16) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N.

System 14. By using the change of variables (2.2) system (2.17) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = unvn, n ∈N0. (3.27)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.27) we have

wn = un−1vn−1 = u2n−1

0 v2n−1

0 , n ∈N. (3.28)

From (2.3), (3.2), (3.26) and (3.28) we have that the following theorem holds.

Theorem 3.17. If a 6= 0, then the general solution to system (2.17) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 (
y0+
√

a
y0−
√

a

)2n−1

+ 1(
x0+
√

a
x0−
√

a

)2n−1 (
y0+
√

a
y0−
√

a

)2n−1

− 1
, n ∈N.

System 15. By using the change of variables (2.2) system (2.18) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = v2
n, n ∈N0. (3.29)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.29) we have

wn = v2
n−1 = v2n

0 , n ∈N. (3.30)

From (2.3), (3.2), (3.26) and (3.30) we have that the following theorem holds.
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Theorem 3.18. If a 6= 0, then the general solution to system (2.18) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

zn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N.

System 16. By using the change of variables (2.2) system (2.19) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = unwn, n ∈N0. (3.31)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.31) we have

wn = un−1wn−1 = w0

n−1

∏
j=0

uj = w0

n−1

∏
j=0

u2j

0 = w0u2n−1
0 , n ∈N0. (3.32)

From (2.3), (3.2), (3.26) and (3.32) we have that the following theorem holds.

Theorem 3.19. If a 6= 0, then the general solution to system (2.19) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 17. By using the change of variables (2.2) system (2.20) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = w2
n, n ∈N0. (3.33)

We have that (3.2), (3.11) and (3.26) hold, from which the following theorem follows.
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Theorem 3.20. If a 6= 0, then the general solution to system (2.20) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

zn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0.

System 18. By using the change of variables (2.2) system (2.21) is transformed to

un+1 = u2
n, vn+1 = v2

n, wn+1 = vnwn, n ∈N0. (3.34)

We have that (3.2) and (3.26) hold, whereas from the third equation in (3.34) we have

wn = vn−1wn−1 = w0

n−1

∏
j=0

v2j

0 = w0v
∑n−1

j=0 2j

0 = w0v2n−1
0 , n ∈N0. (3.35)

From (2.3), (3.2), (3.26) and (3.35) we have that the following theorem holds.

Theorem 3.21. If a 6= 0, then the general solution to system (2.21) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n

+ 1(
y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

zn =
√

a

(
y0+
√

a
y0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

y0+
√

a
y0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 19. By using the change of variables (2.2) system (2.22) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = u2

n, n ∈N0. (3.36)

We have that (3.2) and the second relation in (3.3) hold, whereas from the second equation
in (3.36) we have

vn = un−1wn−1 = u2n−1

0 u2n−1

0 = u2n

0 , n ≥ 2. (3.37)

From (2.3), (3.2), (3.3) and (3.37) we have that the following theorem holds.
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Theorem 3.22. If a 6= 0, then the general solution to system (2.22) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ≥ 2,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N.

System 20. By using the change of variables (2.2) system (2.23) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = unvn, n ∈N0. (3.38)

We have that (3.2) holds. From the second and third relation in (3.38) we have

vn = un−1wn−1 = un−1un−2vn−2 = u3·2n−2

0 vn−2, n ≥ 2,

from which we obtain

v2n = u3·22n−2

0 v2n−2 = v0

n

∏
j=1

u3·22j−2

0 = v0u
3 ∑n

j=1 4j−1

0 = v0u4n−1
0 , n ∈N0, (3.39)

and

v2n+1 = u3·22n−1

0 v2n−1 = v1

n

∏
j=1

u3·22j−1

0 = u0w0u
6 ∑n

j=1 4j−1

0 = w0u22n+1−1
0 , (3.40)

for n ∈N0.

Further, by (3.2), (3.39) and (3.40), we have

w2n = u2n−1v2n−1 = u22n−1

0 w0u22n−1−1
0 = w0u4n−1

0 , n ∈N0, (3.41)

and

w2n+1 = u2nv2n = u22n

0 v0u4n−1
0 = v0u22n+1−1

0 , n ∈N0. (3.42)

From (2.3), (3.2), (3.39)–(3.42) we have that the following theorem holds.
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Theorem 3.23. If a 6= 0, then the general solution to system (2.23) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

y2n =
√

a

(
x0+
√

a
x0−
√

a

)22n−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)22n−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0,

y2n+1 =
√

a

(
x0+
√

a
x0−
√

a

)22n+1−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)22n+1−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0,

z2n =
√

a

(
x0+
√

a
x0−
√

a

)22n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)22n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0,

z2n+1 =
√

a

(
x0+
√

a
x0−
√

a

)22n+1−1 ( y0+
√

a
y0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)22n+1−1 ( y0+
√

a
y0−
√

a

)
− 1

, n ∈N0.

System 21. By using the change of variables (2.2) system (2.24) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = v2

n, n ∈N0. (3.43)

We have that (3.2) holds. From the second and third relation in (3.43) we have

vn = un−1wn−1 = u2n−1

0 v2
n−2, n ≥ 2, (3.44)

from which we obtain

v2n = u22n−1

0 v2
2n−2 = u22n−1

0 (u22n−3

0 v2
2n−4)

2 = u22n−1+22n−2

0 v22

2n−4

= u22n−1+22n−2

0 (u22n−5

0 v2
2n−6)

22
= u22n−1+22n−2+22n−3

0 v23

2n−6.

Assume that we have proved

v2n = u22n−1+22n−2+···+2n+1+2n

0 v2n

0 = u2n(2n−1)
0 v2n

0 , (3.45)

for an n ∈N.
Then by using (3.44) and (3.45) we have

v2n+2 = u22n+1

0 v2
2n = u22n+1

0 (u2n(2n−1)
0 v2n

0 )2 = u2n+1(2n+1−1)
0 v2n+1

0 ,

from which along with the method of induction it follows that formula (3.45) holds for every
n ∈N. In fact, a simple calculation shows that it also holds for n = 0.

Further, we have

v2n+1 = u22n

0 v2
2n−1 = u22n

0 (u22n−2

0 v2
2n−3)

2 = u22n+22n−1

0 v22

2n−3, n ≥ 2.
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Assume that we have proved

v2n+1 = u22n+22n−1+···+2n+2+2n+1

0 v2n

1 = u2n+1(2n−1)
0 (u0w0)

2n

= u2n(2n+1−1)
0 w2n

0 , (3.46)

for an n ∈N0.
Then by using (3.44) and (3.46) we have

v2n+3 = u22n+2

0 v2
2n+1 = u22n+2

0 (u2n(2n+1−1)
0 w2n

0 )2 = u2n+1(2n+2−1)
0 w2n+1

0 ,

from which along with the method of induction it follows that formula (3.46) holds for every
n ∈N0.

By using (3.45) and (3.46) into the third equation in (3.43) we get

w2n = v2
2n−1 = (u2n−1(2n−1)

0 w2n−1

0 )2 = u2n(2n−1)
0 w2n

0 , n ∈N0, (3.47)

and
w2n+1 = v2

2n = (u2n(2n−1)
0 v2n

0 )2 = u2n+1(2n−1)
0 v2n+1

0 , n ∈N0. (3.48)

From (2.3), (3.2), (3.45)–(3.48) we have that the following theorem holds.

Theorem 3.24. If a 6= 0, then the general solution to system (2.24) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

y2n =
√

a

(
x0+
√

a
x0−
√

a

)2n(2n−1) ( y0+
√

a
y0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n(2n−1) ( y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

y2n+1 =
√

a

(
x0+
√

a
x0−
√

a

)2n(2n+1−1) ( z0+
√

a
z0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n(2n+1−1) ( z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0,

z2n =
√

a

(
x0+
√

a
x0−
√

a

)2n(2n−1) ( z0+
√

a
z0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n(2n−1) ( z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0,

z2n+1 =
√

a

(
x0+
√

a
x0−
√

a

)2n+1(2n−1) ( y0+
√

a
y0−
√

a

)2n+1

+ 1(
x0+
√

a
x0−
√

a

)2n+1(2n−1) ( y0+
√

a
y0−
√

a

)2n+1

− 1
, n ∈N0.

System 22. By using the change of variables (2.2) system (2.25) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = unwn, n ∈N0. (3.49)

We have that (3.2) holds and that vn = wn, n ∈N. Hence

vn = un−1wn−1 = u2n−1

0 vn−1 = v1

n−1

∏
j=1

u2j

0 = w0u
∑n−1

j=0 2j

0 = w0u2n−1
0 (3.50)
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for n ∈N, and consequently
wn = w0u2n−1

0 , n ∈N. (3.51)

In fact, a simple calculation shows that (3.51) also holds for n = 0.
From (2.3), (3.2), (3.50) and (3.51) we have that the following theorem holds.

Theorem 3.25. If a 6= 0, then the general solution to system (2.25) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 23. By using the change of variables (2.2) system (2.26) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = w2

n, n ∈N0. (3.52)

We have that (3.2) and (3.11) hold, from which it follows that

vn = un−1wn−1 = u2n−1

0 w2n−1

0 = (u0w0)
2n−1

, n ∈N. (3.53)

From (2.3), (3.2), (3.11) and (3.53) we have that the following theorem holds.

Theorem 3.26. If a 6= 0, then the general solution to system (2.26) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 (
z0+
√

a
z0−
√

a

)2n−1

+ 1(
x0+
√

a
x0−
√

a

)2n−1 (
z0+
√

a
z0−
√

a

)2n−1

− 1
, n ∈N,

zn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0.

System 24. By using the change of variables (2.2) system (2.27) is transformed to

un+1 = u2
n, vn+1 = unwn, wn+1 = vnwn, n ∈N0. (3.54)

We have that (3.2) holds. From this, the second and third equation in (3.54) we get

wn = vn−1wn−1 = wn−1wn−2un−2 = wn−1wn−2u2n−2

0 , n ≥ 2.
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By using the change of variables

wn = ζnuαn
0 , n ∈N0, (3.55)

the last equation becomes

ζn = ζn−1ζn−2uαn−1+αn−2+2n−2−αn
0 , n ≥ 2. (3.56)

Since w0 = w0 and w1 = v0w0, and they do not contain u0, we may take

α0 = 0 and α1 = 0. (3.57)

Let (αn)n∈N0 be the solution to the difference equation

αn = αn−1 + αn−2 + 2n−2, n ≥ 2, (3.58)

satisfying the initial conditions in (3.57).
We find a particular solution to equation (3.58) in the form α

p
n = c2n, n ∈ N0, where c is a

constant ([17]). By employing it in (3.58) we have that it must be

c2n = c(2n−1 + 2n−2) + 2n−2, n ∈N

from which it follows that c = 1. Hence, the general solution to (3.58) has the form

αn = c1λn
1 + c2λn

2 + 2n, n ∈N, (3.59)

where λ1 and λ2 are the roots of the polynomial P2(λ) = λ2 − λ− 1.
From (3.57) and (3.59) we have

c1 + c2 = −1 and c1λ1 + c2λ2 = −2

from which it follows that

c1 =
1

λ2 − λ1

∣∣∣∣ −1 1
−2 λ2

∣∣∣∣ = 2− λ2

λ2 − λ1
and c2 =

1
λ2 − λ1

∣∣∣∣ 1 −1
λ1 −2

∣∣∣∣ = λ1 − 2
λ2 − λ1

,

from which along with (3.59) we have

αn =
(2− λ2)λn

1 + (λ1 − 2)λn
2

λ2 − λ1
+ 2n, n ∈N0. (3.60)

For such a chosen sequence αn, we have that (ζn)n∈N0 satisfies the equation

ζn = ζn−1ζn−2, n ≥ 2, (3.61)

with the initial conditions
ζ0 = w0 and ζ1 = v0w0. (3.62)

Let a1 = b1 = 1. Then we have

ζn = ζa1
n−1ζb1

n−2 = (ζn−2ζn−3)
a1 ζb1

n−2 = ζa1+b1
n−2 ζa1

n−3 = ζa2
n−2ζb2

n−3,

where a2 = a1 + b1 and b2 = a1. By using a simple inductive argument we obtain

ζn = ζak
n−kζbk

n−k−1
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for 1 ≤ k ≤ n− 1, and
ak = ak−1 + bk−1, bk = ak−1. (3.63)

The relations in (3.63) hold for every k ∈ Z.
Hence for k = n− 1 is obtained

ζn = ζ
an−1
1 ζ

bn−1
0 = ζ

an−1
1 ζ

an−2
0 , n ∈N, (3.64)

and also
an = an−1 + an−2, n ≥ 3.

From this and since a1 = 1 and a2 = 2, we have an = fn+1 and bn = fn, where fn is the
Fibonacci sequence ([44]).

From (3.62), (3.63) and (3.64) we have

ζn = (v0w0)
fn w fn−1

0 = v fn
0 w fn+ fn−1

0 = v fn
0 w fn+1

0 ,

from which together with (3.55) we obtain

wn = v fn
0 w fn+1

0 uαn
0 , n ∈N0. (3.65)

By using (3.2) and (3.65) in the second equation in (3.54) we get

vn = un−1wn−1 = uαn−1+2n−1

0 v fn−1
0 w fn

0 , n ∈N. (3.66)

A simple calculation shows that (3.66) holds also for n = 0.
From (2.3), (3.2), (3.65), (3.66) we have that the following theorem holds.

Theorem 3.27. If a 6= 0, then the general solution to system (2.27) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)αn−1+2n−1 (
y0+
√

a
y0−
√

a

) fn−1
(

z0+
√

a
z0−
√

a

) fn
+ 1(

x0+
√

a
x0−
√

a

)αn−1+2n−1 (
y0+
√

a
y0−
√

a

) fn−1
(

z0+
√

a
z0−
√

a

) fn
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)αn
(

y0+
√

a
y0−
√

a

) fn
(

z0+
√

a
z0−
√

a

) fn+1
+ 1(

x0+
√

a
x0−
√

a

)αn
(

y0+
√

a
y0−
√

a

) fn
(

z0+
√

a
z0−
√

a

) fn+1
− 1

, n ∈N0,

where the sequence (αn)n∈N0 is given by (3.60).

System 25. By using the change of variables (2.2) system (2.28) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = u2
n, n ∈N0. (3.67)

We have that (3.2) and the second relation in (3.3) hold. Hence

vn = w2
n−1 = u2n

0 , n ≥ 2. (3.68)

From (2.3), (3.2), (3.3), (3.68) we have that the following theorem holds.
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Theorem 3.28. If a 6= 0, then the general solution to system (2.28) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ≥ 2,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N.

System 26. By using the change of variables (2.2) system (2.29) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = unvn, n ∈N0. (3.69)

This system is obtained from system (3.43) by interchanging letters v and w. Hence, from
(3.45)–(3.48) we have

v2n = u2n(2n−1)
0 v2n

0 , n ∈N0, (3.70)

v2n+1 = u2n+1(2n−1)
0 w2n+1

0 , n ∈N0, (3.71)

w2n = u2n(2n−1)
0 w2n

0 , n ∈N0, (3.72)

w2n+1 = u2n(2n+1−1)
0 v2n

0 , n ∈N0. (3.73)

From (2.3), (3.2), (3.70)–(3.73) we have that the following theorem holds.

Theorem 3.29. If a 6= 0, then the general solution to system (2.29) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

y2n =
√

a

(
x0+
√

a
x0−
√

a

)2n(2n−1) ( y0+
√

a
y0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n(2n−1) ( y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0,

y2n+1 =
√

a

(
x0+
√

a
x0−
√

a

)2n+1(2n−1) ( z0+
√

a
z0−
√

a

)2n+1

+ 1(
x0+
√

a
x0−
√

a

)2n+1(2n−1) ( z0+
√

a
z0−
√

a

)2n+1

− 1
, n ∈N0,

z2n =
√

a

(
x0+
√

a
x0−
√

a

)2n(2n−1) ( z0+
√

a
z0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n(2n−1) ( z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0,

z2n+1 =
√

a

(
x0+
√

a
x0−
√

a

)2n(2n+1−1) ( y0+
√

a
y0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n(2n+1−1) ( y0+
√

a
y0−
√

a

)2n

− 1
, n ∈N0.
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System 27. By using the change of variables (2.2) system (2.30) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = v2
n, n ∈N0. (3.74)

We have that (3.2) holds. From the second and third equation in (3.74) we have

vn = w2
n−1 = v4

n−2, n ≥ 2,

from which it follows that
v2n = v4

2n−2 = v4n

0 , n ∈N0, (3.75)

and
v2n+1 = v4

2n−1 = v4n

1 = w2·4n

0 , n ∈N0, (3.76)

By using (3.75) and (3.76) in the third equation in (3.74) we get

w2n = v2
2n−1 = (w2·4n−1

0 )2 = w4n

0 , n ∈N0, (3.77)

and
w2n+1 = v2

2n = (v4n

0 )2 = v2·4n

0 , n ∈N0. (3.78)

From (2.3), (3.2), (3.75)–(3.78) we have that the following theorem holds.

Theorem 3.30. If a 6= 0, then the general solution to system (2.30) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

y2n =
√

a

(
y0+
√

a
y0−
√

a

)4n

+ 1(
y0+
√

a
y0−
√

a

)4n

− 1
, n ∈N0,

y2n+1 =
√

a

(
z0+
√

a
z0−
√

a

)2·4n

+ 1(
z0+
√

a
z0−
√

a

)2·4n

− 1
, n ∈N0,

z2n =
√

a

(
z0+
√

a
z0−
√

a

)4n

+ 1(
z0+
√

a
z0−
√

a

)4n

− 1
, n ∈N0,

z2n+1 =
√

a

(
y0+
√

a
y0−
√

a

)2·4n

+ 1(
y0+
√

a
y0−
√

a

)2·4n

− 1
, n ∈N0.

System 28. By using the change of variables (2.2) system (2.31) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = unwn, n ∈N0. (3.79)

We have that (3.2) holds. From this and the third equation in (3.79) we have

wn = un−1wn−1 = u2n−1

0 wn−1 = w0

n−1

∏
j=0

u2j

0 = w0u
∑n−1

j=0 2j

0 = w0u2n−1
0 , (3.80)

for n ∈N0, from which and the second equation in (3.79) it follows that

vn = w2
n−1 = (w0u2n−1−1

0 )2 = w2
0u2n−2

0 , n ∈N. (3.81)

From (2.3), (3.2), (3.80), (3.81) we have that the following theorem holds.
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Theorem 3.31. If a 6= 0, then the general solution to system (2.31) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−2 ( z0+
√

a
z0−
√

a

)2
+ 1(

x0+
√

a
x0−
√

a

)2n−2 ( z0+
√

a
z0−
√

a

)2
− 1

, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.

System 29. By using the change of variables (2.2) system (2.32) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = w2
n, n ∈N0. (3.82)

We have that (3.2) and (3.11) hold, and consequently

vn = w2
n−1 = w2n

0 , n ∈N. (3.83)

From (2.3), (3.2), (3.11), (3.83) we have that the following theorem holds.

Theorem 3.32. If a 6= 0, then the general solution to system (2.32) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N,

zn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0.

System 30. By using the change of variables (2.2) system (2.33) is transformed to

un+1 = u2
n, vn+1 = w2

n, wn+1 = vnwn, n ∈N0. (3.84)

We have that (3.2) holds. From the second and third equation in (3.84) we have

wn = vn−1wn−1 = wn−1w2
n−2, n ≥ 2. (3.85)

Let a1 = 1 and b1 = 2. Then we have

wn = wa1
n−1wb1

n−2 = (wn−2w2
n−3)

a1 wb1
n−2 = wa1+b1

n−2 w2a1
n−3 = wa2

n−2wb2
n−3,

where a2 = a1 + b1 and b2 = 2a1. By using a simple inductive argument we obtain

wn = wak
n−kwbk

n−k−1
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for 1 ≤ k ≤ n− 1, and
ak = ak−1 + bk−1, bk = 2ak−1. (3.86)

Hence for k = n− 1 we get

wn = wan−1
1 wbn−1

0 = (v0w0)
an−1 w2an−2

0 = van−1
0 wan

0 , n ∈N0, (3.87)

and
an = an−1 + 2an−1, n ≥ 2. (3.88)

In fact, (3.88) holds for each n ∈ Z.
The characteristic polynomial associated to equation (3.88) is P̂2(λ) = λ2 − λ − 2 =

(λ + 1)(λ− 2). Hence, general solution to the equation is

an = c1(−1)n + c22n.

From this and since a0 = a1 = 1, we have

c1 + c2 = 1, −c1 + 2c2 = 1

from which it follows that c1 = 1/3 and c2 = 2/3. Hence

an =
2n+1 + (−1)n

3
, n ∈N0,

from which together with (3.87) it follows that

wn = v
2n−(−1)n

3
0 w

2n+1+(−1)n
3

0 , n ∈N0. (3.89)

By using (3.89) in the second equation in (3.84) we get

vn = w2
n−1 = v

2n+2(−1)n
3

0 w
2n+1−2(−1)n

3
0 , n ∈N. (3.90)

Direct calculation shows that this formula also holds for n = 0.
From (2.3), (3.2), (3.89), (3.90) we have that the following theorem holds.

Theorem 3.33. If a 6= 0, then the general solution to system (2.33) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

) 2n+2(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n+1−2(−1)n
3

+ 1(
y0+
√

a
y0−
√

a

) 2n+2(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n+1−2(−1)n
3 − 1

, n ∈N0,

zn =
√

a

(
y0+
√

a
y0−
√

a

) 2n−(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n+1+(−1)n
3

+ 1(
y0+
√

a
y0−
√

a

) 2n−(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n+1+(−1)n
3 − 1

, n ∈N0.
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System 31. By using the change of variables (2.2) system (2.34) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = u2

n, n ∈N0. (3.91)

We have that (3.2) and the second equality in (3.3) hold. By using these formulas we have

vn = wn−1vn−1 = v1

n−1

∏
j=1

u2j

0 = v0w0u
∑n−1

j=1 2j

0 = v0w0u2n−2
0 , n ∈N. (3.92)

From (2.3), (3.2), (3.3), (3.92) we have that the following theorem holds.

Theorem 3.34. If a 6= 0, then the general solution to system (2.34) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−2 ( y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−2 ( y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)
− 1

, n ∈N,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N.

System 32. By using the change of variables (2.2) system (2.35) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = unvn, n ∈N0. (3.93)

This system is obtained from system (3.54) by interchanging letters v and w. Hence, from
(3.65) and (3.66) we have

vn = v fn+1
0 w fn

0 uαn
0 , n ∈N0, (3.94)

wn = uαn−1+2n−1

0 v fn
0 w fn−1

0 , n ∈N0. (3.95)

From (2.3), (3.2), (3.94), (3.95) we have that the following theorem holds.

Theorem 3.35. If a 6= 0, then the general solution to system (2.35) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)αn
(

y0+
√

a
y0−
√

a

) fn+1
(

z0+
√

a
z0−
√

a

) fn
+ 1(

x0+
√

a
x0−
√

a

)αn
(

y0+
√

a
y0−
√

a

) fn+1
(

z0+
√

a
z0−
√

a

) fn
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)αn−1+2n−1 (
y0+
√

a
y0−
√

a

) fn
(

z0+
√

a
z0−
√

a

) fn−1
+ 1(

x0+
√

a
x0−
√

a

)αn−1+2n−1 (
y0+
√

a
y0−
√

a

) fn
(

z0+
√

a
z0−
√

a

) fn−1
− 1

, n ∈N0.

where the sequence (αn)n∈N0 is given by (3.60).
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System 33. By using the change of variables (2.2) system (2.36) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = v2

n, n ∈N0. (3.96)

This system is obtained from system (3.84) by interchanging letters v and w. Hence, from
(3.89) and (3.90) we have

vn = v
2n+1+(−1)n

3
0 w

2n−(−1)n
3

0 , n ∈N0, (3.97)

wn = v
2n+1−2(−1)n

3
0 w

2n+2(−1)n
3

0 , n ∈N0. (3.98)

From (2.3), (3.2), (3.97), (3.98) we have that the following theorem holds.

Theorem 3.36. If a 6= 0, then the general solution to system (2.36) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

) 2n+1+(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n−(−1)n
3

+ 1(
y0+
√

a
y0−
√

a

) 2n+1+(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n−(−1)n
3 − 1

, n ∈N0,

zn =
√

a

(
y0+
√

a
y0−
√

a

) 2n+1−2(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n+2(−1)n
3

+ 1(
y0+
√

a
y0−
√

a

) 2n+1−2(−1)n
3

(
z0+
√

a
z0−
√

a

) 2n+2(−1)n
3 − 1

, n ∈N0.

System 34. By using the change of variables (2.2) system (2.37) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = unwn, n ∈N0. (3.99)

This system is obtained from system (3.23) by interchanging letters v and w. Hence, from
(3.15) and (3.24) we have

vn = v0wn
0 u2n−n−1

0 , n ∈N0, (3.100)

wn = w0u2n−1
0 , n ∈N0. (3.101)

From (2.3), (3.2), (3.100), (3.101) we have that the following theorem holds.

Theorem 3.37. If a 6= 0, then the general solution to system (2.37) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
x0+
√

a
x0−
√

a

)2n−n−1 ( y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)n
+ 1(

x0+
√

a
x0−
√

a

)2n−n−1 ( y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)n
− 1

, n ∈N0,

zn =
√

a

(
x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
+ 1(

x0+
√

a
x0−
√

a

)2n−1 ( z0+
√

a
z0−
√

a

)
− 1

, n ∈N0.
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System 35. By using the change of variables (2.2) system (2.38) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = w2

n, n ∈N0. (3.102)

We have that (3.2) and (3.11) hold. By using (3.11) in the second equation in (3.102) we
have

vn = vn−1wn−1 = v0

n−1

∏
j=0

w2j

0 = v0w2n−1
0 , n ∈N0. (3.103)

From (2.3), (3.2), (3.11), (3.103) we have that the following theorem holds.

Theorem 3.38. If a 6= 0, then the general solution to system (2.38) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)2n−1
+ 1(

y0+
√

a
y0−
√

a

) (
z0+
√

a
z0−
√

a

)2n−1
− 1

, n ∈N0,

zn =
√

a

(
z0+
√

a
z0−
√

a

)2n

+ 1(
z0+
√

a
z0−
√

a

)2n

− 1
, n ∈N0.

System 36. By using the change of variables (2.2) system (2.39) is transformed to

un+1 = u2
n, vn+1 = vnwn, wn+1 = vnwn, n ∈N0. (3.104)

We have that (3.2) holds and that vn = wn, n ∈ N. By using the last relation in the second
equation in (3.104) we have

vn = vn−1wn−1 = v2
n−1, n ≥ 2. (3.105)

Hence
vn = v2n−1

1 = (v0w0)
2n−1

, n ∈N, (3.106)

and consequently
wn = (v0w0)

2n−1
, n ∈N. (3.107)

From (2.3), (3.2), (3.106), (3.107) we have that the following theorem holds.

Theorem 3.39. If a 6= 0, then the general solution to system (2.39) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)2n

+ 1(
x0+
√

a
x0−
√

a

)2n

− 1
, n ∈N0,

yn =
√

a

(
y0+
√

a
y0−
√

a

)2n−1 (
z0+
√

a
z0−
√

a

)2n−1

+ 1(
y0+
√

a
y0−
√

a

)2n−1 (
z0+
√

a
z0−
√

a

)2n−1

− 1
, n ∈N,

zn =
√

a

(
y0+
√

a
y0−
√

a

)2n−1 (
z0+
√

a
z0−
√

a

)2n−1

+ 1(
y0+
√

a
y0−
√

a

)2n−1 (
z0+
√

a
z0−
√

a

)2n−1

− 1
, n ∈N.
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