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Abstract. We investigate the asymptotic properties of solutions to higher order nonlin-
ear difference equations in Banach spaces. We introduce a new technique based on a
vector version of discrete L’Hospital’s rule, remainder operator, and the regional topol-
ogy on the space of all sequences on a given Banach space. We establish sufficient
conditions for the existence of solutions with prescribed asymptotic behavior. More-
over, we are dealing with the problem of approximation of solutions. Our technique
allows us to control the degree of approximation of solutions.
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1 Introduction

Let N, R denote the set of positive integers and the set of real numbers respectively. In this
paper we assume that m ∈ N is fixed and X is a real Banach space. We consider the equation

∆mxn = an f (n, xσ(n)) + bn (E)

n ∈ N, an ∈ R, bn ∈ X, f : N × X → X, σ : N → N, lim σ(n) = ∞.

By a solution of (E) we mean a sequence x : N → X satisfying (E) for all large n.
Nonlinear difference equations often appear in mathematical models used, for example, in

technology, biology, physics, economics or medicine. Hence the study of behavior of solutions
to difference equations is of great importance. Therefore, many papers are devoted to this
topic, see for example [3, 4, 6, 12, 14, 15, 17–22]. In some papers the difference equations in
Banach spaces are also investigated, see for example [1, 2, 5, 7–9, 16].

In this paper we deal with the problem of the existence of solutions to the equation (E),
with prescribed asymptotic behavior and the problem of approximation of solutions to equa-
tion (E). More precisely, in Section 4 we establish conditions under which for a given sequence
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y : N → X such that ∆mxn = bn and a given number s ∈ (−∞, 0] there exists a solution x of
(E) such that xn = yn + o(ns) (then x is called a solution with prescribed asymptotic behavior,
and y is called an approximative solution of (E)). Next, in Section 5, we establish conditions
under which for a given solution x of (E) and a given number s ∈ (−∞, 0] there exists a se-
quence y : N → X such that ∆myn = bn and xn = yn + o(ns). By selecting the number s, we
can control the degree of approximation of solution.

The paper is organized as follows. In Section 2, we introduce notation and terminology.
In Section 3, we present our technical tools, i.e. vector version of discrete L’Hospital’s rule,
the regional topology on the space of all sequences on a given Banach space, and remainder
operator which are needed to get the main results. The next two sections contain our main
results. In Section 4 we establish sufficient conditions for the existence of solutions with
prescribed asymptotic behavior. Section 5 is devoted to approximation of solutions.

2 Notation and terminology

Let Z, denote the set of all integers. If p, k ∈ Z, p ≤ k, then N(p), N(p, k) denote the sets
defined by

N(p) = {p, p + 1, . . . }, N(p, k) = {p, p + 1, . . . , k}.

We use the symbol |t| to denote the norm of a vector t ∈ X. The space of all sequences
x : N → R we denote by RN. Moreover, we use the symbol XN to denote the space of all
sequences x : N → X. If a ∈ RN and x ∈ XN, then ax denotes the sequence defined by
pointwise multiplication

ax(n) = anxn.

Moreover, |x| denotes the sequence defined by |x|(n) = |xn| for every n. Let

Fin(X) =
∞⋃

p=1

{x ∈ XN : xn = 0 for n ≥ p},

oX(1) =
{

x ∈ XN : lim
n→∞

xn = 0
}

, OX(1) =
{

x ∈ XN : x is bounded
}

and for a ∈ RN let
oX(a) = {ax : x ∈ oX(1)}+ Fin(X),

OX(a) = {ax : x ∈ OX(1)}+ Fin(X).

For a sequence a ∈ RN and x ∈ XN we write xn = o(an) to denote the relation

x ∈ oX(a).

Analogously xn = O(an) denotes the relation x ∈ OX(a).
We use the symbol ∆ to denote the difference operator defined by

∆ : XN → XN, (∆x)(n) = xn+1 − xn.

As usual we use ∆xn to denote the value (∆x)(n). For k ∈ N we denote by ∆k the k-th iteration
of the operator ∆. Moreover, ∆0 denotes the identity operator. For k ∈ N(0) we define

PolX(k − 1) = Ker(∆k) =
{

x ∈ XN : ∆kx = 0
}

.
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Then PolX(k − 1) is the space of all polynomial sequences of degree less than k. Note that

PolX(−1) = Ker(∆0) = 0

is the zero space. It is easy to see that φ ∈ PolX(k − 1) if and only if there exist vectors
x0, x1, . . . , xk−1 ∈ X such that

φ(n) = xk−1nk−1 + xk−2nk−2 + · · ·+ x1n + x0

for any n ∈ N. For b ∈ XN we use the symbol ∆−kb to denote the set

∆−kb =
{

x ∈ XN : ∆kx = b
}

.

Remark 2.1. If y is an arbitrary element of ∆−kb, then

∆−kb = y + PolX(k − 1).

Let H be a metric space. For a subset A of H and ε > 0, we define an ε-ball about A by

B(A, ε) =
⋃

a∈A

B(a, ε).

where B(a, ε) denotes an open ball of radius ε centered at a. We say that a subset U of H is a
uniform neighborhood of A if there exists a positive ε such that

B(A, ε) ⊂ U.

A subset A of H is called an ε-net for a subset Z of H if Z ⊂ B(A, ε). A subset Z of H is said
to be totally bounded if for any ε > 0 there exist a finite ε-net for Z.

3 Preliminaries

In this section, we introduce the technical tools that form the basis of our technique for study-
ing the asymptotic properties of solutions to difference equations.

3.1 Discrete L’Hospital’s rule

Lemma 3.1. Assume a, b, r are positive real numbers, c ∈ X, a1, a2, . . . , an are real numbers with the
same nonzero sign. Then

aB(c, r) = B(ac, ar), aB(c, r) + bB(c, r) = (a + b)B(c, r), (3.1)

and
a1B(c, r) + a2B(c, r) + · · ·+ anB(c, r) = (a1 + · · ·+ an)B(c, r). (3.2)

Proof. The assertion (3.1) is an easy exercise, (3.2) is a consequence of (3.1).

Lemma 3.2. Assume x ∈ XN, p ∈ N, r, L ∈ R,

c ∈ X, r > 0, L ≥ |c|+ r,
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(yn) is a sequence of real numbers, strictly monotonic for n ≥ p. Moreover,

yn ̸= 0 and
∆xn

∆yn
∈ B(c, r) (3.3)

for n ≥ p. Then ∣∣∣∣ xn

yn
− c
∣∣∣∣ < r + L

∣∣∣∣ yk

yn

∣∣∣∣+ ∣∣∣∣ xk

yn

∣∣∣∣ (3.4)

for n, k ≥ p.

Proof. Assume the sequence (yn) is increasing for n ≥ p. Choose n, k ≥ p. For i ≥ p we have
∆xi ∈ (∆yi)B(c, r). Hence, using Lemma 3.1, we obtain

xn − xk = ∆xk + · · ·+ ∆xn−1 ∈ (∆yk)B(c, r) + · · ·+ (∆yn−1)B(c, r)

= (∆yk + · · ·+ ∆yn−1)B(c, r) = (yn − yk)B(c, r).

for n ≥ k. Similarly, for k ≥ n, we have xk − xn ∈ (yk − yn)B(c, r). Hence

xn − xk ∈ (yn − yk)B(c, r) and
xn

yn
− xk

yn
∈
(

1 − yk

yn

)
B(c, r).

Therefore, there exists a vector b ∈ B(c, r) such that

xn

yn
− xk

yn
=

(
1 − yk

yn

)
b = b −

(
yk

yn

)
b.

Hence
xn

yn
− c = b − c −

(
yk

yn

)
b +

xk

yn
.

Since |b − c| < r and |b| ≤ |c|+ r ≤ L, we have∣∣∣∣ xn

yn
− c
∣∣∣∣ < r + L

∣∣∣∣ yk

yn

∣∣∣∣+ ∣∣∣∣ xk

yn

∣∣∣∣
The case when (yn) is decreasing for n ≥ p is analogous.

Theorem 3.3 (Discrete L’Hospital’s rule). Assume (xn) ∈ XN, (yn) is a sequence of real num-
bers which is strictly monotonic for large n. Moreover, we assume that the sequence (∆xn/∆yn) is
convergent and one of the following conditions is satisfied:

(a) limn→∞ xn = 0 and limn→∞ yn = 0,

(b) the sequence (yn) is unbounded.

Then the sequence (xn/yn) is convergent and

lim
n→∞

xn

yn
= lim

n→∞

∆xn

∆yn
.

Proof. Let ε > 0. There exists an index p such that∣∣∣∣∆xn

∆yn
− ∆xk

∆yk

∣∣∣∣ < ε
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for n, k ≥ p. Let c = ∆xp/∆yp. Then ∆xn/∆yn ∈ B(c, ε) for n ≥ p. If condition (a) is satisfied
and n ≥ p, then taking sufficiently large k and using Lemma 3.2 we obtain |xn/yn − c| < 2ε.
Similarly, if condition (b) is satisfied, then using Lemma 3.2 we obtain an index q ≥ p such
that |xn/yn − c| < 2ε for n ≥ q. Then∣∣∣∣ xn

yn
− ∆xn

∆yn

∣∣∣∣ ≤ ∣∣∣∣ xn

yn
− c
∣∣∣∣+ ∣∣∣∣c − ∆xn

∆yn

∣∣∣∣ < 2ε + ε.

Lemma 3.4. If x ∈ XN, m ∈ N, s ∈ (−1, ∞), and ∆mxn = o(ns), then

xn = o(ns+m).

Proof. Induction on m. Let m = 1. Using L’Hospital’s rule we obtain

lim
t→∞

(t + 1)s+1 − ts+1

ts = lim
t→∞

(t + 1)s+1 − ts+1

t−1ts+1 = lim
t→∞

(1 + t−1)s+1 − 1
t−1

= lim
t→∞

(s + 1)(1 + t−1)s(−t−2)

−t−2 = s + 1.

Hence

lim
n→∞

∆ns+1

ns = s + 1.

So by assumption ∆x = o(ns) we obtain

lim
∆xn

∆ns+1 = lim
∆xn

ns
ns

∆ns+1 = lim
∆xn

ns lim
ns

∆ns+1 =
0

s + 1
= 0.

Since s > −1, the sequence (ns+1) is increasing to infinity. By Theorem 3.3, we obtain xn =

o(ns+1). Hence the assertion is true for m = 1. Assume it is true for certain m ≥ 1 and let
∆m+1xn = o(ns). Then ∆m∆xn = o(ns) and by inductive hypothesis we get ∆xn = o(ns+m).
Hence by the first part of the proof we obtain xn = o(ns+m+1).

3.2 Regional topology

Let Y be a real vector space. We say that a function ∥ · ∥ : Y → [0, ∞] is regional norm if the
condition ∥x∥ = 0 is equivalent to x = 0 and for any x, y ∈ Y and α ∈ R we have

∥αx∥ = |α|∥x∥, ∥x + y∥ ≤ ∥x∥+ ∥y∥.

Hence, the notion of regional norm generalizes the notion of usual norm. If a regional norm
on Y is given, then we say that Y is a regional normed space. If there exists a vector x ∈ Y
such that ∥x∥ = ∞, then we say that Y is extraordinary.

Assume Y is a regional normed space. We say that a subset Z of Y is ordinary if ∥x − y∥ <

∞ for any x, y ∈ Z. We regard every ordinary subset Z of Y as a metric space with metric
defined by

d(x, y) = ∥x − y∥.

Let U ⊂ Y. We say that U is regionally open if U ∩ Z is open in Z for any ordinary subset Z
of Y. The family of all regionally open subsets is a topology on Y which we call the regional
topology. We regard any subset of Y as a topological space with topology induced by the
regional topology. The subset

Y0 = {y ∈ Y : ∥y∥ < ∞},
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is a linear subspace of Y and regional norm induces an usual norm on Y0. We say that Y is a
regional Banach space if Y0 is a Banach space.

An important special case of a regional Banach space we obtain as follows. Let D be an
arbitrary nonempty set and let F(D, X) denote the space of all functions f : D → X. Then the
formula

∥ f ∥ = sup{| f (p)| : p ∈ D}

defines a regional norm on F(D, X). This space is extraordinary if D is infinite. In particular,
we obtain the regional topology on the space

XN = F(N, X).

The regional topology in F(D, X) is, simply, the topology of uniform convergence. In extraor-
dinary case this topology is not linear but almost linear. For more details and for the proof of
the following theorem we refer to [13].

Theorem 3.5 (Generalized Schauder theorem). Assume Q is a closed and convex subset of a re-
gional Banach space Y, a map A : Q → Q is continuous and the set A(Q) is ordinary and totally
bounded. Then there exists a point x ∈ Q such that A(x) = x.

We say that a family T ⊂ XN is pointwise totally bounded if for any n the set T(n) = {tn :
t ∈ T} is totally bounded. We say that T is stable at infinity if for any ε > 0 there exists an
index p such that |xn − yn| < ε for any n > p and any x, y ∈ T.

Lemma 3.6. If a family T ⊂ XN is pointwise totally bounded and stable at infinity, then T is totally
bounded with respect to regional norm.

Proof. Let t ∈ T and ε > 0. Choose an index p such that

|xn − yn| < ε

for any x, y ∈ T and any n > p. For any i = 1, . . . , p choose a finite ε-net Gi for the set

T(i) = {xi : x ∈ T}.

Let
G =

{
z ∈ XN : zn ∈ Gn for n ≤ p and zn = tn for n > p

}
.

Fix an x ∈ T. For any i ∈ N(1, p) choose gi ∈ Gi such that |xi − gi| < ε. Let h ∈ XN be
defined by

hn = gn for n ≤ p, hn = tn for n > p.

Then h ∈ G and |x − h| < ε. Hence G is a finite ε-net for T.

3.3 Remainder operator

In this section we define the iterated remainder operator. This operator will be used in the
proofs of our main results. In Lemmas 3.7 and 3.8 we establish some basic properties this
operator. Next in Lemma 3.10 we show that if x ∈ XN and ∆mx is asymptotically zero, then x
is asymptotically polynomial. In Lemmas 3.11 and 3.12 we present some useful consequences
of Lemma 3.10.
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Now we define the spaces SX(m) of m-times summable sequences and the remainder
operator. Let

SX(0) = oX(1), SX(1) =

{
x ∈ XN : the series

∞

∑
n=1

xn is convergent

}
.

For x ∈ SX(1), we define the sequence r(x) by the formula

r(x)(n) =
∞

∑
j=n

xj.

Then r(x) ∈ SX(0) and we obtain the remainder operator

r : SX(1) → SX(0).

For m ∈ N, by induction, we define the linear space SX(m + 1) and the linear operator

rm+1 : SX(m + 1) → SX(0)

by
SX(m + 1) = {x ∈ SX(m) : rm(x) ∈ SX(1)}, rm+1(x) = r(rm(x)).

Note that

rm(x)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

xim

for any x ∈ SX(m) and any n ∈ N.
In the proof of the next lemma we use the fact that in Banach space absolute convergence

implies convergence of a series.

Lemma 3.7. Assume x ∈ XN, m ∈ N, p ∈ N, and s ∈ (−∞, 0]. Then

(a) if |x| ∈ SR(m), then x ∈ SX(m) and |rm(x)| ≤ rm(|x|),

(b) |x| ∈ SR(m) if and only if ∑∞
n=1 nm−1|xn| < ∞,

(c) if |x| ∈ SR(m), then rm(|x|)(p) ≤ ∑∞
n=p nm−1|xn|,

(d) if x ∈ SX(m), then ∆m(rm(x)) = (−1)mx,

(e) if x ∈ oX(1), then ∆mx ∈ SX(m) and rm(∆m(x)) = (−1)mx,

( f ) if ∑∞
n=1 nm−1−s|xn| < ∞, then x ∈ SX(m) and rm(x)(n) = o(ns).

Proof. Using our notation, the assertion (a) may be proved by repeating the proof of [10,
Lemma 1]. Analogously, repeating the proof of [10, Lemma 2] we obtain (b). Similarly, we
can obtain (c), (d), and (e) from [10, Lemma 2], [10, Lemma 5] and [10, Lemma 6] respectively.
The assertion (f) we can obtain from [12, Lemma 4.2].

Lemma 3.8. If x ∈ XN and |x| ∈ SR(m), then

rm(x)(n) =
∞

∑
i1=n

∞

∑
i2=i1

· · ·
∞

∑
im=im−1

xim =
∞

∑
k=0

(
m + k − 1

m − 1

)
xn+k

=
∞

∑
k=0

(k + 1)(k + 2) · · · (k + m − 1)
(m − 1)!

xn+k =
∞

∑
j=n

(j − n + 1) · · · (j − n + m − 1)
(m − 1)!

xj.
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Proof. See [11, Lemma 4].

Lemma 3.9. If a, b ∈ SR(m) and a ≤ b, then rm(a) ≤ rm(b).

Proof. See [12, Lemma 4.1 (h)].

Lemma 3.10. Assume a ∈ RN, x ∈ XN, m ∈ N, s ∈ (−∞, m − 1],

∞

∑
n=1

nm−1−s|an| < ∞, and ∆mxn = O(an).

Then
x ∈ PolX(m − 1) + oX(ns).

Proof. Let s ≤ 0. The condition ∆mxn = O(an) implies

∞

∑
n=1

nm−1−s|∆mxn| < ∞.

Let u = ∆m(x). By Lemma 3.7 (f), u ∈ SX(m) and rm(u)(n) = o(ns). Let w = (−1)mrm(u).
Then wn = o(ns) and, by Lemma 3.7 (d), ∆m(w) = u = ∆m(x). Hence

x − w ∈ Ker(∆m) = PolX(m − 1)

and we obtain
x = x − w + w ∈ PolX(m − 1) + oX(ns).

Let s ∈ (0, m − 1]. Choose k ∈ N(1, m − 1) such that k − 1 < s ≤ k. Then

∞

∑
n=1

n(m−k)−1−(s−k)|un| < ∞

and, by Lemma 3.7 (f), u ∈ S(m − k) and rm−k(u)(n) = o(ns−k). Let w = (−1)m−krm−k(u).
Then wn = o(ns−k) and, by Lemma 3.7 (d), ∆m−kw = u. Choose z ∈ XN such that ∆kzn =

wn = o(ns−k). Since s − k > −1, so by Lemma 3.4 we have zn = o(ns). Moreover

∆mz = ∆m−k∆kz = ∆m−kw = u = ∆mx

and
x = x − z + z ∈ PolX(m − 1) + oX(ns).

Lemma 3.11. Assume a ∈ RN, b, x ∈ XN, m ∈ N, s ∈ (−∞, m − 1],

∞

∑
n=1

nm−1−s|an| < ∞, and ∆mx ∈ OX(a) + b.

Then
x ∈ ∆−mb + oX(ns).
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Proof. Choose u ∈ ∆−mb. Then

∆m(x − u) = ∆mx − ∆mu = ∆mx − b ∈ OX(a).

Hence, by the previous lemma,

x − u ∈ PolX(m − 1) + oX(ns).

On the other hand,
u + PolX(m − 1) = ∆−mb.

Hence
x ∈ u + PolX(m − 1) + oX(ns) = ∆−mb + oX(ns).

Lemma 3.12. Assume b ∈ XN, m ∈ N, s ∈ (−∞, m − 1], and

∞

∑
n=1

nm−1−s|bn| < ∞.

Then
∆−mb + oX(ns) = PolX(m − 1) + oX(ns).

Proof. Let x ∈ ∆−mb and z ∈ oX(ns). By Lemma 3.10,

x ∈ PolX(m − 1) + oX(ns).

Hence x + z ∈ PolX(m − 1) + oX(ns) and we have

∆−mb + oX(ns) ⊂ PolX(m − 1) + oX(ns).

By Lemma 3.7 (f), b ∈ SX(m) and rm(b)(n) = o(ns). Let

u = (−1)mrm(b) and φ ∈ PolX(m − 1).

Then u = o(ns) and using Lemma 3.7 (d), we have

∆m(φ + u) = ∆mu = b.

Hence
φ + u ∈ ∆−mb and φ ∈ ∆−mb + o(ns).

Therefore
PolX(m − 1) + oX(ns) ⊂ ∆−mb + oX(ns).

4 Solutions with prescribed asymptotic behavior

We say that a map f : Y → Z from a metric space Y to a metric space Z is a Heine map if it is
completely continuous and is uniformly continuous on any bounded subset of Y. We define
a metric d on N × X by

d((k, s), (n, t)) = max(|n − k|, |t − s|).

Note that if the dimension of the space X is finite then any continuous map f : N × X → X is
a Heine map.
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Theorem 4.1. Assume f is a Heine map, s ∈ (−∞, 0],

∞

∑
n=1

nm−s−1|an| < ∞, (4.1)

w ∈ RN is positive and bounded, g : [0, ∞) → [0, ∞) is locally bounded,

| f (n, t)| ≤ g(wn|t|) (4.2)

for (n, t) ∈ N × X, y ∈ XN, ∆my = b and

wnyσ(n) = O(1). (4.3)

Then there exists a solution x of (E) such that x = y + o(ns).

Proof. For x ∈ XN let x̄ ∈ XN be defined by

x̄n = f (n, xσ(n)).

Choose a positive constant c. Let

T =
{

x ∈ XN : |x − y| ≤ c
}

.

By boundedness of w and (4.3), there exists a constant K such that if x ∈ T and n ∈ N, then

|wnxσ(n)| = |wnxσ(n) − wnyσ(n) + wnyσ(n)|
≤ |wn||xσ(n) − yσ(n)|+ |wnyσ(n)| ≤ K.

Since g is locally bounded, there exists M > 0 such that g([0, K]) ⊂ [0, M]. Therefore, we have

g(|wnxσ(n)|) ≤ M and |x̄n| ≤ g(|xσ(n)wn|) ≤ M (4.4)

for x ∈ T and n ∈ N. Since rm(|a|)(n) = o(1), there exists an index p ≥ 1 such that

Mrm(|a|)(n) ≤ c for n ≥ p. (4.5)

Let µ, ρ ∈ RN,

µn =

{
0 for n < p,

1 for n ≥ p,
ρ = µMrm(|a|). (4.6)

Now, we define a subset S of XN and a map A : S → XN by

S =
{

x ∈ XN : |x − y| ≤ ρ
}

, A(x) = y + (−1)mµrm(ax̄).

Then S ⊂ T. Obviously, S is convex, closed and ordinary subset of XN. If x ∈ S, then, using
Lemma 3.7 (a), Lemma 3.9, (4.4) and (4.6) we get

|Ax − y| = |µrm(ax̄)| ≤ µrm(|ax̄|) ≤ ρ.

Hence A(S) ⊂ S. Choose ε > 0. There exists q ≥ p and α > 0 such that

2M
∞

∑
n=q

nm−1|an| < ε and αqm−1
q

∑
n=1

|an| < ε. (4.7)
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Let
L = max{|yσ(n) − yn| : n ∈ N(1, q)},

and
W = {(n, t) ∈ N × X : n ∈ N(1, q), |t − yn| ≤ L + c}.

The function f is uniformly continuous on W. Hence, there exists a δ > 0 such that

if (n, s), (n, t) ∈ W and |s − t| < δ, then | f (n, s)− f (n, t)| < α. (4.8)

Assume x, z ∈ S, |x − z| < δ. Let u = x̄ − z̄. Then

|Ax − Az| = |µrm(au)|.

Using Lemma 3.7 we get

d(Ax, Az) = sup
n∈N

|Axn − Azn| = sup
n∈N

|rm(au)(n)|

≤ sup
n∈N

rm(|au|)(n) ≤
∞

∑
n=1

nm−1|anun|.

Hence

d(Ax, Az) ≤
q

∑
n=1

nm−1|anun|+
∞

∑
n=q

nm−1|anun|. (4.9)

By (4.4), |u| ≤ 2M. If n ∈ N(1, q), then

|xσ(n) − yn| ≤ |xσ(n) − yσ(n)|+ |yσ(n) − yn| ≤ ρ(n) + L ≤ L + c.

Hence (n, xσ(n)) ∈ W. Analogously (n, zσ(n)) ∈ W. Therefore, by (4.8), |un| ≤ α for n ≤ q. By
(4.7) and (4.9) we get

d(Ax, Az) ≤ αqm−1
q

∑
n=1

|an|+ 2M
∞

∑
n=q

nm−1|an| < ε + ε.

Thus the map A is continuous. Now, we will show that the family A(S) is pointwise totally
bounded. Fix an n ∈ N. Then

A(S)(n) = {yn + (−1)mµnrm(ax̄)(n) : x ∈ S}

and, by Lemma 3.8,

rm(ax̄)(n) =
∞

∑
k=0

(
m + k − 1

m − 1

)
an+k f (n + k, xσ(n+k)).

Let
Qn = {rm(ax̄)(n) : x ∈ S}.

For k ∈ N(0) let

λk =

(
m + k − 1

m − 1

)
,

Vk = {(n + k, xσ(n+k)) : x ∈ S} = {n + k} × S(σ(n + k))
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and
Uk = {λkan+k x̄n+k : x ∈ S}

Then Vk is a bounded subset of N × X and, since f is completely continuous, the set f (Vk) is
totally bounded. Hence

Uk = {λkan+k f (n + k, xσ(n+k)) : x ∈ S} = λkan+k f (Vk)

is also totally bounded. Let ε > 0. By (4.1) and Lemma 3.7 (b), |a| ∈ SR(m). By Lemma 3.8
there exists an index n1 such that

M
∞

∑
k=n1

λk|an+k| < ε.

Let

D =

{
∞

∑
k=n1

λkan+k x̄n+k : x ∈ S

}
and U = U0 + U1 + · · ·+ Un1 .

Then

Qn =

{
∞

∑
k=0

λkan+k x̄n+k : x ∈ S

}
⊂ U + D.

By (4.4), |x̄n+k| ≤ M for any k. Hence |z| < ε for any z ∈ D. Moreover, U is totally bounded
and there exists a finite ε-net H for U. If u ∈ U, then there exists h ∈ H such that |u − h| ≤ ε.
Moreover, if z ∈ D, then

|u + z − h| ≤ |u − h|+ |z| ≤ 2ε.

Hence H is a finite 2ε-net for U + D and for Qn ⊂ U + D. Therefore Qn is totally bounded.
Thus

A(S)(n) = yn + (−1)mµnQn

is also totally bounded. Obviously the family A(S) is stable at infinity. Hence, by Lemma 3.6,
A(S) is totally bounded. Therefore, by Theorem 3.5, there exists a sequence x ∈ S such that
A(x) = x. Then

xn = yn + (−1)mrm(ax̄)(n)

for n ≥ p. This means that there exists a sequence u ∈ XN such that un = 0 for n ≥ p and

x = y + (−1)mrm(ax̄) + u. (4.10)

Hence, by Lemma 3.7 (d),

∆mx = ∆my + ax̄ + ∆mu = ax̄ + b + ∆mu.

It is easy to see that ∆mun = 0 for n ≥ p and we obtain

∆mxn = an f (n, xσ(n)) + bn

for n ≥ p. Moreover, using (4.10) and Lemma 3.7 (f), we get xn = yn + o(ns).

Theorem 4.2. Assume s ∈ (−∞, 0], y ∈ XN, ∆my = b,
∞

∑
n=1

nm−s−1|an| < ∞,

U ⊂ X is a uniform neighborhood of the set y(N), and the map f |N ×U is Heine and bounded. Then
there exists a solution x of (E) such that xn = yn + o(ns).
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Proof. For x ∈ XN let x̄ ∈ XN be defined by

x̄n = f (n, xσ(n)).

Choose a positive constant c such that B(y(N), c) ⊂ U. Let

T = {x ∈ XN : |x − y| ≤ c} and M = sup{| f (n, t)| : (n, t) ∈ N × U}.

If x ∈ T and n ∈ N, then xn ∈ B(y(N), c) ⊂ U. Hence

|x̄n| ≤ M

for any x ∈ T and n ∈ N. There exists an index p ≥ 1 such that

Mrm(|a|)(n) ≤ c for n ≥ p.

The rest of the proof is analogous to the second part of the proof of Theorem 4.1.

Corollary 4.3. Assume the map f is Heine, s ∈ (−∞, 0], and

∞

∑
n=1

nm−s−1|an| < ∞.

Moreover, for any bounded subset Z of X, f is bounded on N × Z. Then for any bounded solution y of
the equation ∆my = b there exists a solution x of (E) such that xn = yn + o(ns).

Proof. The assertion is an easy consequence of Theorem 4.2.

5 Approximations of solutions

Theorem 5.1. Assume x is a solution of (E), s ∈ (−∞, m − 1], p ∈ N, U ⊂ X,

∞

∑
n=1

nm−1−s|an| < ∞, g : [0, ∞) → [0, ∞), w ∈ RN,

and one of the following conditions is satisfied:

(1) the sequence x̄n = f (n, xσ(n)) is bounded,

(2) f is bounded on N(p)× U and xσ(n) ∈ U for large n,

(3) f is bounded on N(p)× U and xn ∈ U for large n,

(4) f is bounded,

(5) g is locally bounded, xσ(n) = O(w−1
n ) and | f (n, t)| ≤ g(|wnt|) on N × X.

Then x ∈ ∆−mb + oX(ns). If, moreover,

∞

∑
n=1

nm−1−s|bn| < ∞,

then x ∈ PolX(m − 1) + o(ns).
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Proof. Obviously (4) ⇒ (3) ⇒ (2) ⇒ (1). Assume (5). Then the sequence

zn = g(|wnxσ(n)|)

is bounded and | f (n, xσ(n))| ≤ g(|wnxσ(n)|) = zn. Hence (5) ⇒ (1). If the sequence x̄ is
bounded, then by the equality

∆mxn = an x̄n + bn

for large n we obtain ∆mx = O(a) + b. Hence the assertion follows from Lemma 3.11.

Corollary 5.2. Assume f is bounded on N × Z for any bounded subset Z of X, s ≤ 0,

∞

∑
n=1

nm−s−1|an| < ∞, and
∞

∑
n=1

nm−s−1|bn| < ∞.

Then any bounded solution x of (E) is convergent. More precisely, there exists a vector c ∈ X such
that x = c + o(ns).

Proof. Let x be a bounded solution of (E) and let Z = x(N). Then f is bounded on N × Z,
and, by Theorem 5.1, x ∈ PolX(m − 1) + o(ns). Using the boundedness of x and assumption
s ≤ 0 we see that there exists a vector c ∈ X such that x = c + o(ns).

Corollary 5.3. Assume that for any bounded subset Z of X, f is bounded on N × Z, s ≤ 0, q ∈ N, y
is a q-periodic solution of the equation ∆my = b and

∞

∑
n=1

nm−s−1|an| < ∞.

Then any bounded solution x of (E) is asymptotically q-periodic. More precisely, there exists a vector
c ∈ X such that x = c + y + o(ns).

Proof. If x is a bounded solution of (E), then, by Theorem 5.1,

x ∈ ∆−mb + o(ns) = y + PolX(m − 1) + oX(ns).

Using boundedness of x and y and assumption s ≤ 0 we see that there exists a vector c ∈ X
such that x = c + y + o(ns).

Lemma 5.4. Assume a, u are nonnegative sequences, p ∈ N, λ, µ > 0, and b ≥ 0. Let g : [0, ∞) →
[0, ∞) be nondecreasing, g(b) > 0,

∞

∑
k=0

ak < ∞,
∫ ∞

b

dt
g(t)

= ∞, and un ≤ b + λ
n−1

∑
k=p

akg(µuk)

for n ≥ p. Then the sequence u is bounded.

Proof. See [12, Lemma 7.2].

Lemma 5.5. If x ∈ XN, m ∈ N and p ∈ N(m) then there exists a positive constant L such that

|xn| ≤ n(m−1)

(
L +

n−1

∑
i=p

|∆mxi|
)

for n ≥ p.
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Proof. The proof is analogous to the proof of [12, Lemma 7.3].

Theorem 5.6. Assume σ(n) ≤ n for large n, s ∈ (−∞, m − 1],

g : [0, ∞) → [0, ∞), w ∈ RN, w = O(n1−m),

| f (n, t)| ≤ g(|wnt|) on N × X, g is nondecreasing, g(t) > 0 for t > 1,

∞

∑
n=0

nm−1−s|an| < ∞,
∞

∑
n=0

nm−1−s|bn| < ∞,
∫ ∞

1

dt
g(t)

= ∞

and x is a solution of (E). Then x ∈ PolX(m − 1) + oX(ns).

Proof. Choose M > 0 such that |wn|nm−1 ≤ M. Then |wn|n(m−1) ≤ M. By assumption

|∆mxn| = |an f (n, xσ(n)) + bn| ≤ |an|| f (n, xσ(n))|+ |bn|
≤ |an||g(|wnxσ(n)|)|+ |bn|.

By Lemma 5.5, there exists a positive constant L such that

|xσ(n)| ≤ σ(n)(m−1)

(
L +

σ(n)−1

∑
i=p

|∆mxi|
)

≤ n(m−1)

(
L +

n−1

∑
i=p

|∆mxi|
)

.

Hence

|wnxσ(n)| ≤ ML + M
n−1

∑
j=1

|∆mxj|.

Then

|wnxσ(n)| ≤ ML + M
n−1

∑
j=1

|aj|g(|wjxσ(j)|) + M
n−1

∑
j=1

|bj|

≤ K + M
n−1

∑
j=1

|aj|g(|wjxσ(j)|),

where

K = ML + M
n−1

∑
j=1

|bj|.

Obviously
∫ ∞

K g(t)−1dt = ∞. By Lemma 5.4, the sequence (wnxσ(n)) is bounded. Choose
Q > 0 such that |wnxσ(n)| ≤ Q for every n. Choose P ≥ 1 such that g(Q) ≤ P. Then
g(|wnxσ(n)|) ≤ P for every n. Hence

|∆mxn| ≤ |an|g(|wnxσ(n)|) + |bn| ≤ P|an|+ |bn| ≤ P(|an|+ |bn|).

Therefore ∆mxn = O(|an|+ |bn|). Now the conclusion follows from Lemma 3.10.
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